Dysregulation of Maspin expression and constitutive activation of NF-κB subunits are important events in tumorigenesis of prostate cancer. Recent finding points that RelB, which contributes to the alternative NF-κB activity, interferes with carcinogenesis in the prostate. We report here, that both the classical (predominantly p50/RelA heterodimers) and the alternative NF-κB activities (p52/RelB heterodimers) are constitutively present in androgen-insensitive human prostate cancer cells. An inverse relationship of Maspin and RelB expression is observed in prostate cancer tissues at the later stage. TNF-α signaling triggers the nuclear accumulation of RelB and the concomitant reduction of Maspin expression in a time-dependent manner. In addition, the proteasome inhibitor-induced Maspin expression is accompanied by the reduction of RelB expression. A successful depletion of RelB expression, but not RelA expression, induces Maspin expression. RelB-deficiency abrogates the proteasome inhibitor-induced Maspin expression. Moreover, we demonstrate that the enforced expression of RelB protein in prostate cancer cells inhibits Maspin expression. We propose that RelB is an essential molecule controlling the endogenous and the proteasome inhibitor-induced Maspin expression. Developing a RelB-targeted therapeutic intervention, which might be coupled with the induction of a tumor suppressor Maspin, is valuable in treating advanced, metastatic prostate cancer.

Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2011;10(11 Suppl):Abstract nr C151.