Abstract
Small cell lung carcinoma (SCLC) tumors are heterogeneous, with a subpopulation of cells primed for tumor initiation. In this study, we show that kinase suppressor of Ras 2 (KSR2) promotes the self-renewal and clonogenicity of SCLC cells. KSR2 is a molecular scaffold that promotes Raf/MEK/ERK signaling. KSR2 is preferentially expressed in the ASCL1 subtype of SCLC (SCLC-A) tumors and is expressed in pulmonary neuroendocrine cells, one of the identified cells of origin for SCLC-A tumors. The expression of KSR2 in SCLC and pulmonary neuroendocrine cells was previously unrecognized and serves as a novel model for understanding the role of KSR2-dependent signaling in normal and malignant tissues. Disruption of KSR2 in SCLC-A cell lines inhibits the colony-forming ability of tumor-propagating cells in vitro and their tumor-initiating capacity in vivo. The effect of KSR2 depletion on self-renewal and clonogenicity is dependent on the interaction of KSR2 with ERK. These data indicate that the expression of KSR2 is an essential driver of SCLC-A tumor–propagating cell function and therefore may play a role in SCLC tumor initiation. These findings shed light on a novel effector promoting initiation of SCLC-A tumors and a potential subtype-specific therapeutic target.
Implications: Manipulation of the molecular scaffold KSR2 in SCLC-A cells reveals its contribution to self-renewal, clonogenicity, and tumor initiation.