The two major types of rhabdomyosarcoma (RMS) are predominantly diagnosed in children, namely embryonal (ERMS) and alveolar (ARMS) RMS, and patients are treated with cytotoxic drugs, which results in multiple toxic side effects later in life. Therefore, development of innovative chemotherapeutic strategies is imperative, and a recent genomic analysis suggested the potential efficacy of reactive oxygen species (ROS)–inducing agents. Here, we demonstrate the efficacy of the potent histone deacetylase (HDAC) inhibitors, panobinostat and vorinostat, as agents that inhibit RMS tumor growth in vivo, induce apoptosis, and inhibit invasion of RD and Rh30 RMS cell lines. These effects are due to epigenetic repression of cMyc, which leads to decreased expression of cMyc-regulated miRs-17, -20a, and -27a; upregulation of ZBTB4, ZBTB10, and ZBTB34; and subsequent downregulation of Sp transcription factors. We also show that inhibition of RMS cell growth, survival and invasion, and repression of Sp transcription factors by the HDAC inhibitors are independent of histone acetylation but reversible after cotreatment with the antioxidant glutathione. These results show a novel ROS-dependent mechanism of antineoplastic activity for panobinostat and vorinostat that lies outside of their canonical HDAC-inhibitory activity and demonstrates the potential clinical utility for treating RMS patients with ROS-inducing agents. Mol Cancer Ther; 14(9); 2143–53. ©2015 AACR.

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma that is primarily observed in children and adolescents and accounts for 5% of all pediatric cancers and 50% of soft tissue sarcomas in children (1–3). Embryonal RMS (ERMS) and alveolar RMS (ARMS) are the two major classes of RMS in children and adolescents and differ with respect to their histology, genetics, treatment, and prognosis (4, 5). ERMS accounts for over 60% of RMS patients and is associated with loss of heterozygosity at the 11p15 locus and mutation in Ras signaling (6, 7), whereas ARMS occurs in approximately 20% of RMS patients and is associated with translocations resulting in formation of pro-oncogenic gene products resulting from the fusion of PAX3 or PAX7 with the Forkhead gene FOXO1A (8, 9). ARMS patients have a poor diagnosis, and patient survival is <20% for metastatic ARMS. Treatments include radiotherapy, surgery, and chemotherapy with cytotoxic drugs (10, 11); however, RMS patients that survive current therapies have a dramatic increased incidence of several health problems as adults (12). Thus, there is a critical need for development of new therapeutic regimens for treating childhood RMS.

Specificity protein 1 (Sp1) transcription factor is overexpressed in human RMS tumors, and other Sp family members, including Sp3 and Sp4, are also overexpressed in RMS cell lines (13). The importance of Sp transcription factors (TF) in RMS is primarily due to pro-oncogenic Sp-regulated genes that are themselves drug targets for RMS, and these include CXCR4, hepatocyte growth factor receptor (c-MET), insulin-like growth factor 1 receptor (IGF-1R), and platelet-derived growth-factor receptor α (PDGFRα; refs. 14–17). Clinical studies using drugs that specifically target Sp TFs and Sp-regulated genes for treatment of RMS have not yet been reported; however, there is an open phase I/II trial (NCT01610570) evaluating the efficacy of mithramcyin in solid tumors, including RMS. Mithramycin acts in part by binding to GC-rich sequences and regulating chromatin accessibility, including the ability to displace Sp1 from oncogenic promoters. Thus, the therapeutic potential of Sp TFs in RMS is gaining traction.

Genomic analysis of RMS from several patients indicated that “skeletal muscle (rhabdomyosarcoma) may have even higher levels of ROS than other cancer cells and may be particularly sensitive to therapeutics that induce oxidative stress” (18). This sensitivity is thought to occur because with such a high baseline burden of ROS, there is little tolerance for further oxidative stress and this was confirmed by showing that ROS inducers were highly effective inhibitors of RMS tumor growth using patient-derived xenografts in mouse models (18). Recent studies in our laboratory (19) demonstrate that ROS inducers also inhibit pancreatic cancer cell and tumor growth, and this is due, in part, to a novel epigenetic pathway (20) in which ROS-mediated repression of cMyc results in downregulation of Sp TFs and pro-oncogenic Sp-regulated genes. In this study, we demonstrate that ROS-inducing histone deacetylase (HDAC) inhibitors block RMS cell and tumor growth by initially targeting cMyc, which results in downregulation of miRNAs and induction of ZBTB transcriptional repressors, which, in turn, downregulate Sp TFs.

Cell lines and antibodies

RD, Rh30, and SMS-CTR rhabdomyosarcoma cell lines were purchased from the American Type Culture Collection, and cells were maintained as previously described (13, 19). Cells were authenticated in 2014 (Promega Powerplex 18D) at the Duke University DNA Analysis Laboratory. Various reagents (including antibodies) are summarized in Supplementary Materials and Methods.

Cell proliferation and MTT assays

Proliferation of RD and Rh30 rhabdomyosarcoma cells (1.0 × 105 per well) in the presence or absence of transfected siRNAs and after treatment with panobinostat and vorinostat (dimethyl sulfoxide, DMSO, as empty vehicle; ±GSH, 3 hours prior to treatment) was essentially carried out as previously described (13, 19). Primary human myoblasts (HSMM; Lonza), Rh30, or RD cells were plated in 96-well plates at a density of 10,000 cells per well. The next day, cells were treated with vehicle (DMSO) or increasing doses of panobinostat. Twenty-four hours after treatment, cells were analyzed by the MTT assay.

Annexin V staining

RD and Rh30 rhabdomyosarcoma cells (1.0 × 105 per well) were seeded in 2-well Nunc Lab-Tek chambered B#1.0 Borosilicate coverglass slides from Thermo Scientific and were allowed to attach for 24 hours. After 24 or 72 hours (after Sp1 knockdown), Annexin V staining was determined as described (13, 19).

