Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non–small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.

You do not currently have access to this content.