Abstract
Patients with High Grade Serous Ovarian Cancer (HGSC) have limited therapeutic options. Immuno-oncologic (IO) agents have had limited effect. DNA damage repair gene mutations that may confer repair defects have been identified in up to 50% of HGSCs, making therapies that target repair defects, like PARP, CHK1, and ATR inhibitors, additional options. We have no means of predicting which patients will respond to any of these therapies.
A model system that allows for functional assays to assess for DNA damage repair defects, prediction of response to therapies targeting such defects, and assessment of the functionality of the tumor immune infiltrate and its response to IO agents is needed. Organoids are three-dimensional structures derived from human normal or tumor tissue cells that anatomically and functionally mimic the developed human organ. Organoids mimicking the parent tumor from which they were derived have aided in the study of multiple tumor types. They are inexpensive and easily manipulated and may be an ideal model system for studying ovarian cancer.
We have devised a functional assay platform to profile the DNA damage repair capacity and immune targetability of short-term patient-derived HGSC organoids. The organoids mimic the tumors from which they were derived morphologically, molecularly, and genetically.
We have tested 33 organoid cultures derived from 21 HGSC patients for homologous recombination (HR) and replication fork protection capacity and compared the functional results to the tumor genomic profile. Regardless of repair gene mutational status, an HR functional defect in the organoids correlated with PARP inhibitor sensitivity. A fork protection functional defect correlated with carboplatin, and ATR and CHK1 inhibitor sensitivity. Importantly, this work has led to the discovery of potential therapeutic combinations, such as a CHK1 inhibitor plus carboplatin or gemcitabine that may be useful in treating tumors otherwise resistant to most therapies. Drugs such as carboplatin or gemcitabine can synergize with a CHK1 inhibitor by enhancing replication stress and fork deprotection.
In parallel, we have immune phenotyped the parent tumors and organoid cultures from 15 patients, and shown that the organoid cultures retain lymphocytes expressing relevant IO receptors in the short term. Upon treatment with carboplatin, olaparib, and pembrolizumab as single agents or in combination, we detect changes in IO receptor expression and production of different cytokines in the cultures, suggesting an immune response induced by these agents. We have detected receptor and cytokine alterations that would create an immune suppressive environment with specific drug combinations in tumors with specific repair defects, suggesting that these may be inappropriate combinations for harnessing the immune system in tumors with specific repair capacities.
Continued combined immune and DNA damage repair phenotyping analyses of the organoids will lead to a better understanding of which mechanistic defects are needed to confer sensitivity to DNA damage repair agents, what functional properties and immune milieu lead to sensitivity to IO agents, and how best to combine such therapies. In addition, through further correlation with patient responses over time, HGSC organoids may become a useful tool for rapidly predicting patient response to therapeutic agents.
Citation Format: Sarah J. Hill, Brennan Decker, Emma A. Roberts, Chunyu Yang, Neil S. Horowitz, Michael G. Muto, Michael J. Worley Jr., Colleen M. Feltmate, Marisa R. Nucci, Elizabeth M. Swisher, Ryuji Morizane, Bose Kochupurakkal, Khanh T. Do, Panagiotis Konstantinopoulos, Joyce F. Liu, Joseph V. Bonventre, Ursula A. Matulonis, Geoffrey I. Shapiro, Ross S. Berkowitz, Christopher P. Crum, and Alan D. D'Andrea. REAL-TIME ASSESSMENT OF HGSC DNA DAMAGE REPAIR DEFECTS AND DEFECT-INDUCED RESPONSE TO THERAPY IN OVARIAN CANCER ORGANOIDS [abstract]. In: Proceedings of the 12th Biennial Ovarian Cancer Research Symposium; Sep 13-15, 2018; Seattle, WA. Philadelphia (PA): AACR; Clin Cancer Res 2019;25(22 Suppl):Abstract nr AP10.