Boyden chamber assay

RD and Rh30 rhabdomyosarcoma cells (3.0 × 105 cells per well) were seeded in DMEM/Ham's F-12 medium supplemented with 2.5% charcoal-stripped FBS and were allowed to attach for 24 hours. Cells were seeded and subsequently treated with varying concentrations of panobinostat or vorinostat for 24 hours (±GSH, 3 hours prior to treatment) or with 100 nm of siSp1, siSp3, siSp4 for 48 hours, and cells that migrated through the pores were then counted as described (19).

RT-PCR

miRNA was isolated using the mirVana miRNA isolation Kit (Ambion) according to the manufacturer's protocol. Quantification of miRNA (RNU6B and miR-17, -20a, and -27a) was done using the TaqMan miRNA assay Kit (Life Technologies) according to the manufacturer's protocol with real-time PCR. U6 small nuclear RNA was used as a control to determine relative miRNA expression.

Chromatin immunoprecipitation

The chromatin immunoprecipitation (ChIP) assay was performed using the ChIP-IT Express Magnetic Chromatin Immunoprecipitation Kit (Active Motif) according to the manufacturer's protocol. RMS cells (5 × 106 cells) were treated with panobinostat for 3 hours, and after crosslinking, lysing, and immunoprecipitation, the interactions with the cMyc and Sp1 promoters were determined as described (19).

Western blot analysis

RD and Rh30 rhabdomyosarcoma cells (3.0 × 105 per well) were seeded in DMEM/Ham's F-12 medium supplemented with 2.5% charcoal-stripped FBS and were allowed to attach for 24 hours, and after various treatments, whole cell lysates were analyzed by Western blots essentially as described (13, 19).

Small interfering RNA and ROS assays

RD and Rh30 rhabdomyosarcoma cells were seeded (1.2 × 105 cells per well) in 6-well plates in DMEM/Ham's F-12 medium supplemented with 2.5% charcoal-stripped FBS and left to attach for 24 hours. Knockdown of NR4A1 was carried out using Lipofectamine 2000 reagent according to the manufactures protocol. Cellular ROS levels were ascertained using the cell-permeable probe CM-H2DCFDA (5-(and-6)-chloromethyl-2′7′-dichlorodihydrofluorescein diacetate acetyl ester) from Invitrogen (19). RNAi studies were also carried out essentially as described (19).

In vivo xenograft studies

Male SCID/beige mice were subcutaneously implanted with 5 × 106 RD cells suspended in Matrigel (BD Biosciences). At 12 days after implantation, when tumors were palpable, mice were begun on a treatment regimen of 17.5 mg/kg panobinostat or vehicle (DMSO), dosed intraperitoneally. Mice were treated daily for 4 days, no treatment for 2 days, and then every other day for 10 days. Animals were examined every other day for tumor burden (approximated by external caliper measurements, where [(width)2 × length]/2), animal weight, and overall well-being. At study end, animals were humanely sacrificed and tumors were harvested for analysis.

Statistical analysis

Statistical significance of differences between the treatment groups was determined by the Student t test. The results are expressed as mean with error bars representing 95% confidence intervals for 3 experiments for each group unless otherwise indicated, and a P value less than 0.05 was considered statistically significant. All statistical tests were two-sided.

HDAC inhibitors induce ROS, which decreases cell growth, induces apoptosis, and downregulates Sp1, Sp3, and Sp4 proteins

Figure 1A confirms that both panobinostat and vorinostat induced ROS in RD and Rh30 cells as previously reported in patient-derived RMS xenografts (18), and these responses were attenuated in cells cotreated with the HDAC inhibitors plus the antioxidant glutathione (GSH). Treatment of RD and Rh30 cells with different concentrations of both HDAC inhibitors also decreased proliferation of RD and Rh30 cell lines (Fig. 1B). For the more potent HDAC inhibitor (panobinostat), we also observed inhibition of metabolic activity in RD and Rh30 cells using the MTT assay, whereas in primary human skeletal muscle myoblasts (HSMM), significant inhibition was not observed at concentrations as high as 500 nmol/L, demonstrating specificity of panobinostat for the transformed cell lines (Fig. 1C). Finally, we also observed inhibition of RD and Rh30 cell growth by panobinostat, and vorinostat was significantly attenuated after cotreatment with GSH (Fig. 1D), indicating that induction of ROS by the HDAC inhibitors was important for their growth-inhibitory effects. However, the growth-inhibitory effects of panobinostat in Rh30 cells were also ROS-independent.

Figure 1.

ROS-dependent inhibition of RMS cell growth by HDAC inhibitors. A, RD and Rh30 cells were treated with DMSO, 100 nmol/L panobinostat, or 1 μmol/L vorinostat alone or in combination with 5 mmol/L GSH, and ROS was determined fluorimetrically. B, RD and Rh 30 cells were treated with panobinostat or vorinostat, and after 24 hours, cell growth was determined by counting cells in a Coulter counter. C, metabolic activity was also determined in RD, Rh30, and HSMM cells treated with panobinostat. D, RD and Rh30 cells were treated with DMSO, panobinostat, and vorinostat alone or in combination with 5 mmol/L GSH, and cells were counted using a Coulter counter. Results are expressed as mean ± SE for at least 3 replicated determinations, and significant (P < 0.05) induction of ROS or growth inhibition (*) or reversal by GSH (**) is indicated.

Figure 1.

ROS-dependent inhibition of RMS cell growth by HDAC inhibitors. A, RD and Rh30 cells were treated with DMSO, 100 nmol/L panobinostat, or 1 μmol/L vorinostat alone or in combination with 5 mmol/L GSH, and ROS was determined fluorimetrically. B, RD and Rh 30 cells were treated with panobinostat or vorinostat, and after 24 hours, cell growth was determined by counting cells in a Coulter counter. C, metabolic activity was also determined in RD, Rh30, and HSMM cells treated with panobinostat. D, RD and Rh30 cells were treated with DMSO, panobinostat, and vorinostat alone or in combination with 5 mmol/L GSH, and cells were counted using a Coulter counter. Results are expressed as mean ± SE for at least 3 replicated determinations, and significant (P < 0.05) induction of ROS or growth inhibition (*) or reversal by GSH (**) is indicated.

