Purpose: Lung metastasis is responsible for most deaths caused by osteosarcoma. How malignant bone cells coerce the lung microenvironment to support metastatic growth remains unclear. We sought to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms essential to metastatic niche formation in the lung. Experimental design: We used single-cell transcriptomics (scRNA-seq) to characterize molecular changes induced within lung tissues by disseminated osteosarcoma cells. We then evaluated the ability of nintedanib to reverse metastasis-specific changes in both immunocompetent mouse and immunodeficient xenograft models. Molecular pharmacodynamic studies used single-nucleus and spatial transcriptomics to define the tumor-intrinsic and -extrinsic changes induced by the drug. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to diseases associated with lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially differentiated epithelial intermediates and macrophages. Our data suggested that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. Conclusions: Fibrosis is essential to osteosarcoma lung metastasis and represents a targetable vulnerability. Our data support a model where interactions between osteosarcoma and epithelial cells induce the deposition of extracellular matrix proteins—a reaction disrupted by the anti-fibrotic TKI nintedanib. Our data shed light on the non-cell autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKIs on metastases in animal models.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

Article PDF first page preview

Article PDF first page preview