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Abstract

Resistance to standard therapy remains
a major challenge in the treatment of pancre-
atic ductal adenocarcinoma (PDA). Although
anti-VEGF therapy delays PDA progression,
therapy-induced hypoxia results in a less dif-
ferentiated mesenchymal-like tumor cell phe-
notype, which reinforces the need for effective
companion therapies. COX-2 inhibition has
been shown to promote tumor cell differenti-
ation and improve standard therapy response
in PDA.Here, we evaluate the efficacy of COX-2
inhibition and VEGF blockade in preclinical
models of PDA. In vivo, the combination ther-
apy was more effective in limiting tumor
growth and metastasis than single-agent ther-
apy. Combination therapy also reversed anti-VEGF–induced epithelial–mesenchymal transition and collagen deposition and
altered the immune landscape by increasing tumor-associatedCD8þ T cellswhile reducing FoxP3þ T cells and FasL expression on
the tumor endothelium.

Implications: Together, these findings demonstrate that COX-2 inhibition enhances the efficacy of anti-VEGF therapy
by reducing hypoxia-induced epithelial plasticity and promoting an immune landscape thatmight facilitate immune activation.

Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/2/348/F1.large.jpg.

Introduction
Primary tumors and metastases require nutrients and oxygen

delivered by blood vessels (1). Although angiogenesis is complex,
it is widely recognized that vascular endothelial growth factor-A
(VEGF-A) is the predominant angiogenic factor that promotes
tumor neovascularization (2, 3). Inhibitors of angiogenesis have
become a central part of systemic therapy for a variety of malig-
nancies (4, 5). However, angiogenesis inhibition has, in general,
resulted in only modest gains in clinical outcomes in cancer
patients, as many patients treated with antiangiogenic/anti-VEGF
therapy either fail to respond or relapse on therapy (6, 7).
Additionally, antiangiogenic therapy has been implicated in
promoting tumor progression and accelerating metastasis in
preclinical models (8, 9).

Pancreatic cancer, the third leading cause of cancer-related
death (10), is highlymetastatic and poorly responsive to standard
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therapy (11, 12). It is also an immunologically "cold" tumor that
has remained largely refractory to immune-checkpoint blockade
(12, 13). Anti-VEGF therapy has been studied in pancreatic cancer
patients (4); however, it has not provided significant clinical
benefit in combination with gemcitabine, the standard chemo-
therapy for pancreatic ductal adenocarcinoma (PDA; refs. 14–16).
Previously, we investigated the efficacy and biology of anti-VEGF
therapy in preclinical models of PDA using the antibody mcr84
(9, 17). We found that mcr84 alone or in combination with
gemcitabine slowed the growth of PDA but induced hypoxia-
induced epithelial plasticity that resulted in a less differentiated
tumor cell phenotype and continuedmetastatic burden (9). These
observations reinforce the need to develop companion therapies
that combat therapy-induced epithelial plasticity.

Inflammation is a pathologic phenotype that facilitates the
"hallmarks" of cancer (18). Further, the incidence of several
cancers is associated with inflammation, which contributes to
tumor initiation and cancer cell survival by producing reactive
oxygen species, cytokines, and proinflammatory mediators (19).
Amongmediators of inflammation that are associatedwith tumor
progression is cyclooxygenase-2 (COX-2), an inducible enzyme
that catalyzes the rate-limiting step in the synthesis of the pros-
taglandin E2 (PGE2). COX-2 is induced at sites of inflammation
and during the process of tumor progression (20). Multiple
studies have demonstrated that elevated COX-2 expression is
prevalent in human malignancies, including PDA (21, 22). In
addition, elevated expression of COX-2 in tumors correlates with
advanced stage and worse outcome by promoting chemoresis-
tance,metastasis, and angiogenesis (23, 24). COX-2 has also been
identified as a potential mediator of VEGF-independent tumor
angiogenesis (25). Thus, targeting COX-2 has been explored as a
potential anticancer therapy (26). Additionally, COX-2 blockade
can enhance the efficacy of antiangiogenic treatments in breast
cancer, which supports the investigation of COX-2 inhibitors
with VEGF blockade in other tumors (27).