Close modal

Panobinostat and vorinostat also induced Annexin V staining, a marker of apoptosis in RD and Rh30 cells (Fig. 2A), and cotreatment with GSH attenuated this response. Using a similar treatment protocol, we also show that both HDAC inhibitors induced cleavage of PARP and caspase 3 (markers of apoptosis) in RD and Rh30 cells (Supplementary Fig. S1A and S1B), and these effects were attenuated after cotreatment with GSH. Panobinostat and vorinostat inhibited invasion in RD and Rh30 cells in a Boyden chamber assay (Fig. 2B), and this response was also attenuated in cells cotreated with GSH. Thus, ROS induction by both HDAC inhibitors resulted in the induction of apoptosis and inhibition of cell growth and invasion in RD and Rh30 cells. Hydrogen peroxide and other ROS-inducing anticancer agents decrease expression of Sp1, Sp3, and Sp4 transcription factors in pancreatic, colon, and bladder cancer cells, and Sp1, Sp3, and Sp4 are also highly expressed in RMS and tumors (19, 21–27). Panobinostat also decreased expression of Sp1, Sp3 (high and low molecular weight forms), and Sp4 in RD and Rh30 cells, and cotreatment with GSH attenuated this response (Fig. 2C). We also observed similar effects in RD and Rh30 cells treated with vorinostat alone or in combination with GSH (Fig. 2D), and both HDAC inhibitors increased histone-3 acetylation in RD and Rh30 cells which was unaffected by cotreatment with GSH. This suggests that the effects of panobinostat and vorinostat in this system are due to induction of ROS and are independent of their activity as inhibitors of histone deacetylation. Supplementary Fig. S1C also shows that both HDAC inhibitors downregulate Sp1, Sp3, and Sp4 expression in a third RMS cell line, SMS-CTR cells.

Figure 2.

ROS-dependent induction of apoptosis, inhibition of invasion, and downregulation of Sp proteins by panobinostat and vorinostat. RD and Rh30 cells were treated with DMSO, panobinostat, or vorinostat alone or in combination with 5 mmol/L GSH, and induction of Annexin V staining (A) or inhibition of invasion (B) was determined by fluorescence and a Boyden chamber assay, respectively. Results are expressed as mean ± SE for at least 3 replicate determinations, and significant (P < 0.05) induction of Annexin V staining or inhibition of invasion (*) and inhibition by GSH (**) are indicated. RD and Rh30 cells were treated with panobinostat (C) or vorinostat (D) alone or in combination with 5 mmol/L GSH for 24 hours, and whole cell lysates were analyzed by Western blots. The two Sp3 bands in all gels represent the full length (115 kD) and truncated (80 kD) forms.

Figure 2.

ROS-dependent induction of apoptosis, inhibition of invasion, and downregulation of Sp proteins by panobinostat and vorinostat. RD and Rh30 cells were treated with DMSO, panobinostat, or vorinostat alone or in combination with 5 mmol/L GSH, and induction of Annexin V staining (A) or inhibition of invasion (B) was determined by fluorescence and a Boyden chamber assay, respectively. Results are expressed as mean ± SE for at least 3 replicate determinations, and significant (P < 0.05) induction of Annexin V staining or inhibition of invasion (*) and inhibition by GSH (**) are indicated. RD and Rh30 cells were treated with panobinostat (C) or vorinostat (D) alone or in combination with 5 mmol/L GSH for 24 hours, and whole cell lysates were analyzed by Western blots. The two Sp3 bands in all gels represent the full length (115 kD) and truncated (80 kD) forms.

Close modal

ROS decreases RMS cell growth and downregulates Sp1, Sp3, and Sp4

Figure 3A and B shows that 75 to 150 μmol/L hydrogen peroxide and 100 to 200 μmol/L t-butylhydroperoxide, respectively, inhibited growth of RD and Rh30 cells and also decreased expression of Sp1, Sp3, and Sp4 proteins and cMyc (Fig. 3C and D). These results were consistent with the effects observed for panobinostat in RMS cells (Fig. 2C and D). Supplementary Fig. S2 shows that after knockdown of Sp1, Sp3, and Sp4 by RNA interference, there is inhibition of Rh30 and RD cell growth (Supplementary Fig. S2A), induction of Annexin V staining (Supplementary Fig. S2B), and decreased invasion in a Boyden chamber assay (Supplementary Fig. S2C), demonstrating the important role of Sp TFs in the growth, survival, and invasion of RMS cells, and this was consistent with previous studies on Sp TFs in RMS cells (13).

Figure 3.

Hydrogen peroxide and t-butylhydroperoxide inhibit RMS cell growth and decrease Sp1, Sp3, and Sp4 in RMA cells. Rh30 and RD cells were treated with hydrogen perioxide (A) and t-butylhydroperoxide (B), and effects on cell proliferation were determined using a Coulter counter. Results are expressed as mean ± SE for at least 3 replicate determinations, and significant (P < 0.05) growth inhibition (*) is indicated. Rh30 (C) and RD (D) cells were treated with hydrogen peroxide and t-butylhydroperoxide for 24 hours, and whole cell lysates were analyzed by Western blots.

Figure 3.

Hydrogen peroxide and t-butylhydroperoxide inhibit RMS cell growth and decrease Sp1, Sp3, and Sp4 in RMA cells. Rh30 and RD cells were treated with hydrogen perioxide (A) and t-butylhydroperoxide (B), and effects on cell proliferation were determined using a Coulter counter. Results are expressed as mean ± SE for at least 3 replicate determinations, and significant (P < 0.05) growth inhibition (*) is indicated. Rh30 (C) and RD (D) cells were treated with hydrogen peroxide and t-butylhydroperoxide for 24 hours, and whole cell lysates were analyzed by Western blots.

