Metabolites of tryptophan degradation are known to alter mood. Their effects have only been superficially examined in the context of pancreatic cancer. Herein, we study the role of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme important in the conversion of tryptophan to kynurenine, in a murine model of pancreatic cancer–associated depression. Behavioral tests (open field, forced swim, tail suspension, and elevated plus maze) and biochemical assays (LC-MS metabolomics) were used to characterize a depressive-phenotype in tumor-bearing mice (relative to non–tumor-bearing mice). In addition, we determine whether pharmacologic blockade of IDO1 affects mood in tumor-bearing mice. Immunocompetent mice bearing orthotopic pancreatic tumors exhibit depressive-like behavior relative to non–tumor-bearing mice. Pancreatic tumors strongly express IDO1. Consequently, serum kynurenine levels in tumor-bearing mice are elevated relative to non–tumor-bearing mice. Tumor-bearing mice treated with epacadostat, an IDO1 inhibitor, exhibited improved mood relative to mice receiving vehicle. There was a 95% reduction in serum kynurenine levels in mice receiving epacadostat relative to mice treated with vehicle. As confirmatory evidence of on-target activity, tumors of mice treated with epacadostat exhibited a compensatory increase in IDO1 protein levels. Escitalopram, an approved antidepressant, was ineffective at improving mood in tumor-bearing mice as measured by behavioral assays and did not affect kynurenine levels. Neither epacadostat, nor escitalopram, affected overall survival relative to vehicle. Mice with pancreatic cancer exhibit depressive-like behavior. Epacadostat was effective as an antidepressant for pancreatic cancer–associated depression in mice. These data offer a rationale to consider IDO1 inhibition as a therapeutic strategy to mitigate depressive symptoms in patients with pancreatic cancer.

You do not currently have access to this content.