Apricoxib is a selective COX-2 inhibitor that has shown sig-
nificant antitumor activity in various xenograft models (28) and
has been under clinical investigation. Previously, we demonstrat-
ed that apricoxib improved the efficacy of standard therapy in
preclinical models of PDA (29). Further, we found that inhibition
of COX-2 reversed epithelial–mesenchymal transition (EMT),
leading to a shift toward amore epithelial phenotype in xenograft
models of PDA (29). In the present study, we investigated the
combination of anti-VEGF therapy and COX-2 inhibition as a
therapeutic strategy in robust preclinical models of PDA with the
hypothesis that apricoxib would prevent or reduce therapy-
induced epithelial plasticity. We also investigated the effect of
anti-VEGF and COX-2 inhibition on the immune landscape of
PDA given that prior reports have demonstrated VEGF and PGE2
can limit T-cell infiltration into tumor cell nests (30) and reports
that EMT can be a significant driver of immune suppression in
tumors (31–34).

Materials and Methods
Cell culture

Human pancreatic cancer cell lines AsPC-1 and HPAF-II were
obtained from ATCC. Colo357 was obtained from the MD
Anderson Cancer Center. AsPC-1 was grown in DMEM, and
Colo357 and HPAF-II were grown in MEM. All cell lines were
grown in a humidified atmosphere with 5% CO2, at 37�C, and
were DNA fingerprinted for provenance using the Power-Plex 1.2

kit (Promega) and confirmed to be the same as the DNA finger-
print librarymaintained by ATCC. Cell lines were confirmed to be
free ofmycoplasma (e-Myco kit, Boca Scientific) before use. In vitro
PGE2 and VEGF response to apricoxib treatment was evaluated by
enzyme-linked immunosorbent assay (ELISA; R&D Systems) of
conditioned media over different time points. To induce EMT,
cells were grown on collagen I–coated plates and treated with
50 ng/mL transforming growth factor-b (TGFb) for 24 hours (9).
EMT changes were confirmed by probing cell lysates for E-cad-
herin, N-cadherin, and Vimentin (Cell Signaling Technology; see
Supplementary Table S1).

Animal studies
All animals were housed in a pathogen-free facility with 24-

hour access to food andwater. Experiments were approved by and
conducted in accordance with the Institutional Animal Care and
Use Committee at UT Southwestern (Dallas, TX). KrasLSL-G12D;
Cdkn2afl/fl; Ptf1aCre/þ (KIC) mice were generated as previously
described (35). At 3 weeks of age, mice were randomized to
receive saline, mcr84 500 mg/dose i.p. once weekly, apricoxib
10 mg/kg by oral gavage daily or mcr84 plus apricoxib. All mice
were sacrificed when they were 7 weeks old. Four-to-6-week-old
femaleNOD/SCIDmicewere obtained froma campus supplier. A
total of 1 � 106 Colo357 cells were injected orthotopically and
tumor growth was monitored by ultrasound. Mice with estab-
lished tumors were randomized to receive therapy. Treatment
groups were the same as described above. Mice bearing Colo357
tumors received 4 weeks of therapy prior to sacrifice. Tissues from
all animal experiments were fixed in 10% formalin or snap-frozen
in liquid nitrogen for further studies.

Histology and tissue analysis
Formalin-fixed tissues were embedded in paraffin and cut into

5-mm sections. Sections were evaluated by Masson's trichrome
staining and Immunohistochemistry (IHC) analysis using anti-
bodies specific for VEGF, COX-2 (Abcam), E-cadherin, N-cad-
herin, Slug, Snail (Cell Signaling Technology), CD3 (Bio-Rad),
CD8 (Bioss), FoxP3 (eBioscience), CD31 (dianova), FasL
(Santa Cruz Biotechnology), CD11b (Abcam), iNOS, Arginase
1 (Thermo Fisher), endomucin (Santa Cruz Biotechnology),
NG2 (Millipore), and F4/80 (Novus Biologicals). Fluorescent
images were captured with Zeiss Aixoscan Z1 using ZenLite
software. Color images were obtained with Hamamatsu Nano-
zoomer 2.0HT using NDPview2 software. Pictures were ana-
lyzed using NIS Elements (Nikon) and Fiji software.

Statistical analysis
Data were analyzed using GraphPad software. Results are

expressed as mean � SEM. Data were analyzed by ANOVA with
the Dunn's test for multiple comparisons, and results are consid-
ered significant at P < 0.05.

