Purpose: Pancreatic cancer stromal microenvironment is considered to be the major reason for failure of conventional and targeted therapy for this disease. The desmoplastic stroma, comprising mainly collagen and glycosaminoglycans like hyaluronan (HA), is responsible for compression of vasculature in the tumor resulting in impaired drug delivery and poor prognosis. Minnelide, a water-soluble prodrug of triptolide currently in phase I clinical trial, has been very effective in multiple animal models of pancreatic cancer. However, whether Minnelide will have efficacious delivery into the tumor despite the desmoplastic stroma has not been evaluated before.

Experiment Design: Patient tumor-derived xenografts (PDX) and spontaneous pancreatic cancer mice were treated with 0.42 and 0.21 mg/kg body weight for 30 days. Stromal components were determined by IHC and ELISA-based assays. Vascular functionality and drug delivery to the tumor were assessed following treatment with Minnelide.

Result: Our current study shows that treatment with Minnelide resulted in reduction of ECM components like HA and collagen in the pancreatic cancer stroma of both the spontaneous KPC mice as well as in patient tumor xenografts. Furthermore, treatment with Minnelide improved functional vasculature in the tumors resulting in four times more functional vessels in the treated animals compared with untreated animals. Consistent with this observation, Minnelide also resulted in increased drug delivery into the tumor compared with untreated animals. Along with this, Minnelide also decreased viability of the stromal cells along with the tumor cells in pancreatic adenocarcinoma.

Conclusions: In conclusion, these results are extremely promising as they indicate that Minnelide, along with having anticancer effects is also able to deplete stroma in pancreatic tumors, which makes it an effective therapy for pancreatic cancer. Clin Cancer Res; 22(2); 415–25. ©2015 AACR.

Translational Relevance

The prevalence of stroma in pancreatic tumors is the primary reason behind impaired drug delivery in pancreatic cancer. The desmoplastic stroma constricts the blood vessels in the tumor, leading to inefficient vasculature and poor drug delivery. Thus there is an urgent need to develop and evaluate therapy that along with having anticancer effect will also ensure better drug delivery into the tumors. Minnelide, a potent anticancer compound, is currently in phase I clinical trial. In this study, we have evaluated the effect of Minnelide on stromal lysis in pancreatic cancer. Our studies show that Minnelide depletes the extracellular matrix components by depleting hyaluronan and collagen in the stroma, leading to better drug delivery and improved survival in a spontaneous animal model of pancreatic cancer. This is translationally relevant as it suggests that Minnelide can be developed as an effective therapy against pancreatic cancer.

Pancreatic cancer is among the most devastating of all cancers with a dismal survival rate. In United States alone, the estimated case for pancreatic cancer is almost 48,000 (www.cancer.gov). Five-year survival in patients with pancreatic cancer is about 5% and this figure has remained relatively unchanged over the past 25 years (1, 2). Pancreatic cancer stromal microenvironment is considered to be the major reason behind the failure of conventional and targeted therapy for this disease (3). It has been observed that the dense stroma comprising mostly of proteoglycans like hyaluronan (HA) and collagen forms a physical barrier for drugs targeting the tumor cells (4, 5). Recent efforts directed toward development of new therapies have thus been targeted toward depletion of stroma in order to improve drug delivery (6, 7).

A molecular analysis of the pancreatic ductal adenocarcinoma (PDAC) stroma revealed that it was extremely heterogeneous, comprising cellular and acellular components, like fibroblasts, myofibroblasts, pancreatic stellate cells, immune cells, blood vessels, extracellular matrix (ECM) made of collagen and HA, and soluble proteins such as cytokines and growth factors. As a result of accumulation of ECM components, the normal architecture of the pancreatic tissue is distorted resulting in an abnormal configuration of blood and lymphatic vessels in the tumor (4, 5, 8–10). On the basis of this observation, it was hypothesized that the desmoplastic stroma acted as a barrier to drug delivery in the tumor (5, 10). HA and collagen are the two major components of the pancreatic tumor stroma. HA is a high-molecular weight glycosaminoglycan comprising a polymer of N-Acetyl Glucosamine and glucuronic acid, that retains water due to its high colloid osmotic pressure (11). Excessive HA accumulation in solid tumors has been reported to raise interstitial fluid pressure and compress blood vessels (3, 6, 7). Collagen, particularly type IV collagen, is the main component of the basement membrane of the ECM that provides a scaffold for its assembly and mechanical stability. Along with providing an extensive support, the collagen network in the stroma also plays a significant role in cell adhesion, migration, survival, proliferation, and differentiation (12, 13). Sonic hedgehog (SHH) signaling has been shown to be restricted to the stromal compartment (10, 14). Thus, pharmacologic inhibition of the Shh pathway was thought to have a positive impact on gemcitabine delivery, by reducing the desmoplastic stroma. Though a study involving combination of the Smoothened inhibitor (IPI-926) and gemcitabine caused depletion of tumor stroma and resulted in increased microvessel density (5), the compound failed to offer significant survival benefit in a clinical trial.

