Abstract
This Phase I/II radioimmunotherapy study was carried out to determine the maximum tolerated dose (MTD) and therapeutic potential of 131I-G250. Thirty-three patients with measurable metastatic renal cell carcinoma were treated. Groups of at least three patients received escalating amounts of 1311I (30, 45, 60, 75, and 90 mCi/m2) labeled to 10 mg of mouse monoclonal antibody G250, administered as a single i.v. infusion. Fifteen patients were studied at the MTD of activity. No patient had received prior significant radiotherapy; one had received prior G250. Whole-body scintigrams and single-photon emission computed tomography images were obtained in all patients. There was targeting of radioactivity to all known tumor sites that were > or =2 cm. Reversible liver function test abnormalities were observed in the majority of patients (27 of 33 patients). There was no correlation between the amount of 131I administered or hepatic absorbed radiation dose (median, 0.073 Gy/mCi) and the extent or nature of hepatic toxicity. Two of the first six patients at 90 mCi/m2 had grade > or =3 thrombocytopenia; the MTD was determined to be 90 mCi/m2 131I. Hematological toxicity was correlated with whole-body absorbed radiation dose. All patients developed human antimouse antibodies within 4 weeks posttherapy; retreatment was, therefore, not possible. Seventeen of 33 evaluable patients had stable disease. There were no major responses. On the basis of external imaging, 131I-labeled mouse monoclonal antibody G250 showed excellent localization to all tumors that were > or =2 cm. Seventeen of 33 patients had stable disease, with tumor shrinkage observed in two patients. Antibody immunogenicity restricted therapy to a single infusion. Studies with a nonimmunogenic G250 antibody are warranted.