Small-cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumours, but virtually absent from normal healthy tissues. Here, we validate a FucGM1-targeting T cell redirecting bispecific antibody (TCB) for the treatment of SCLC. Over 80% of SCLC patient-derived xenograft (PDX) tissues expressed FucGM1, whilst only three normal human tissues: pituitary, thymus and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanised h134 antibody exhibited nanomolar FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as interferon gamma, interleukin-2 and tumour necrosis factor alpha and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumour controlling activity translated into an effective in vivo anti-DMS79 tumour therapy, resulting in 100% tumour-free survival in a human PBMC admixed setting and 40% overall survival (55% tumour growth inhibition) with systemically administered human PBMC. Combination treatment with Atezolizumab further enhanced survival and tumour growth inhibition (up to 73%). A ten-fold SC134-TCB dose reduction maintained the strong in vivo anti-tumour impact, translating into 70% overall survival (P<0.0001). Whole blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for SCLC patients.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license

Article PDF first page preview

Article PDF first page preview