Results
Pharmacologic blockade of COX-2 and VEGF inhibits
tumor growth and limits metastatic burden in pancreatic
cancer models

To investigate the efficacy of COX-2 inhibition with apricoxib
and VEGF blockade with mouse chimeric r84 (mcr84) (17) in
preclinical models of PDA, we used a genetically engineered
mouse model of PDA and SCID mice bearing established
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orthotopic pancreatic xenografts. Therapywas initiated in 3-week-
old KIC mice. Mice were randomized to receive saline, mcr84,
apricoxib, or mcr84 þ apricoxib and were sacrificed after 4 weeks
(7 weeks old). Therapy with mcr84 or apricoxib reduced primary

tumor weight by �30%, whereas mcr84 þ apricoxib reduced
primary tumor weight by 62% compared with the control group
(P < 0.0001; Fig. 1A). At the time of sacrifice, the extent of liver
metastasis was determined based on gross metastasis. Seven of 10

Figure 1.

Combination therapy with apricoxib and mcr84 reduced tumor growth and metastasis in murine models of pancreatic cancer. A, At 3 weeks of age, KrasLSL-G12D;
Cdkn2afl/fl; Ptf1aCre/þ (KIC) mice were randomized to receive saline (n ¼ 11), mcr84 (n ¼ 10), apricoxib (n ¼ 13), or mcr84 plus apricoxib (n ¼ 13). All mice were
sacrificedwhen theywere 7weeks old.Mean tumorweight andmetastasis burdenwere compared.B,A total of 1� 106 Colo357 cellswere injected orthotopically into
NOD/SCID mice. Treatment began when established tumors were visible by ultrasound and consisted of control (n ¼ 8), mcr84 (n ¼ 10), apricoxib (n ¼ 10),
or mcr84 plus apricoxib (n¼ 10) and continued for 4 weeks, after which mean tumor weight and metastasis burden were shown. Data are displayed in a scatter plot
with mean � SEM. � , P < 0.05; �� , P < 0.01; ��� , P < 0.005 vs. control; #, P < 0.05 vs. single-agent mcr84 or apricoxib by ANOVA with Dunn's MCT. C, Human
pancreatic cancer cell lines HPAF-II, Colo357, and AsPC-1 were treated with 500 nmol/L apricoxib and evaluated by ELISA for the production of VEGF. Colo357 and
AsPC-1 were plated under normal conditions or conditions of forced EMT (50 ng/mL TGFb on collagen I–coated plates for 24 hours). VEGF levels were evaluated by
ELISA after 500 nmol/L apricoxib treatment. Biological repeats have been performed (n ¼ 3) and data are displayed as mean � SEM. Paraffin-embedded
tumor sections from Colo357 tumor–bearing mice were analyzed for (D) VEGF and COX-2 expression by immunofluorescence. Quantification of percentage area
fraction is shown. Data are displayed asmean� SEM and represent 5 images per tumorwith 3 animals per group. Representative images (COX-2, red; DAPI, blue) are
shown for Colo357 tumors. Total magnification, 400�. Scale bars are presented as indicated.
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evaluable mice in the control group had at least 1 macroscopic
metastasis; this number was reduced to 1/5, 2/7, and 1/6 for the
mcr84, apricoxib, and combination therapy groups, respectively
(Fig. 1A). To further define the effect of COX-2 inhibition and
anti-VEGF therapy on tumor burden and liver metastases, we
established human PDA xenografts in mice by orthotopically
injecting Colo357, a human pancreatic cancer cell line, into the
pancreas of SCID mice. Similar to in vitro data published previ-
ously (29), Colo357 cells showed high COX-2 expression and
were responsive to apricoxib (data not shown). Mice with estab-
lished tumors, which was confirmed by ultrasound, were ran-
domized to receive treatment as described above. After 4 weeks of
therapy, we found that single-agent therapy had a minimal effect
on primary tumor growth (Fig. 1B) and metastatic incidence,
although the mean metastatic events per treatment group were
reduced bymcr84 or apricoxib (Fig. 1B). In contrast, combination
therapy significantly reduced primary tumor weight (P < 0.05 vs.
control) and substantially limitedmetastases (P<0.01 vs. control;
P < 0.05 vs. single-agent therapy; Fig. 1B). H&E analysis of livers
confirmed metastatic lesions in Colo357 tumor–bearing mice
(Supplementary Fig. S1A). The effect of mcr84 þ apricoxib on
primary tumor growth compared favorably to the effect of gem-
citabineþ erlotinib in the samemodel reported in our prior study
(ref. 29; Supplementary Fig. S1B).