In another study, HA degradation by hyaluronidase PEGPH20 decreased interstitial fluid pressure in murine PDAC. Consequently, increased vessel patency, drug delivery, and survival were also observed (3, 7). Even though “anti-stromal” therapy has been emerging as a therapeutic option, the role of stroma in pancreatic cancer has remained controversial. It is also proposed that the stroma is more “restraining” in nature for the tumor, thereby acting to prevent metastasis by constricting blood vessels (15). Thus, an ideal therapy for pancreatic cancer would be one that on one hand will have a potent anticancer effect and at the same time will ensure its efficacious delivery into the tumor.

Triptolide, an active compound isolated from a Chinese herb has been used as an anticancer compound since the 1990s. Its efficacy in reducing a number of tumors including pancreatic tumors has been reported over last few years (16–21). Owing to its limited solubility in aqueous medium, triptolide had restricted use in clinical and preclinical studies. Recently, a water-soluble analog of triptolide, Minnelide has been effectively used as an anticancer therapy (22–27). Minnelide is currently being evaluated in a phase1 clinical trial against gastrointestinal cancers. Our preclinical studies with Minnelide have shown that this compound is able to increase survival in a number of mouse models both orthotopic as well as patient-tumor derived xenografts (PDX). Minnelide, apart from reducing the primary tumor burden, also decreases metastasis in pancreatic as well as other cancers (24). Our previous studies have shown that Minnelide acts by inhibiting the transcriptional activity of Sp1, by altering its glycosylation status (22). Though there have been a number of studies on triptolide/Minnelide, its effect on the stromal architecture has not been studied till date.

In the current study, we show that Minnelide, apart from having a profound anticancer effect as seen in our earlier studies, also effectively depletes the stromal architecture in pancreatic cancer by inhibiting collagen stabilization and HA synthesis. This eventually results in improved vascular function and better drug delivery, leading to an increased survival of treated KRasG12D; Trp53R172H; Pdx-1Cre (KPC) mice.

qRT-PCR

qRT-PCR for indicated primers was carried out using primers procured from Qiagen (Quantitect Primer Assay, Qiagen). PCR array for ECM and Adhesion pathway (Qiagen, SA Biosciences) was used to analyze transcripts of genes involved in the ECM. RNA was isolated from the tumor samples according to manufacturer's instructions using TRIzol (Invitrogen). Total RNA (1 μg) was used to perform real-time PCR using the Quantitect Sybr green PCR kit (Qiagen) according to the manufacturer's instructions using an Applied Biosystems 7300 real-time PCR system. All data were normalized to the housekeeping gene 18S (18S Quantitect Primer Assay; Qiagen).

Estimation of HA in tumors, HA synthase, and hyalouronidase assay

For estimating HA, hyaluronidase, and HA synthase activity, tumor tissue (from control animals and animals treated with Minnelide) was washed several times in ice-cold PBS to remove traces of blood. The tissue was then homogenized in the assay buffer (20 mmol/L sodium phosphate buffer, 77 mmol/L sodium chloride) in the presence of protease inhibitors and used for assay. HA was estimated in the tumor samples using the ELISA-based Hyaluronan Duo Set (R&D system) according to manufacturer's instruction. For Hyaluronidase assay, ELISA-based hyaluronidase kit (AMS Biotech) was used according to manufacturer's instruction. HA synthase assay was done by slightly modifying the protocol established by Itano (28). Briefly, the membrane fraction of the tumor tissue was incubated at 37°C for 1 hour in 0.2 mL of 25 mmol/L Hepes-NaOH, pH 7.1, 5 mmol/L dithiothreitol, 15 mmol/L MgCl2, 0.1 mmol/L UDP-GlcNAc (Sigma), and 2 μmol/L UDP-GlcA (Sigma). Reactions were terminated by adding SDS at 2% (w/v). For negative control, the total reaction mix was heat inactivated before incubation. HA formed was estimated by the ELISA-based Hyalurona Duo set as described before. Results were expressed as the amount of HA formed per μg protein per minute.