Close modal

Mechanisms of action of HDAC inhibitor-induced ROS in RMS cells

Results illustrated in Fig. 4A show that within 3 hours after treatment of RD and Rh30 cells with panobinostat, there was a significant decrease in expression of cMyc, and after 6 hours, Myc protein levels were not detected for the 24-hour duration of the experiment. Interestingly, we also observed a rapid decrease in expression of Sp1 within 3 to 6 hours, whereas decreased expression of Sp3 and Sp4 proteins was observed only at longer time points. This suggests that like cMyc, Sp1 expression may also be reduced by rapid ROS-dependent chromatin shifts that have previously been observed in colon and pancreatic cancer cells after treatment with hydrogen peroxide and phenethylisothiocyanate (PEITC; an ROS inducer), respectively (19, 20). In addition, cMyc downregulation may be due, in part, to loss of Sp1 which also regulates cMyc as illustrated in Fig. 4B, which shows that Sp1 knockdown decreases cMyc expression in RD and Rh30 cells (Fig. 2B). In contrast, the rate of degradation of Sp-regulated gene products, including EGFR, bcl2, and survivin (Fig. 4C), was similar to that observed for Sp3 and Sp4 proteins and different from either cMyc or Sp1. ROS-induced changes in histone marks in RD and Rh30 cells were investigated in a ChIP assay after treatment with panobinostat for 3 and 6 hours. In RD cells (Fig. 4D), there was a decrease in Pol II and the H3K4me3 activation mark on the cMyc and Sp1 promoters and an increase in H4K16Ac. In Rh30 cells (Fig. 4E), there was also a decrease in Pol II and H3K4me3 and an increase in H4K16Ac on the cMyc and Sp1 promoters as observed in RD cells; however, we also observed an increase in the H3K27me3 deactivation mark on the cMyc promoter. These results are consistent with previous studies on ROS-induced changes in histone marks (20) and with the exception of the increase in H4K16Ac (activation mark), the epigenetic changes correlate with the observed rapid decreases in cMyc and Sp1 protein expression (Fig. 4A).

Figure 4.

Panobinostat decreases Myc and Sp TFs through epigenetic pathways. A, RD and Rh30 cells were treated with panobinostat for different times, and whole cell lysates were analyzed for cMyc and Sp TFs by Western blot analysis. B, after knockdown of Sp1 by RNA interference (siSp1), whole cell lysates were analyzed for cMyc expression by Western blots. C, lysates from A were also analyzed by Western blots for selected Sp-regulated genes. RD (D) and Rh30 (E) cells were treated with DMSO or panobinostat for 3 or 6 hours and analyzed in a ChiP assay using antibodies against pol II, IgG (control), and selected histone marks.

Figure 4.

Panobinostat decreases Myc and Sp TFs through epigenetic pathways. A, RD and Rh30 cells were treated with panobinostat for different times, and whole cell lysates were analyzed for cMyc and Sp TFs by Western blot analysis. B, after knockdown of Sp1 by RNA interference (siSp1), whole cell lysates were analyzed for cMyc expression by Western blots. C, lysates from A were also analyzed by Western blots for selected Sp-regulated genes. RD (D) and Rh30 (E) cells were treated with DMSO or panobinostat for 3 or 6 hours and analyzed in a ChiP assay using antibodies against pol II, IgG (control), and selected histone marks.

Close modal

Previous studies in pancreatic cancers cells show that ROS-dependent downregulation of Myc also results in decreased expression of miR-27a and miR-20a/miR-17 and upregulation of the corresponding miR-regulated Sp repressors ZBTB34/ZBTB10 and ZBTB4, respectively (19). Results in Fig. 5A show that after treatment of RD and Rh30 cells with panobinostat, there was a decrease in cMyc expression and this was attenuated in cells cotreated with panobinostat plus GSH. Previous studies showed that miR-27a is expressed in RD and Rh30 cells (13), and treatment of these cell lines with 100 nmol/L panobinostat decreased expression of miR-27a, and this decrease was also attenuated in cells cotreated with panobinostat plus GSH (Fig. 5B). We also observed that miR-20a and miR-17 were expressed in both RMS cell lines, and downregulation of these miRNAs with panobinostat was also inhibited in cells cotreated with the HDAC inhibitor plus GSH. MiR-27a and miR20a/miR-17 are members of the miR-23a-27a-24-2 and miR-17-92 clusters, respectively, and there is evidence that both miR clusters are regulated by cMyc (19, 28–30), and this was confirmed by transfection with siMyc, which decreased miR-27a and miR-20a/miR17 expression in RMS cells (Fig. 5C). There is also some evidence that Sp1 regulates these same miR clusters, and knockdown of Sp1, Sp3, and Sp4 by RNAi decreased miR-27a and miR-20/miR-17 expression, and the most dramatic effects were observed for miR-27a in both RD and Rh30 cells (Fig. 5B). These results could also be due in part to downregulation of cMyc which can be regulated by Sp TFs (31).

Figure 5.

Panobinostat regulates cMyc, and cMyc and Sp TFs regulate miR-27a and miR-20/miR-17 in RMS cells. RMS cells were treated with panobinostat alone or in combination with GSH for 24 hours, and whole cell lysates were analyzed by Western blots (A) or analyzed for miR expression (B) by real-time PCR. RD and Rh30 cells were transfected sicMyc (C) or siSp1, siSp3 and siSp4 (D), and miR expression was determined by real-time PCR. Results (B–D) are expressed as mean ± SE for 3 replicate determinations, and significant (P < 0.05) decrease in mir expression is indicated (*).

Figure 5.

Panobinostat regulates cMyc, and cMyc and Sp TFs regulate miR-27a and miR-20/miR-17 in RMS cells. RMS cells were treated with panobinostat alone or in combination with GSH for 24 hours, and whole cell lysates were analyzed by Western blots (A) or analyzed for miR expression (B) by real-time PCR. RD and Rh30 cells were transfected sicMyc (C) or siSp1, siSp3 and siSp4 (D), and miR expression was determined by real-time PCR. Results (B–D) are expressed as mean ± SE for 3 replicate determinations, and significant (P < 0.05) decrease in mir expression is indicated (*).

