Abstract
Peroxisome proliferator-activated receptors γ (PPARγ) exert diverse effects on cancer cells. Recent studies showed that rosiglitazone, a synthetic ligand for PPARγ, inhibits cell growth. However, the exact mechanisms underlying this effect are still being explored, and the relevance of these findings to lung cancer remains unclear. Here, we report that rosiglitazone reduced the phosphorylation of Akt and increased phosphatase and tensin homologue (PTEN) protein expression in non–small cell lung carcinoma (NSCLC) cells (H1792 and H1838), and this was associated with inhibition of NSCLC cell proliferation. These effects were blocked or diminished by GW9662, a specific PPARγ antagonist. However, transfection with a CMX-PPARγ2 overexpression vector restored the effects of rosiglitazone on Akt, PTEN, and cell growth in the presence of GW9662. In addition, rosiglitazone increased the phosphorylation of AMP-activated protein kinase α (AMPKα), a downstream kinase target for LKB1, whereas it decreased phosphorylation of p70 ribosomal protein S6 kinase (p70S6K), a downstream target of mammalian target of rapamycin (mTOR). Of note, GW9662 did not affect the phosphorylation of AMPKα and p70S6K protein. The inhibitory effect of rosiglitazone on NSCLC cell growth was enhanced by the mTOR inhibitor rapamycin; however, it was blocked, in part, by the AMPKα small interfering RNA. Taken together, these findings show that rosiglitazone, via up-regulation of the PTEN/AMPK and down-regulation of the Akt/mTOR/p70S6K signal cascades, inhibits NSCLC cell proliferation through PPARγ-dependent and PPARγ-independent signals. [Mol Cancer Ther 2006;5(2):430–7]