Collagen isolation and hydroxyproline and hydroxylysine estimation

Tumor tissue from Minnelide-treated and untreated mice were minced into 1 to 2 mm pieces and extracted in 0.5 mol/L Acetic Acid for 72 hours at 4°C. The supernatant containing acid soluble collagen was dialyzed against 0.05 M Na2HPO4. Hydroxyproline assay was performed on this extracted collagen using a hydroxyproline assay kit (Sigma) and results were expressed as hydroxyproline formed per ng collagen. Hydroxylysine in the collagen was estimated using hydroxylysine assay kit (Biosource) according to manufacturer's instruction. Results were expressed at hydroxylysine produced per ng of collagen.

IHC and immunofluorescence

For IHC, paraffin tissue sections were deparaffinized in xylenes and hydrated through graded ethanol. Hematoxylin and eosin (H&E) staining was used for evaluation of histologic features. Sirius Red staining was used to visualize the collagen in the tumor stroma. Slides were steamed with Reveal Decloaker (Biocare Medical) to minimize background staining. Sniper Universal Blocking Sera (Biocare Medical) were used throughout the protocol. Primary antibodies for α SMA, CD31 (Abcam), HABP-Biotin (Sigma) were diluted according to vendor's instruction and incubated overnight at 4°C. The primary antibody was omitted for the negative controls. For immunofluorescence, fluorescent antibody conjugates were used after primary antibody staining. Slides were counterstained with DAPI and visualized in a Nikon fluorescent microscope. Tissue samples were incubated with mouse IgG1 isotype controls (BD Biosciences) and did not demonstrate any specific staining.

Human xenograft pancreatic cancer tumor model

PDXs were established by implanting deidentified human pancreatic tumors subcutaneously into NOD-SCID mice (Jackson Laboratories). Upon reaching a volume of 500 mm3, tumors were dissected and cut into 10 mm3 pieces, which were then subcutaneously implanted into both flanks of additional SCID mice (n = 20 animals). Animals were randomized and tagged before treatment. Treatment with Minnelide (0.42 mg/kg body weight) was started when the tumors were approximately 500 mm3 in size. Animals were treated for 7 days before collecting tissues for histology, vascular function assay, or drug delivery assay.

Transgenic mouse model of spontaneous pancreatic cancer

KRasG12D; Trp53R172H; Pdx-1Cre animals were generated by crossing Lox Stop Lox (LSL) KRasG12D; LSL Trp53R172H animals with Pdx-1 Cre animals. Minnelide treatment with 0.42 mg/kg body weight/day was started when animals were 4 to 6 weeks of age. Animals in saline and treatment groups were age matched. Animals were weighed every week to monitor for weight loss during experiment and treatment doses were adjusted accordingly. Animals were treated for 30 days before collecting tissues for histology, vascular function assay, or drug delivery assay.

Experiments were performed and animals sacrificed in accordance with animal care committee regulations at the University of Minnesota (Minneapolis, MN). For survival study, the survival data were represented as a Kaplan–Meier plot using GraphPad Prism 6.

Vascular function assay

Four to five mice were evaluated for each experimental arm. Twenty-four hours after the final dose of Minnelide, mice received an intravenous infusion of fluorophore-labeled tomato lectin. Thirty minutes later, mice were terminally perfused sequentially with 50 mL saline followed by 30 mL of 4% paraformaldehyde/PBS (pH 7.4). Perfused tissues were harvested, fixed for 16 to 24 hours in paraformaldehyde and transferred to 70% ethanol before paraffin embedding. Sections were deparaffinized, rehydrated and, for vascular patency assays, immunostained for CD31. All sections were counterstained with DAPI. Visualization was performed on a Nikon Ti confocal microscope using standardized settings, and background signal intensities were established against unlabelled terminally perfused samples. The open/compressed vessels were counted for 10 nonadjacent 20× fields for each slide.

Drug delivery assay

For the doxorubicin delivery assay, a minimum of 5 mice from saline and Minnelide were included for analysis. Mice received an intravenous infusion of doxorubicin 24 hours after the final dose of Minnelide. Mice were euthanized and tissues processed as above. Sections were deparaffinized, rehydrated, and counterstained with DAPI. Doxorubicin fluorescence was visualized under a Nikon Ti confocal microscope using standardized settings, and background signal intensities were established against samples without doxorubicin stain.

Viability of CAF and KPC tumor cells

Cancer-associated fibroblasts were isolated from five to seven tumors from KPC mice as described in Sharon and colleagues (29). The purity of the fibroblasts was checked by flow cytometry after staining isolated fibroblasts with FSP antibody and CK19 antibody. Population with FSP+CK19 staining was used for viability experiments.