Close modal

Treatment of RD and Rh30 cells with panobinostat resulted in the induction of ZBTB10 and ZBTB34 (Fig. 6A), which are regulated by miR-27a, and ZBTB4 which is regulated by miR-20a/miR-17 (19, 22–26). In addition, transfection of RD and Rh30 cells with siMyc increased expression of ZBTB34, ZBTB10, and ZBTB4 and also decreased levels of Sp1, Sp3, and Sp4 and antagomir-27a also induced ZBTB10 and decreased expression of Sp proteins (Fig. 6B). Thus, cMyc and miR-27a knockdown decreases expression of miRNAs, induces ZBTBs, and decreases Sp TFs and thereby mimics the effects of ROS. In vivo studies with SCID mice bearing RD cell xenografts also showed that administration of panobinostat (17.5 mg/kg) decreased tumor volume and weight (Fig. 6C), and analysis of the tumors showed that panobinostat also decreased Sp1, Sp3, Sp4, and cMyc expression (Supplementary Fig. S3). These results are consistent with in vitro studies and demonstrate that the effectiveness of panobinostat as an anticancer agent in RMS cells is primarily due to targeting of Sp1, Sp3, and Sp4 transcription factors through an ROS-dependent mechanism involving downregulation of cMyc and Myc-regulated miRNAs (Fig. 6D).

Figure 6.

Panobinostat and cMyc knockdown induce ZBTB transcriptional repressors; sicMyc decreases Sp TFs in RMS cells; and panobinostat inhibits growth of RMS xenograft tumors. A, RD and Rh30 cells were treated with panobinostat for up to 24 hours, and whole cell lysates were analyzed by Western blots. B, RD and Rh30 cells were transfected with sicMyc or antagomiR-27a (Ant27a), and whole cell lysates were analyzed for ZBTB and Sp proteins by Western blots. C, panobinostat (17.5 mg/kg) was administered to SCID mice, and tumor volumes and weights were determined. D, mechanism of action of ROS-inducing HDAC inhibitors in RMS cells. ROS induces downregulation of Myc and Sp1, resulting in decreased expression of Myc/Sp1-regulated miRNAs and induction of miR-regulated transcriptional repressors (ZBTB). The ZBTB repressors competitively bind GC-rich promoter elements to decrease expression of Sp-regulated genes.

Figure 6.

Panobinostat and cMyc knockdown induce ZBTB transcriptional repressors; sicMyc decreases Sp TFs in RMS cells; and panobinostat inhibits growth of RMS xenograft tumors. A, RD and Rh30 cells were treated with panobinostat for up to 24 hours, and whole cell lysates were analyzed by Western blots. B, RD and Rh30 cells were transfected with sicMyc or antagomiR-27a (Ant27a), and whole cell lysates were analyzed for ZBTB and Sp proteins by Western blots. C, panobinostat (17.5 mg/kg) was administered to SCID mice, and tumor volumes and weights were determined. D, mechanism of action of ROS-inducing HDAC inhibitors in RMS cells. ROS induces downregulation of Myc and Sp1, resulting in decreased expression of Myc/Sp1-regulated miRNAs and induction of miR-regulated transcriptional repressors (ZBTB). The ZBTB repressors competitively bind GC-rich promoter elements to decrease expression of Sp-regulated genes.

Close modal

Transformation of normal cells into cancer cells is a complex cell- and tissue-specific process that involves activation of oncogenes and inactivation of tumor suppressor genes (32, 33); however, many other genes also significantly contribute to the cancer cell phenotype. These genes are typically overexpressed in tumor versus nontumor tissues and have been termed as nononcogene addiction (NOA) genes and are excellent targets for mechanism-based antineoplastic agents (33). The transcription factor Sp1 plays a critical role in embryonic development, but there is evidence that levels of Sp1 decrease with age in rodents and humans (34–36). In contrast, Sp1 is highly expressed in tumors from RMS patients and in many other cancers, and high expression of Sp1 is a negative prognostic factor for patient survival, tumor recurrence, or tumor grade (13, 37–42). Stable transduction of human skeletal muscle myoblasts with PAX3-FOXO1, telomerase, and N-Myc resulted in formation of transformed cell lines similar to ARMS cells (43), and both the genetically transformed and ARMS cells expressed high levels of Sp1, Sp3, and Sp4 (13). Interestingly, transformation of the muscle myoblasts dramatically increased expression of Sp1 and Sp3 but not Sp4 proteins, which were highly expressed in the nontransformed cells (13); carcinogen/oncogene-induced transformation of human fibroblasts also dramatically increased Sp1 expression, but levels of Sp3 and Sp4 were not determined (44).

The pro-oncogenic functions of Sp1 have been reported in many different cell lines (reviewed in 42); however, it is also important to determine the role of Sp1, Sp3, and Sp4 because all three proteins are overexpressed in RMS and other cancer cell lines. Supplementary Fig. S2 shows that after knockdown of Sp1, Sp3, and Sp4 in Rh30 and RD cells, there was a significant decrease in cell proliferation, induction of apoptosis (Annexin V staining), and inhibition of invasion, indicating that all three Sp proteins are NOA genes in RMS cells. In previous studies, we demonstrated that tolfenamic acid–induced downregulation of Sp1, Sp3, and Sp4 inhibited growth, induced apoptosis, and inhibited invasion in RMS cells, and this was accompanied by decreased expression of several pro-oncogenic Sp-regulated genes (13).

Based on a recent report that ERMS patient-derived xenografts were highly sensitive to drugs that induce oxidative stress (18), we hypothesized that the efficacy of the ROS-inducing agents, such as panobinostat, was also due, in part, to repression of Sp1, Sp3, and Sp4. This hypothesis was based on previous studies showing that several ROS-inducing anticancer drugs, including curcumin, phenethylisothiocyanate (PEITC), methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me), GT-094 (a nitro-aspirin analog), celastrol, and betulinic acid, also repressed Sp1, Sp3, and Sp4 expression (ROS-dependent) in pancreatic, bladder, and colon cancer cells (19, 21–26).

