Peptide growth factors regulate normal cellular proliferation and differentiation through autocrine and paracrine pathways and are involved in cancer development and progression. Among the endogenous growth factors, the epidermal growth factor (EGF)-related proteins play an important role in the pathogenesis of human cancer. In fact, overexpression of EGF-related growth factors such as transforming growth factor alpha and amphiregulin and/or their specific receptor, the EGF receptor (EGFR), has been detected in several types of human cancers, including breast, lung, and colorectal cancers. Therefore, the blockade of EGFR activation by using anti-EGFR monoclonal antibodies (MAbs) has been proposed as a potential anticancer therapy. The cAMP-dependent protein kinase (PKA) is an intracellular enzyme with serine-threonine kinase activity that plays a key role in cell growth and differentiation. Two PKA isoforms with identical catalytic (C) subunits but different cAMP-binding regulatory (R) subunits (defined as RI in PKAI and RII in PKAII) have been identified. Predominant expression of PKAII is found in normal nonproliferating tissues and in growth-arrested cells, whereas enhanced levels of PKAI are detected steadily in tumor cells and transiently in normal cells exposed to mitogenic stimuli. Overexpression of PKAI has been correlated recently with poor prognosis in breast cancer patients. Inhibition of PKAI expression and function by specific pharmacological agents such as the selective cAMP analogue 8-chloro-cAMP (8-Cl-cAMP) induces growth inhibition in various human cancer cell lines in vitro and in vivo. We have provided experimental evidence of a functional cross-talk between ligand-induced EGFR activation and PKAI expression and function. In fact, PKAI is overexpressed and activated following transforming growth factor alpha-induced transformation in several rodent and human cell line models. Furthermore, PKAI is involved in the intracellular mitogenic signaling following ligand-induced EGFR activation. We have shown that an interaction between EGFR and PKAI occurs through direct binding of the RI subunit to the Grb2 adaptor protein. In this respect, PKAI seems to function downstream of the EGFR, and experimental evidence suggests that PKAI is acting upstream of the mitogen-activated protein kinase pathway. We have also demonstrated that the functional interaction between the EGFR and the PKAI pathways could have potential therapeutic implications. In fact, the combined interference with both EGFR and PKAI with specific pharmacological agents, such as anti-EGFR blocking MAbs and cAMP analogues, has a cooperative antiproliferative effect on human cancer cell lines in vitro and in vivo. The antitumor activity of this combination could be explored in a clinical setting because both the 8-Cl-cAMP analogue and the anti-EGFR blocking MAb C225 have entered human clinical trial evaluation. Finally, both MAb C225 and 8-Cl-cAMP are specific inhibitors of intracellular mitogenic signaling that have different mechanisms of action compared with conventional cytotoxic drugs. In this respect, a cooperative growth-inhibitory effect in combination with several chemotherapeutic agents in a large series of human cancer cell lines in vitro and in vivo has been demonstrated for anti-EGFR blocking MAbs or for 8-Cl-cAMP. Therefore, the combination of MAb C225 and 8-Cl-cAMP following chemotherapy could be investigated in cancer patients.

This content is only available via PDF.