Both isolated CAFs from KPC tumors and mouse epithelial PDAC cell line KPC001 and Panc-02 were seeded on 96-well plates and allowed to grow for 48 hours prior to treating them with indicated doses of triptolide for 24 and 48 hours. Cell viability was measured using an MTT-based assay.

Statistical analysis

Values are expressed as mean ± SEM. All in vitro experiments were performed at least three times. The significance of the difference between any two samples was analyzed by Student t test using GraphPad Prism 6; values of P < 0.05 were considered statistically significant.

Molecular components of desmoplastic stroma are upregulated in human and murine PDAC compared with normal pancreas

Pancreatic cancer is characterized by an intense desmoplastic stroma. The molecular components of the stroma include the activated stellate cells in the pancreas, the myofibroblasts, proteoglycans, and glycosaminoglycans. Synthesis of this complex ECM involves a number of very tightly regulated pathways (4, 30, 31). PCR array of genes responsible for the extracellular matrix or ECM showed several fold increased expression in PDAC tissues (from KPC tumors) compared with normal ductal epithelial cells (Supplementary Fig. S1). The genes that were significantly upregulated or downregulated are tabulated in Supplementary Table S1. Consistent with this, the histologic sections of pancreatic tumors resected from patients or from the KPC mice showed presence of an extensive stroma as seen by H&E staining (Fig. 1A) when compared with normal pancreas tissue (Fig. 1C). Both PDX as well as tumors from KPC mice also stained heavily with collagen as visualized by Sirius Red staining (Fig. 1B).

Figure 1.

Figure showing presence of extensive stroma in PDAC in (A) PDX and (B) spontaneous KRasG12D, TP53,Pdx-Cre (KPC) mice in H&E stain, picrosirius red stain. Normal pancreas tissue showed very little staining with picrosirius red (C).

Figure 1.

Figure showing presence of extensive stroma in PDAC in (A) PDX and (B) spontaneous KRasG12D, TP53,Pdx-Cre (KPC) mice in H&E stain, picrosirius red stain. Normal pancreas tissue showed very little staining with picrosirius red (C).

Close modal

Patient tumor xenografts and KPC spontaneous tumors show reduced stroma in response to Minnelide treatment

Minnelide has been extremely efficient in regressing tumor both in human tumor-derived xenografts as well as in spontaneous KPC mice (KRASG12D, TP53-PdxCre mice) for pancreatic cancer (24). To see whether Minnelide was also effective in reducing the stromal components, the animals were treated with Minnelide and the histologic sections were stained with stromal markers and quantitated. HA is one of the major constituents on the pancreatic tumor stroma, which is typically visualized in tissue sections by staining with HABP (HA-binding protein) staining. HABP staining was significantly less in the Minnelide treated animals in both PDX (Fig. 2A) and KPC models (Fig. 2B). Minnelide also decreased α SMA staining in tissues indicating that activated stellate cells were also reduced (Fig. 2A and B). Quantitation of the α SMA staining indicated that this was significantly less than untreated tumors (Supplementary Fig. S2). Minnelide treatment reduced fibrosis in the stroma (as visualized by Sirius red staining) in both PDX and spontaneous KPC model as well (Fig. 2C and D). Quantitation of staining showed that the fibrosis (collagen) was significantly decreased in the Minnelide-treated tissues (Supplementary Fig. S2).

Figure 2.

Minnelide reduces stromal component α SMA and HA in (A) PDX as well as (B) in KPC tumors. C, picrosirius red staining is also decreased in both models. D, quantitation of HA from the PDX tumors (E) and KPC tumor (F) also shows decreased HA in the tumors. *, P < 0.05.

Figure 2.

Minnelide reduces stromal component α SMA and HA in (A) PDX as well as (B) in KPC tumors. C, picrosirius red staining is also decreased in both models. D, quantitation of HA from the PDX tumors (E) and KPC tumor (F) also shows decreased HA in the tumors. *, P < 0.05.

Close modal

To further confirm whether the HA in the treated tumor is indeed decreased by Minnelide, we quantitated the total HA in the tumors treated with Minnelide. Consistent with the histologic observation, HA was decreased in the Minnelide-treated tumors derived from both KPC (Fig. 2E) and PDX models (Fig. 2F).