COX-2 activity has been implicated in promoting angiogenesis
(25, 36, 37). Previously, prostaglandins, products of COX-2
activity, were shown to elevate VEGF expression, and inhibition
of COX-2 was shown to contribute to antiangiogenic effects
(38, 39). Furthermore, fibroblasts from Cox-2-deficient mice were
reported to produce significantly less VEGF than fibroblasts from
wild-type or Cox-1-deficient animals (40). Additionally, treatment
of wild-type fibroblasts with a selective COX-2 inhibitor resulted
in a 90% reduction in VEGF production (40). However, recently
Xu and colleagues (25) determined that PGE2 can contribute to
angiogenesis in a VEGF-independent manner in colon cancer
models. Given these data, we sought to investigate the relation-
ship between COX-2 activity and VEGF production in PDA cell
lines; we selected aCOX-2 negative cell line, AsPC-1, and 2COX-2
positive cell lines, one with a high expression of COX-2, Colo357,
the other with moderate COX-2 expression, HPAF-II (29). Cells
were treated with 500 nmol/L apricoxib and the level of VEGF
produced was determined by ELISA. Only in the high COX-2 cell
line Colo357, COX-2 inhibition reduces VEGF production tran-
siently. In HPAF-II and AsPC-1 cells, VEGF production was
unaffected by apricoxib, with VEGF production in HPAF-II cells
elevated over time (Fig. 1C). To determine if EMT induction
altered VEGF production and/or the effect of apricoxib, we plated
Colo357 and AsPC-1 cells under conditions that stimulate EMT.
Under normal culture conditions, we observed similar trends as
shown before. However, under EMT-inducing conditions VEGF
production was elevated significantly and was largely indepen-
dent of COX-2 inhibition in Colo357 cells. In AsPC-1 cells,
VEGF production increased faster over time under induced EMT
conditions compared with normal conditions (Fig. 1C). We
also investigated the effect of apricoxib on PGE2 production
by Colo357 and AsPC-1 cells under normal and EMT-inducing
culture conditions (Supplementary Fig. S2A and S2B). The
induction of EMT was confirmed by evaluating the expression
level of E-cadherin, N-cadherin, and Vimentin (Supplementary
Fig. S2C). The induction of EMT reduced the effect of apricoxib
on PGE2 production in Colo357 cells. In contrast, AsPC-1 cells

produced minimal PGE2 under either culture condition (Sup-
plementary Fig. S2A and S2B). We corroborated these findings
by examining the level of VEGF expression in Colo357 pan-
creatic xenografts by immunofluorescence staining and found
that VEGF expression was not affected by apricoxib (Fig. 1D).
Importantly, apricoxib did reduce COX-2 expression in
Colo357 tumors, supporting the pharmacodynamic activity of
the drug. The induction of hypoxia by mcr84 is consistent with
prior studies (9) and the reduction of microvessel density by
mcr84 in Colo357 tumors (Supplementary Fig. S3A and S3B).
We found that apricoxib alone did not reduce microvessel
density in Colo357 tumors (Supplementary Fig. S3A and
S3B), which further supports that apricoxib antitumor activity
is not mediated by inhibition of angiogenesis. However, we did
observe that apricoxib alone or in combination with mcr84
increased the percentage of pericyte-associated blood vessels in
Colo357 tumors (Supplementary Fig. S3C). These data suggest
that COX-2 functions in a VEGF-independent manner in PDA
to promote tumor progression.

