It is well appreciated that factors intrinsic to the cancer cells, such as specific mutations, regulate response to chemotherapy. However, there is limited knowledge on the dynamics of cancer cell death in response to therapy in the naturally developing tumor microenvironment. Using intravital microscopy (microscopy in live mice) of tumors, we show that factors within the microenvironment, extrinsic to the cancer cells, support the development of chemoresistance by regulating drug distribution and the inflammatory response. Specifically, intravital microscopy of chemotherapy-treated mouse mammary carcinomas allowed us to follow drug distribution, cell death, and tumor-stroma interactions. We observed associations between vascular leakage and response to the chemotherapeutic drug doxorubicin, including improved response in matrix metalloproteinase-9 null mice that had increased vascular leakage. Furthermore, we observed CCR2-dependent infiltration of myeloid cells after treatment and that Ccr2 null host mice responded better to treatment with doxorubicin or cisplatin. These data show that the microenvironment contributes critically to drug response via regulation of vascular permeability and innate immune cell infiltration. These results have clinical implications, as myeloid cell infiltration is increased in human breast tumors after chemotherapy and the cellular composition of the immune infiltrate is a strong predictor of overall survival. Our data further suggest that the response to classical chemotherapeutic drugs can be improved by changing the tumor microenvironment with agents that modify matrix metalloproteinase activity and chemokine signaling. Thus, intravital imaging can be used to gain insights into drug responses in situ.

Citation Format: Mikala Egeblad, Elizabeth Nakasone, Hanne Askautrud, Robert Wysocki, Miriam Fein, Tim Kees, Juwon Park, Jae-Hyun Park. Understanding drug responses and resistance mechanisms using imaging in live mice. [abstract]. In: Proceedings of the AACR Special Conference: The Translational Impact of Model Organisms in Cancer; Nov 5-8, 2013; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Res 2014;12(11 Suppl):Abstract nr IA11.