Reduction in fibrosis is caused by impaired collagen synthesis and modification

Since our histological sections revealed that Minnelide treatment significantly reduced fibrosis in the two models (as seen decreased Sirius Red staining), we studied the pathways involved in synthesis of collagen. RNA analysis revealed that the transcription of genes involved in the synthesis of collagen (ColE1-5), or stabilization of collagen (PLOD1-4, P4H), were not affected by Minnelide (Supplementary Fig. S3). Our results show that PLOD1-4 (procollagen lysine 5 dioxygenase) enzymes are very highly expressed in pancreatic tumors (Supplementary Fig. S3). These genes catalyze the hydroxylation of lysine to hydroxylysine, a key step in stabilization and formation of collagen. Because Minnelide did not alter the expression of PLOD genes, we measured the total hydroxylysine in the total collagen from treated tissues. Hydroxylysine is a rare amino acid only present in collagen, thus a measure of total hydroxylysine in tumors is a measure of the enzyme activity of the PLOD genes. Both KPC and PDX tumors treated with Minnelide showed a decrease in the total hydroxylysine content indicating that Minnelide prevented stabilization of collagen in the tumor thereby leading to depletion of stromal architecture (Fig. 3A and B).

Figure 3.

Minnelide decreased hydroxylysine in (A) PDXs and (B) KPC tumors; hydroxyproline in PDXs (C) and (D) KPC tumors; and α ketoglutarate in (E) PDXs and (F) KPC tumors. *, P < 0.05.

Figure 3.

Minnelide decreased hydroxylysine in (A) PDXs and (B) KPC tumors; hydroxyproline in PDXs (C) and (D) KPC tumors; and α ketoglutarate in (E) PDXs and (F) KPC tumors. *, P < 0.05.

Close modal

The other class of enzymes responsible for the stabilization of collagen is procollagen hydroxylases that are overexpressed in pancreatic tumors. Similar to the procollagen lysine dioxygenase, prolyl hydroxylase predominantly catalyzes hydroxylation of proline residues in collagen. Minnelide did not reduce the expression of P4H enzymes in KPC or PDAC tumors (Supplementary Fig. S3). However, treatment with Minnelide did decrease the total hydroxyproline in the collagen of tumor tissues treated with Minnelide (Fig. 3C and D).

Because both PLOD enzymes as well as P4H enzymes are oxygen dependent and require α ketoglutarate as the primary cofactor in their reaction, we assayed for the total α KG produced in response to Minnelide treatment. Our results indicated decreased α KG in response to Minnelide treatment in both KPC and PDX models (Fig. 3E and F).

Decreased hyaluronan in stroma results from reduced HAS activity

Because Minnelide decreased HA in the tumors, we next evaluated whether this was due to decreased HA synthesis or enhanced HA degradation in the tumors. HA is synthesized by the tumor cells by HA Synthase enzymes (HAS1-3). Analysis of mRNA showed that HAS1, HAS2, and HAS3 genes were decreased in response to Minnelide treatment in both models (Fig. 4A). Consistent with this observation, the HAS enzyme activity was significantly decreased in the tumors treated with Minnelide (Fig. 4B) in both KPC mice and PDX tumor models (Supplementary Fig. S4). HA degradation is orchestrated by the hyaluronidase enzymes (HYAL1-5, PH20). Of these, HYAL1, HYAL2, and PH20 were present in KPC and PDX tumors. Minnelide did not decrease the mRNA of these genes (Fig. 4C). As expected, hyaluronidase activity also remained unaltered in the tumor tissues after treatment with Minnelide (Fig. 4D) in both KPC mice and PDX tumor models (Supplementary Fig. S4).

Figure 4.

Minnelide decreased (A) HA synthase expression along with (B) the activity in KPC tumors. C, hyaluronidase expression as well as (D) activity was found to be unaltered in these tumors following treatment. *, P < 0.05.

Figure 4.

Minnelide decreased (A) HA synthase expression along with (B) the activity in KPC tumors. C, hyaluronidase expression as well as (D) activity was found to be unaltered in these tumors following treatment. *, P < 0.05.

Close modal

This indicated that decrease in HA in response to Minnelide was in response to decreased synthesis and not increased degradation.

Decreased stromal component result in improved drug delivery and survival

Inefficient drug delivery is a hallmark of pancreatic tumors. This phenomenon is often attributed to compression of tumor vasculature by dense stroma. To see whether the physical depletion of stroma translated to an improved drug delivery by improving vascular function, we injected doxorubicin to study drug delivery in these animals. Doxorubicin fluorescence was observed inside the tumors of KPC animals treated with Minnelide (0.42 mg/kg/d), whereas negligible doxorubicin fluorescence was present in the saline animals (Fig. 5A). Compressed vasculature in the pancreatic tumors prevents drug delivery to the tumor cells in pancreatic cancer. To see whether Minnelide-induced stromal depletion relieved this vascular compression, we tested for vascular functionality in the tumors. Treatment with Minnelide resulted in greater number of open blood vessels in the tumor compared with the untreated tumors (Fig. 5B and C).

