Cisplatin-based chemotherapy is the first-line therapy for bladder cancer (BC). However, cisplatin resistance has been associated with the recurrence of BC. Previous studies have shown that activation of fibroblast growth factor receptor (FGFR) and HER2 signaling are involved in BC cell proliferation and drug resistance. Smoking is the most common etiologic risk factor for BC, and there is emerging evidence that smoking is associated with cisplatin resistance. However, the underlying mechanism remains elusive. Acrolein, a highly reactive aldehyde, is abundant in tobacco smoke, cooking fumes, and automobile exhaust fumes. Our previous studies have shown that acrolein contributes to bladder carcinogenesis through the induction of DNA damage and inhibition of DNA repair. In this study, we found that acrolein induced cisplatin resistance and tumor progression in both non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC) cell lines RT4 and T24, respectively. Activation of HER2 and FGFR3 signaling contributes to acrolein-induced cisplatin resistance in RT4 and T24 cells, respectively. Furthermore, trastuzumab, an anti-HER2 antibody, and PD173074, a FGFR inhibitor, reversed cisplatin resistance in RT4 and T24 cells, respectively. Using a xenograft mouse model with acrolein-induced cisplatin-resistant T24 clones, we found that cisplatin combined with PD173074 significantly reduced tumor size compared to cisplatin alone. These results indicate that differential molecular alterations behind cisplatin resistance in NMIBC and MIBC significantly alter the effectiveness of targeted therapy combined with chemotherapy. This study provides valuable insights into therapeutic strategies for cisplatin-resistant bladder cancer.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.