HDAC inhibitors typically enhance histone acetylation, and this response contributes to the anticancer activities of this class of compounds; however, these inhibitors also modulate several pathways in cancer cells and this includes induction of ROS. Therefore, we used the HDAC inhibitors panobinostat and vorinostat that are also ROS inducers (45) to investigate downregulation of Sp1, Sp3, and Sp4 in RMS cells in culture and in an in vivo model. Both panobinostat and vorinostat induced ROS, inhibited growth, induced apoptosis, and inhibited invasion of RD and Rh30 cells, and all of these responses were attenuated after cotreatment with the antioxidant GSH (Figs. 1 and 2; Supplementary Fig. S1). Moreover, panobinostat also inhibited tumor growth in SCID mice bearing RD cells as a xenograft (Fig. 6B). In parallel studies, it was observed that panobinostat and vorinostat also decreased expression of Sp1, Sp3, and Sp4 in Rh30 and RD cells (Fig. 2C and D), and this response was attenuated after cotreatment with GSH. Moreover, treatment with hydrogen peroxide and t-butylhydroperoxide also decreased expression of Sp1, Sp3, and Sp4 as previously observed in other cell lines (23, 27, 46). We also observed that panobinostat decreased cMyc, Sp1, Sp3, and Sp4 proteins levels in tumors (Fig. 6B) and this paralleled the effects observed in cell culture (Fig. 2C). Thus, both knockdown of Sp TFs by RNAi (Supplementary Fig. S1) and treatment with ROS inducers result in decreased expression of Sp1, Sp3, and Sp4, decreased growth and invasion, and induction of apoptosis in vitro and tumor growth in vivo. This suggests that the ROS-mediated repression of Sp TFs plays an important role in the antineoplastic effects of these HDAC inhibitors in RMS cells and is consistent with the in vitro and in vivo efficacy of panobinostat in RMS patient-derived xenografts (18).

Previous studies show that ROS-dependent repression of Sp1, Sp3, and Sp4 was due to downregulation of miR-27a and/or miR-20a/miR-17-5, resulting in increased expression of the transcriptional repressors ZBTB10/ZBTB34 and ZBTB4, respectively (19, 21–26). The ZBTB proteins are members of the POK family of transcriptional repressors (47) and competitively bind and displace Sp TFs from GC-rich sites on Sp promoters and Sp-regulated gene promoters. Using panobinostat as a model ROS inducer, we show that this compound also decreases miR-27a and miR-20a/miR-17 in RD and Rh30 cells (ROS-dependent; Fig. 5B), and this results in the induction of ZBTB10/ZBTB34 and ZBTB4 (Fig. 6A). These data also show that the high expression of Sp1, Sp3, and Sp4 in RMS cells is due, in part, to miR-dependent suppression of the ZBTB transcriptional repressors.

Treatment of colon cancer cells with hydrogen peroxide or pharmacologic doses of ascorbate, which induces hydrogen peroxide, decreases expression of Sp1, Sp3, and Sp4 in colon cancer cells (46), and hydrogen peroxide also induces genome-wide migration of chromatin-modifying complexes from non–GC-rich to GC-rich gene promoters and downregulates genes such as cMyc (20). Sp1, Sp3, Sp4, and cMyc all have GC-rich promoters, and treatment of RD and Rh30 cells with panobinostat rapidly decreased expression of cMyc and Sp1 proteins, whereas with the exception of the rapid decrease in expression of Sp3 (high MW band in RD cells), downregulation of Sp3 and Sp4 was primarily observed at later time points (Fig. 4A). Results of ChIP assays confirmed that treatment with panobinostat decreased pol II and the H3K4me3 activation mark in the GC-rich cMyc and Sp1 promoters in RD and Rh30 cells, and the H3K27me3 inactivation mark was also increased on the cMyc promoter only in Rh30 cells (Fig. 4D and E). Surprisingly, the H4K16Ac activation mark was increased by panobinostat in RD and Rh30 cells but decreased by PEITC-induced ROS in pancreatic cancer cells (19), suggesting that the epigenetic effects of ROS inducers are cell context-dependent and this is currently being investigated.

The importance of the ROS-dependent decrease in cMyc is that there are E-box and GC-rich elements in the miR-23a∼27a∼24-2 and mir-17-92 gene cluster promoters (28–30), and knockdown of cMyc or Sp TFs in RMS cells significantly decreased expression of miR-27a and miR-20a/miR-27 (Fig. 5C and D). It was also observed for the first time that Sp1, Sp3, and Sp4 play a role in expression of miR-27a, and this paralleled the highly effective downregulation of miR-27a in RMS cells treated with HDAC inhibitors (Fig. 5B).

In summary, results of this study show that HDAC inhibitors that induce ROS are highly effective inhibitors of RMS cell in culture and xenograft tumor growth in mice, and the effects in vitro were independent of HDAC inhibition. This complements results obtained with HDAC inhibitors using tumor-derived xenografts and lineage of origin studies (18, 48), thus confirming the potential efficacy of ROS inducers for RMS chemotherapy (18). This study demonstrates that panobinostat and vorinostat decrease expression of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes by ROS-dependent epigenetic downregulation of cMyc and Sp1, which, in turn, decrease expression of miR-27a and miR-20a/miR-17, resulting in the induction of the ZBTB transcriptional repressors (Fig. 6D). The study demonstrates why ROS inducers are highly effective for treating RMS because this pathway leads to a cascade of events resulting in downregulation of Sp TFs and pro-oncogenic Sp-regulated genes. ROS inducers and other drugs targeting Sp TFs represent promising new approaches for RMS chemotherapy; moreover, because miRNAs that repress ZBTB repressors have been detected in serum (49, 50), this may also provide a biomarker for monitoring treatment efficacy.

No potential conflicts of interest were disclosed.