Figure 5.

Minnelide improved (A) drug delivery as seen by doxorubicin fluorescence in both KPC and PDX tumors. Minnelide also reduced vascular compression (B) and resulted in (C) more “open” blood vessels compared with untreated tumors. This resulted in a (D) greater survival of the KPC mice receiving Minnelide compared with the untreated mice. *, P < 0.05.

Figure 5.

Minnelide improved (A) drug delivery as seen by doxorubicin fluorescence in both KPC and PDX tumors. Minnelide also reduced vascular compression (B) and resulted in (C) more “open” blood vessels compared with untreated tumors. This resulted in a (D) greater survival of the KPC mice receiving Minnelide compared with the untreated mice. *, P < 0.05.

Close modal

Our previous studies have shown that Minnelide improved survival and caused tumor regresssion of PDX model. To see whether Minnelide indeed improved survival of the KPC model, we treated age-matched KPC animals with 0.42 mg/kg Minnelide and plotted their survival. Minnelide indeed increased the median survival of these animals by 58 days following treatment (Fig. 5D).

Minnelide decreased viability of both tumor cells and stromal cells

Our previous studies have shown that Minnelide decreases viability of tumor cells in a number of animal models and pancreatic cancer cell lines, while having no effect on the normal pancreatic ductal cells. To study whether it also reduced the viability of cancer-associated fibroblasts (CAF) as efficiently as the cancer epithelial cells, we compared the cell viability of CAFs and cancer epithelial cells isolated from KPC animals. Our results showed that Minnelide indeed decreased the viability of CAFs (Fig. 6A and B) as efficiently as it decreased viability of mouse epithelial PDAC cells (Fig. 6C and D), indicating that it not only depleted the stromal ECM but also induced stromal cell death. The IC50 values for tumor and stromal cells are indicated in Supplementary Table S2.

Figure 6.

Triptolide decreased viability of cancer-associated fibroblasts as well as epithelial tumor cells. Representative CAFs from KPC tumors, K-CAF1 (A), K-CAF5 (B), and epithelial mouse PDAC cell lines KPC001 (C) and Panc02 (D) were treated with indicated doses of triptolide for 24 and 48 hours. Viability was plotted as percentage of untreated control. The IC50 values are represented in Supplementary Table S2.

Figure 6.

Triptolide decreased viability of cancer-associated fibroblasts as well as epithelial tumor cells. Representative CAFs from KPC tumors, K-CAF1 (A), K-CAF5 (B), and epithelial mouse PDAC cell lines KPC001 (C) and Panc02 (D) were treated with indicated doses of triptolide for 24 and 48 hours. Viability was plotted as percentage of untreated control. The IC50 values are represented in Supplementary Table S2.

Close modal

Pancreatic cancer stromal microenvironment is considered to play a major role in chemoresistance of the tumor by preventing efficient drug delivery into the tumor. The stroma has received a lot of focus in pancreatic cancer research over the last 6 to 8 years. There are conflicting evidences as to whether targeting stroma and its components are beneficial for regression of the tumor. On one hand, relieving the vascular compression in the tumor results in better drug delivery to the tumor (3, 7, 32), while on the other hand, it is also argued that stroma is actually restraining the tumor by preventing metastasis (15, 33, 34). Thus, an ideal antipancreatic tumor drug would thus be the one that will cause stromal depletion to ensure efficacious drug delivery into the tumor and at the same time be able to inhibit metastasis by being tumoricidal.

The KrasG12D; TP53-mutated mice (KPC) has been extensively used to understand this phenomenon pancreatic tumor microenvironment (7, 35). A molecular analysis of the PDAC stroma in these mice revealed that it was extremely heterogeneous, comprising cellular and acellular components, like fibroblasts, myofibroblasts, pancreatic stellate cells, immune cells, blood vessels, extracellular matrix (ECM), and soluble proteins such as cytokines and growth factors. Similar stromal architecture is also found in the resected pancreatic tumors from patients. Our studies showed that PDXs in SCID mice also show similar elaborate stromal architecture in the first 2 to 3 passages (Fig. 1). Similar to the KPC mice, these tumors had extensive fibrosis (as visualized by Sirius red staining), cancer-associated fibroblasts, and activated stellate cells and an extensive extracellular matrix comprising of HA (Fig. 1). HA is a glycosaminoglycan made of N-acetyl glucosamine and glucuronic acid (36). Apart from being instrumental in fluid retention and wound healing in normal tissues, HA is also involved in mediating a number of signaling in human body, one of which is the sperm-ova recognition (37). Interestingly, triptolide, the active drug of Minnelide, derived from a Chinese herb, has been used as a male contraceptive in China and has been shown to influence HA synthesis (38).

