Develop a novel therapeutic strategy for patients with subtypes of mature T-cell and NK-cell neoplasms.

Experimental Design:

Primary specimens, cell lines, patient-derived xenograft models, commercially available, and proprietary anti-KLRG1 antibodies were used for screening, target, and functional validation.


Here we demonstrate that surface KLRG1 is highly expressed on tumor cells in subsets of patients with extranodal NK/T-cell lymphoma (ENKTCL), T-prolymphocytic leukemia (T-PLL), and gamma/delta T-cell lymphoma (G/D TCL). The majority of the CD8+/CD57+ or CD3/CD56+ leukemic cells derived from patients with T- and NK-large granular lymphocytic leukemia (T-LGLL and NK-LGLL), respectively, expressed surface KLRG1. The humanized afucosylated anti-KLRG1 monoclonal antibody (mAb208) optimized for mouse in vivo use depleted KLRG1+ TCL cells by mechanisms of ADCC, ADCP, and CDC rather than apoptosis. mAb208 induced ADCC and ADCP of T-LGLL patient-derived CD8+/CD57+ cells ex vivo. mAb208 effected ADCC of subsets of healthy donor-derived KLRG1+ NK, CD4+, CD8+ Tem, and TemRA cells while sparing KLRG1 naïve and CD8+ Tcm cells. Treatment of cell line and TCL patient-derived xenografts with mAb208 or anti-CD47 mAb alone and in combination with the PI3K-δ/γ inhibitor duvelisib extended survival. The depletion of macrophages in vivo antagonized mAb208 efficacy.


Our findings suggest the potential benefit of a broader treatment strategy combining therapeutic antibodies with PI3Ki for the treatment of patients with mature T-cell and NK-cell neoplasms.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

Article PDF first page preview

Article PDF first page preview