Conception and design: E. Hedrick, C.M. Linardic, S. Safe

Development of methodology: E. Hedrick, C.M. Linardic, S. Safe

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): E. Hedrick, L. Crose, C.M. Linardic, S. Safe

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): E. Hedrick, C.M. Linardic

Writing, review, and/or revision of the manuscript: E. Hedrick, C.M. Linardic, S. Safe

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): E. Hedrick, S. Safe

Study supervision: S. Safe

This study was funded by the NIH [P30-ES023512 (to S. Safe) and R01-CA122706 (to C.M. Linardic)], the Sid Kyle Endowment (S. Safe), and the Hartwell Foundation (L. Crose).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Paulino
AC
,
Okcu
MF
. 
Rhabdomyosarcoma
.
Curr Probl Cancer
2008
;
32
:
7
34
.
2.
Breitfeld
PP
,
Meyer
WH
. 
Rhabdomyosarcoma: new windows of opportunity
.
Oncologist
2005
;
10
:
518
27
.
3.
Parham
DM
,
Ellison
DA
. 
Rhabdomyosarcomas in adults and children: an update
.
Arch Pathol Lab Med
2006
;
130
:
1454
65
.
4.
Sebire
NJ
,
Malone
M
. 
Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas
.
J Clin Pathol
2003
;
56
:
412
6
.
5.
Kumar
S
,
Perlman
E
,
Harris
CA
,
Raffeld
M
,
Tsokos
M
. 
Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues
.
Mod Pathol
2000
;
13
:
988
93
.
6.
Scrable
HJ
,
Witte
DP
,
Lampkin
BC
,
Cavenee
WK
. 
Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping
.
Nature
1987
;
329
:
645
7
.
7.
Breneman
JC
,
Lyden
E
,
Pappo
AS
,
Link
MP
,
Anderson
JR
,
Parham
DM
, et al
Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma–a report from the Intergroup Rhabdomyosarcoma Study IV
.
J Clin Oncol
2003
;
21
:
78
84
.
8.
Barr
FG
,
Galili
N
,
Holick
J
,
Biegel
JA
,
Rovera
G
,
Emanuel
BS
. 
Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma
.
Nat Genet
1993
;
3
:
113
7
.
9.
Davis
RJ
,
D'Cruz
CM
,
Lovell
MA
,
Biegel
JA
,
Barr
FG
. 
Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma
.
Cancer Res
1994
;
54
:
2869
72
.
10.
Maurer
HM
. 
The Intergroup Rhabdomyosarcoma Study (NIH): objectives and clinical staging classification
.
J Pediatr Surg
1975
;
10
:
977
8
.
11.
Hettmer
S
,
Li
Z
,
Billin
AN
,
Barr
FG
,
Cornelison
DD
,
Ehrlich
AR
, et al
Rhabdomyosarcoma: current challenges and their implications for developing therapies
.
Cold Spring Harb Perspect Med
2014
;
4
:
a025650
.
12.
Hudson
MM
,
Ness
KK
,
Gurney
JG
,
Mulrooney
DA
,
Chemaitilly
W
,
Krull
KR
, et al
Clinical ascertainment of health outcomes among adults treated for childhood cancer
.
JAMA
2013
;
309
:
2371
81
.
13.
Chadalapaka
G
,
Jutooru
I
,
Sreevalsan
S
,
Pathi
S
,
Kim
K
,
Chen
C
, et al
Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors
.
Int J Cancer
2013
;
132
:
795
806
.
14.
Taniguchi
E
,
Nishijo
K
,
McCleish
AT
,
Michalek
JE
,
Grayson
MH
,
Infante
AJ
, et al
PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma
.
Oncogene
2008
;
27
:
6550
60
.
15.
Libura
J
,
Drukala
J
,
Majka
M
,
Tomescu
O
,
Navenot
JM
,
Kucia
M
, et al
CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion
.
Blood
2002
;
100
:
2597
606
.
16.
Mayeenuddin
LH
,
Yu
Y
,
Kang
Z
,
Helman
LJ
,
Cao
L
. 
Insulin-like growth factor 1 receptor antibody induces rhabdomyosarcoma cell death via a process involving AKT and Bcl-x(L)
.
Oncogene
2010
;
29
:
6367
77
.
17.
Miekus
K
,
Lukasiewicz
E
,
Jarocha
D
,
Sekula
M
,
Drabik
G
,
Majka
M
. 
The decreased metastatic potential of rhabdomyosarcoma cells obtained through MET receptor downregulation and the induction of differentiation
.
Cell Death Dis
2013
;
4
:
e459
.
18.
Chen
X
,
Stewart
E
,
Shelat
AA
,
Qu
C
,
Bahrami
A
,
Hatley
M
, et al
Targeting oxidative stress in embryonal rhabdomyosarcoma
.
Cancer Cell
2013
;
24
:
710
24
.
19.
Jutooru
I
,
Guthrie
AS
,
Chadalapaka
G
,
Pathi
S
,
Kim
K
,
Burghardt
R
, et al
Mechanism of action of phenethylisothiocyanate and other reactive oxygen species-inducing anticancer agents
.
Mol Cell Biol
2014
;
34
:
2382
95
.
20.
O'Hagan
HM
,
Wang
W
,
Sen
S
,
Destefano Shields
C
,
Lee
SS
,
Zhang
YW
, et al
Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands
.
Cancer Cell
2011
;
20
:
606
19
.
21.
Jutooru
I
,
Chadalapaka
G
,
Abdelrahim
M
,
Basha
MR
,
Samudio
I
,
Konopleva
M
, et al
Methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity protein transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a
.
Mol Pharmacol
2010
;
78
:
226
36
.
22.
Pathi
SS
,
Jutooru
I
,
Chadalapaka
G
,
Sreevalsan
S
,
Anand
S
,
Thatcher
GR
, et al
GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway
.
Mol Cancer Res
2011
;
9
:
195
202
.
23.
Jutooru
I
,
Chadalapaka
G
,
Lei