Previous studies from our group have shown that Minnelide, the water soluble prodrug of triptolide, is extremely effective as an anticancer compound in a number of animal models for pancreatic cancer, including the KPC model (24). Minnelide is currently under phase I clinical trial at the University of Minnesota. In that context, it was imperative to test if treatment with Minnelide was able to breach the stromal barrier. Our histologic studies showed that Minnelide significantly reduced both total collagen and HA in both the PDX and the KPC tumor models (Fig. 2).

The extracellular matrix in pancreatic tumor is predominantly made of collagen. Synthesized as a pro-collagen molecule, collagen assembly and cross-linking into tertiary structure provides the structural strength to the matrix. Interestingly, our studies revealed that the expression of the genes involved in synthesis or stability of collagen (for e.g. ColE genes, PLOD, genes and P4H genes remained unchanged in response to Minnelide (Supplementary Fig. S3). The stability of the procollagen into cross-linked collagen fibrils is mediated by a group of two enzymes: Procollagen lysine 2-oxoglutarate dioxygenase (PLOD1-4) and Prolyl 4 hydroxylase (P4H). PLOD1-4 is a group of enzymes that catalyzes the transfer of a hydroxyl group to the lysine residues in the collagen. The addition of hydroxyl groups is essential for collagen molecules to form stable interactions, called cross-links, with one another. Cross-links between these molecules allow collagen to form networks of strong, slender fibrils that eventually constitute the stroma. Because hydroxylysine is a rare amino acid only present in collagen, a measure of the total hydroxylysine is a measure of the total PLOD1-4 activity. P4H, on the other hand catalyze the formation of 4-hydroxyproline, that is essential to the proper three-dimensional folding of newly synthesized procollagen chains. Once again, because the major source hydroxyproline is collagen, estimation of total hydroxyproline is a measure of the activity of P4H in the tumors. Minnelide decreased total hydroxylysine and hydroxyproline in the tumor tissues (Fig. 4), indicating that the activity of these enzymes was inhibited by this compound.

Our results showed that Minnelide decreased total HA in the tumor tissues. We hypothesized this could either be due to increased degradation of HA or decreased synthesis of HA. To address this, we perform activity assays for both HA synthase (HAS) enzymes as well as hyaluronidase (HYAL1-4, PH20) enzymes. Our results showed that Minnelide decreased activity as well as expression of HAS genes, were as HYAL genes remained unaffected by Minnelide treatment (Fig. 4). Review of literature showed that activity of HA synthase was dependent on the availability of UDP-GlcNAc in the cell (39). Previous results from our group showed that triptolide/Minnelide downregulates the hexosamine biosynthesis pathway that results in production of UDP-GlcNAc (22). Furthermore, this downregulation of hexosamine pathway by Minnelide also leads to inhibition of O-GlcNAc transferase that glycosylates Sp1, a transcription factor that is responsible for transcription of HAS genes (22, 39, 40). This suggested that Minnelide resulted in decreased synthesis of HA by (i) depleting the substrate pool of UDP-GlcNAc in the cells resulting in decreased activity of the HA synthase, as well as (ii) downregulating activity of Sp1, which resulted in decreased transcription of HAS genes.

Initial studies on Minnelide indicated that this compound downregulated HSP70 in pancreatic cancer cells and as a result induced cell death by triggering multiple cell death pathways (19, 21). Follow-up studies in this line have indicated that the downregulation of HSP70 is mediated by inhibition of transcriptional activity of Sp1 (22). Interestingly, Sp1 has been reported to be instrumental in regulating HA synthase genes as well (40, 41). Thus, downregulation of the HA in the stroma of the pancreatic tumor by HA may be a result of inhibition of Sp1 transcriptional activity.