Apricoxib in combination with mcr84 reverses
anti-VEGF–induced EMT and collagen deposition

Although anti-VEGF therapy with mcr84 restricts tumor
growth and improves the survival of KIC mice (9), therapy-
induced hypoxia results in a less differentiated tumor cell
phenotype (9). We previously found that COX-2 inhibition
with apricoxib reverses EMT in HT29 xenografts (28) and
Colo357 tumor–bearing mice (29). To determine whether
apricoxib can prevent or reduce hypoxia-induced epithelial
plasticity as a result of mcr84 treatment, we analyzed tumor
tissue from KIC mice in each treatment group. Treatment
with mcr84 alone increased the expression of N-cadherin, a
common marker of mesenchymal cells and Slug, an EMT-
inducing transcription factor (EMT-TF). Apricoxib alone or in
combination with mcr84 significantly reduced N-cadherin
expression and downregulated Slug expression to the same
level of control group. Although the expression of Snail,
another EMT-TF (41) was not affected by mcr84, treatment
with apricoxib or apricoxib combined with mcr84 decreased
Snail expression significantly (Fig. 2A). We also observed that
collagen deposition was increased in KIC and Colo357 tumors
after treatment with mcr84, a feature we identified previously
that is associated with epithelial plasticity (9). This effect was
attenuated by apricoxib alone or in combination with mcr84
(Fig. 2B).

Blockade of the VEGF and COX-2 pathways promotes an
immune stimulatory microenvironment

Eicosanoids, including PGE2, contribute to the immune
microenvironment of solid tumors (20). For example, PGE2
can induce a shift in cytokine expression in myeloid-derived
suppressor cells (MDSC) and macrophages toward an immune-
suppressive profile (e.g., IL4, IL10, and IL6) and PGE2 can
directly reduce T effector cell activity (20). Furthermore, EMT
is also associated with an immunosuppressive tumor micro-
environment (31, 32, 34). Thus, given our observations that
COX-2 inhibition with apricoxib reduces PGE2 production and
decreases therapy-induced EMT, we investigated the immune
landscape in KIC tumors from the different treatment groups
shown in Fig. 1. Tumors harvested from mice that received
mcr84 or apricoxib alone had an increase in the number of
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tumor-associated CD3þ and CD8þ T cells. Combination ther-
apy further elevated CD3þ and CD8þ T-cell levels (Fig. 3A).
Additionally, apricoxib alone and in combination with mcr84
significantly decreased FoxP3þ regulatory T cells (Treg; Fig. 3A).
Motz and colleagues (30) previously reported that selective
expression of the death mediator Fas ligand (FasL) on endo-
thelial cells in human and mouse solid tumors was associated
with scarce T-cell infiltration. They also identified that FasL was
induced on endothelium by VEGF, IL10, and PGE2. Thus, we
evaluated FasL expression in the vasculature of KIC tumors by
dual staining of the endothelium for CD31 and FasL. We found
that FasL was indeed present on CD31þ endothelial cells in
control-treated KIC tumors and that treatment with mcr84,
apricoxib, or the combination significantly reduced endothelial
FasL expression (Fig. 3B). To determine the effect of VEGF
blockade and COX-2 inhibition on macrophages in the tumor
microenvironment, we stained for CD11b, iNOS, and Arginase
1. We found that mcr84 alone and mcr84 in combination with
apricoxib reduced CD11bþiNOSþ macrophages but apricoxib

alone did not. In contrast, mcr84 or apricoxib alone decreased
CD11bþArg1þ macrophages, while the effect was more signif-
icant with combination therapy (Fig. 3C). Although the num-
ber of total myeloid cells that were marked by CD11b was
elevated in the combination treatment group, the total mac-
rophage number (F4/80) was reduced with anti-VEGF and
COX-2 inhibition (Supplementary Fig. S4A and S4B).

Discussion
Our data support that VEGF production by tumor cells is

independent of COX-2, especially following COX-2 inhibition,
and the data also strongly support that COX-2 activity on
tumor cells is linked closely to the induction and/or mainte-
nance of a less differentiated tumor cell phenotype. Epithelial
plasticity is a common pathway exploited by tumors to resist
therapeutic interventions, including chemotherapy and tar-
geted therapy. Our data demonstrate that reducing hypoxia-
induced epithelial plasticity by blocking COX-2 enhances the

Figure 2.

