Although suppressed cAMP levels have been linked to cancer for nearly five decades, the molecular basis remains uncertain. Here, we identify endosomal pH as a novel regulator of cytosolic cAMP homeostasis and a promoter of transformed phenotypic traits in colorectal cancer. Combining experiments and computational analysis, we show that the Na+/H+ exchanger NHE9 contributes to proton leak and causes luminal alkalinization, which induces resting [Ca2+], and in consequence, represses cAMP levels, creating a feedback loop that echoes nutrient deprivation or hypoxia. Higher NHE9 expression in cancer epithelia is associated with a hybrid epithelial–mesenchymal (E/M) state, poor prognosis, tumor budding, and invasive growth in vitro and in vivo. These findings point to NHE9-mediated cAMP suppression as a pseudostarvation-induced invasion state and potential therapeutic vulnerability in colorectal cancer. Our observations lay the groundwork for future research into the complexities of endosome-driven metabolic reprogramming and phenotype switching and the biology of cancer progression.

Implications:

Endosomal pH regulator NHE9 actively controls cytosolic Ca2+ levels to downregulate the adenylate cyclase–cAMP system, enabling colorectal cancer cells to acquire hybrid E/M characteristics and promoting metastatic progression.

You do not currently have access to this content.