Purpose: We designed a comprehensive multiple myeloma (MM) targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. Experimental Design: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNAs). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical fluorescence in situ hybridization (FISH) (translocations), multiplex ligation probe analysis (MLPA) (CNAs), whole genome sequencing (WGS) (CNAs, mutations, translocations) or droplet digital PCR (ddPCR) of known standards (mutations). Results: Canonical IgH translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for one patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2=0.969. VAFs for 74 mutations were compared between sequencing and ddPCR with concordance of R2=0.9849. Conclusions: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost effective, comprehensive, clinically actionable and can be routinely deployed to assist risk stratification at diagnosis or post-treatment to guide sequencing of therapies.

This content is only available via PDF.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License.

Article PDF first page preview

Article PDF first page preview