Apricoxib in combination with mcr84 reverses anti-VEGF–induced EMT and collagen deposition. A, KIC pancreatic tissues from the treated mice underwent IHC for
E-cadherin, N-cadherin, Slug, or Snail. Images are shown at 400�. Scale bars are presented as indicated. B, Pancreatic tissues fromColo357 tumor–bearingmice and
KIC mice were stained with Masson's trichrome. Total magnification, 200�. Scale bars are presented as indicated. The whole tumor areas were scanned with
Hamamatsu Nanozoomer 2.0HT. Images of whole tumor areas were analyzed using ImageJ software. Quantification of percentage area fraction is shown. Data are
displayed as mean � SEM with 3 animals per group analyzed. � , P < 0.05; ���� , P < 0.0001 vs. control; by ANOVA with Dunn's MCT.
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therapeutic activity of anti-VEGF in PDA. We have shown
previously that anti-VEGF therapy (mcr84) of PDA induces
hypoxia, which drives an increase in TGFb and subsequent
increase in collagen deposition. Furthermore, we found that
collagen and TGFb in the tumor microenvironment stimulated
tumor cell EMT (9). Additionally, we previously reported that
COX-2 inhibition (apricoxib) reduces EMT in models of GI
cancer in vivo and TGFb-induced EMT in vitro (28, 29). There-
fore, we further investigated the effect of COX-2 inhibition on
the level of active TGFb in orthotopic Colo357 pancreatic
tumors. We found that anti-VEGF (mcr84) increased active
TGFb levels, as anticipated but that this increase was blunted
by COX-2 inhibition (data not shown), which suggests that
COX-2 inhibition reduces EMT and immune suppression in
part by reducing hypoxia-induced TGFb expression (Supple-

mentary Fig. S5). TGFb, a multifunctional cytokine, can drive
tumor cell EMT and is also a potent immunosuppressive factor
produced by tumor cells, fibroblasts, and tumor-infiltrating
lymphocytes (42). TGFb can inhibit innate and adaptive
immune responses in the tumor microenvironment. For exam-
ple, TGFb can polarize macrophages toward an immunosup-
pressive phenotype, support regulatory T-cell differentiation
and directly inhibit effector T-cell activity (43). In addition,
our results are consistent with reports that celecoxib, another
selective COX-2 inhibitor, reduces hepatic expression of TGFb,
thereby attenuating EMT of hepatocytes (44). Furthermore,
COX-2 has been shown to participate in TGFb-driven EMT in
human hepatocellular carcinoma (45). Thus, there are multiple
examples of a connection between COX-2 activity and TGFb-
driven tumor progression.

Figure 3.

Combination blockade of VEGF and COX-2 pathway restores antitumor immunity. KIC pancreatic tissue was subjected to IHC for (A) CD3, CD8, FoxP3, (B) CD31 and
FasL, (C) CD11b and iNOS, CD11b and Arginase 1. The whole tumor areas were scanned with Hamamatsu Nanozoomer 2.0HT and Zeiss Aixoscan Z1. Images of
whole tumor areas were analyzed using NIS Elements (Nikon) and Fiji software. Representative images are shown at 400� in A and B. Scale bars are presented as
indicated. Schematic quantification of percentage area fraction for each target in each treatment group is shown. Data are displayed as mean � SEM with
3 animals per group analyzed. � , P < 0.05; �� , P < 0.01; ���� , P < 0.0001 vs. control, by ANOVA with Dunn's MCT.
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We also found that COX-2 inhibition might reduce immune
suppression in PDA. The immunosuppressive microenviron-
ment is a major limitation for the efficacy of cancer immune
therapy (46). Our data are consistent with other studies that
have shown that antiangiogenic agents and COX-2 inhibitors
have the potential to reduce the immunosuppressive tumor
microenvironment and enhance immunotherapy (47–49). Our
results support the findings of Motz and colleagues (30), who
found that pharmacologic blockade of VEGF and COX-2
resulted in a significant increase in infiltrating CD8þ T cells
and a reduction in FoxP3þ Tregs by downregulating FasL
expression on tumor endothelial cells in multiple murine
cancer models. Our data indicate that in KIC tumors, VEGF
blockade or COX-2 inhibition alone could reduce FasL expres-
sion on the tumor endothelium, but combination therapy
resulted in higher T effector cell recruitment and lower Treg
infiltration than single-agent therapy.

In summary, our data support the rationale of a combination of
anti-VEGF and COX-2 inhibition in PDA patients and also pro-
vide evidence that this combination might prime PDA or other
tumors for increased efficacy with immune therapy.
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