P
,
Safe
S
. 
Inhibition of NFkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation
.
J Biol Chem
2010
;
285
:
25332
44
.
24.
Chintharlapalli
S
,
Papineni
S
,
Lei
P
,
Pathi
S
,
Safe
S
. 
Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
.
BMC Cancer
2011
;
11
:
371
.
25.
Gandhy
SU
,
Kim
K
,
Larsen
L
,
Rosengren
RJ
,
Safe
S
. 
Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs
.
BMC Cancer
2012
;
12
:
564
.
26.
Chadalapaka
G
,
Jutooru
I
,
Safe
S
. 
Celastrol decreases specificity proteins (Sp) and fibroblast growth factor receptor-3 (FGFR3) in bladder cancer cells
.
Carcinogenesis
2012
;
33
:
886
94
.
27.
Jutooru
I
,
Chadalapaka
G
,
Sreevalsan
S
,
Lei
P
,
Barhoumi
R
,
Burghardt
R
, et al
Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth
.
Exp Cell Res
2010
;
316
:
2174
88
.
28.
Lee
Y
,
Kim
M
,
Han
J
,
Yeom
KH
,
Lee
S
,
Baek
SH
, et al
MicroRNA genes are transcribed by RNA polymerase II
.
EMBO J
2004
;
23
:
4051
60
.
29.
Kumar
P
,
Luo
Y
,
Tudela
C
,
Alexander
JM
,
Mendelson
CR
. 
The c-Myc-regulated microRNA-17∼92 (miR-17∼92) and miR-106a∼363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation
.
Mol Cell Biol
2013
;
33
:
1782
96
.
30.
Li
X
,
Liu
X
,
Xu
W
,
Zhou
P
,
Gao
P
,
Jiang
S
, et al
c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2
.
J Biol Chem
2013
;
288
:
18121
33
.
31.
Chintharlapalli
S
,
Papineni
S
,
Lee
SO
,
Lei
P
,
Jin
UH
,
Sherman
SI
, et al
Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins
.
Mol Carcinog
2011
;
50
:
655
67
.
32.
Hanahan
D
,
Weinberg
RA
. 
Hallmarks of cancer: the next generation
.
Cell
2011
;
144
:
646
74
.
33.
Luo
J
,
Solimini
NL
,
Elledge
SJ
. 
Principles of cancer therapy: oncogene and non-oncogene addiction
.
Cell
2009
;
136
:
823
37
.
34.
Oh
JE
,
Han
JA
,
Hwang
ES
. 
Downregulation of transcription factor, Sp1, during cellular senescence
.
Biochem Biophys Res Commun
2007
;
353
:
86
91
.
35.
Ammendola
R
,
Mesuraca
M
,
Russo
T
,
Cimino
F
. 
Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues
.
J Biol Chem
1992
;
267
:
17944
8
.
36.
Adrian
GS
,
Seto
E
,
Fischbach
KS
,
Rivera
EV
,
Adrian
EK
,
Herbert
DC
, et al
YY1 and Sp1 transcription factors bind the human transferrin gene in an age-related manner
.
J Gerontol A Biol Sci Med Sci
1996
;
51
:
B66
75
.
37.
Jiang
NY
,
Woda
BA
,
Banner
BF
,
Whalen
GF
,
Dresser
KA
,
Lu
D
. 
Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma
.
Cancer Epidemiol Biomarkers Prev
2008
;
17
:
1648
52
.
38.
Yao
JC
,
Wang
L
,
Wei
D
,
Gong
W
,
Hassan
M
,
Wu
TT
, et al
Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer
.
Clin Cancer Res
2004
;
10
:
4109
17
.
39.
Zhang
J
,
Zhu
ZG
,
Ji
J
,
Yuan
F
,
Yu
YY
,
Liu
BY
, et al
Transcription factor Sp1 expression in gastric cancer and its relationship to long-term prognosis
.
World J Gastroenterol
2005
;
11
:
2213
7
.
40.
Guan
H
,
Cai
J
,
Zhang
N
,
Wu
J
,
Yuan
J
,
Li
J
, et al
Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome
.
Int J Cancer
2012
;
130
:
593
601
.
41.
Wang
L
,
Wei
D
,
Huang
S
,
Peng
Z
,
Le
X
,
Wu
TT
, et al
Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer
.
Clin Cancer Res
2003
;
9
:
6371
80
.
42.
Safe
S
,
Imanirad
P
,
Sreevalsan
S
,
Nair
V
,
Jutooru
I
. 
Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target
.
Expert Opin Ther Targets
2014
;
18
:
759
69
.
43.
Linardic
CM
,
Downie
DL
,
Qualman
S
,
Bentley
RC
,
Counter
CM
. 
Genetic modeling of human rhabdomyosarcoma
.
Cancer Res
2005
;
65
:
4490
5
.
44.
Lou
Z
,
O'Reilly
S
,
Liang
H
,
Maher
VM
,
Sleight
SD
,
McCormick
JJ
. 
Down-regulation of overexpressed sp1 protein in human fibrosarcoma cell lines inhibits tumor formation
.
Cancer Res
2005
;
65
:
1007
17
.
45.
Xu
WS
,
Parmigiani
RB
,
Marks
PA
. 
Histone deacetylase inhibitors: molecular mechanisms of action
.
Oncogene
2007
;
26
:
5541
52
.
46.
Pathi
SS
,
Lei
P
,
Sreevalsan
S
,
Chadalapaka
G
,
Jutooru
I
,
Safe
S
. 
Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells
.
Nutr Cancer
2011
;
63
:
1133
42
.
47.
Perez-Torrado
R
,
Yamada
D
,
Defossez
PA
. 
Born to bind: the BTB protein-protein interaction domain
.
Bioessays
2006
;
28
:
1194
202
.
48.
Abraham
J
,
Nunez-Alvarez
Y
,
Hettmer
S
,
Carrio
E
,
Chen
HI
,
Nishijo
K
, et al
Lineage of origin in rhabdomyosarcoma informs pharmacological response
.
Genes Dev
2014
;
28
:
1578
91
.
49.
Schwarzenbach
H
,
Nishida
N
,
Calin
GA
,
Pantel
K
. 
Clinical relevance of circulating cell-free microRNAs in cancer
.
Nat Rev Clin Oncol
2014
;
11
:
145
56
.
50.
Wang
J
,
Zhang
KY
,
Liu
SM
,
Sen
S
. 
Tumor-associated circulating microRNAs as biomarkers of cancer
.
Molecules
2014
;
19
:
1912
38
.