Because the stromal “compression” was relieved following treatment with Minnelide, the next question was to determine whether it translated to better intratumoral drug delivery. Our results showed that treatment with Minnelide resulted in more number of “open” blood vessels in the tumor (Fig. 5A). This further facilitated a better delivery of doxorubicin (a fluorescent compound that is studied routinely to determine efficacy of drug delivery) in the tumors (Fig. 5B). The current statistics show that the presence of the abundant stroma in pancreatic tumor models like KPC, results in hypo-vascularized tumors with very poor drug perfusion. Our study showed that Minnelide not only decreased the stromal components, but also improved the functional vasculature in the tumor and increased drug delivery into the tumor that resulted in a better median survival of the KPC mice (Fig. 5C).

The understanding of the role of stroma in the pancreatic carcinogenesis, progression, and treatment is under evolution. Studies have shown that stromal elements can not only enhance cancer cell proliferation and invasion, but can also help cancer evade immune system (42). Furthermore, studies suggest that desmoplastic stroma of pancreatic cancer may also impede deliver of chemotherapeutics. In a study by Olive and colleagues, treatment of mice with pancreatic cancer in KPC genetically engineered mouse model of pancreatic cancer with gemcitabine in combination with a Shh inhibitor led to decrease stromal content and better delivery of gemcitabine into the tumor, as compared with gemcitabine treatment alone. This was ascribed to presence of increased functional vessel on depletion of stroma. However, recent studies from Rhim and colleagues (15) have shown that stroma may have a restraining effect on the tumor. In this study, chronic depletion of stroma by embryonic deletion of Shh in pancreatic epithelial cells or by chronic administration of smoothened inhibitor to KPC mice led to aggressive tumors with increased vascularity, heightened proliferation, and increased metastases. Furthermore, this effect was reversed, at least partially by VEGFR blocking antibodies, suggesting that the stroma may also restraint tumor by suppressing tumor angiogenesis.

In our study, we have shown that Minnelide is very effective in reducing stromal content of tumors as well as in improving survival of mice in KPC model of pancreatic cancer. Though this seems contrary to previous study by Rhim and colleagues where stromal depletion led to worse survival of KPC mice, we believe that this effect is due to a combination of antitumor and antistromal effect of Minnelide. We have shown in multiple previous studies that Minnelide is very effective in killing tumor cells. Thus Minnelide's stromal depletion properties ensure the intratumoral delivery of Minnelide, and of another antitumor agent when used in combination with Minnelide, for enhanced killing of tumor cells and possibly increased survival. These data support use of stroma depletion strategy only in combination with a strong anticancer agent.

Minnelide has shown tremendous promise in the preclinical studies. Since August 2013, it is being evaluated in a phase1 clinical trial against GI cancers. In this respect, evaluating its effect on stroma in pancreatic cancer is extremely relevant and timely. This study shows that Minnelide is not only tumoricidal at the given doses as we have seen before, but also depletes the stromal architecture and induces stromal cell death, thus increasing the intratumoral concentration of the drug and finally eradicating them. Pancreatic cancer has extremely very poor prognosis owing to very poor drug delivery into the tumor. In this context, our study is a step forward in addressing the current challenges that exist in conquering this devastating disease.

S. Banerjee is a consultant/advisory board member for Minneamrita Therapeutics. A.K. Saluja reports receiving commercial research grants from, holds ownership interest (including patents) in, and is a consultant/advisory board member for Minneamrita Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Conception and design: S. Banerjee, V. Dudeja, A.K. Saluja

Development of methodology: S. Banerjee, X. Zhao, V. Dudeja, S. Ramakrishnan, A.K. Saluja

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Banerjee, S. Modi, O. McGinn, V. Dudeja, A.K. Saluja

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Banerjee, S. Modi, X. Zhao, V. Dudeja, A.K. Saluja

Writing, review, and/or revision of the manuscript: S. Banerjee, S. Modi, O. McGinn, X. Zhao, V. Dudeja, A.K. Saluja

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Banerjee

Study supervision: V. Dudeja, A.K. Saluja

This work was funded by NIH grants R01-CA170946 and CA124723 (to A.K. Saluja); NIH grant R01-CA184274 (to S. Banerjee); Katherine and Robert Goodale foundation support (to A.K. Saluja), and Minneamrita Therapeutics LLC (to A.K. Saluja).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Jemal
A
,
Bray
F
,
Center
MM
,
Ferlay
J
,
Ward
E
,
Forman
D
. 
Global cancer statistics
.
CA Cancer J Clin
2011
;
61
:
69
90
.
2.
Jemal
A
,
Siegel
R
,
Xu
J
,
Ward
E
. 
Cancer statistics, 2010
.
CA Cancer J Clin
2010
;
60
:
277
300
.
3.
Jacobetz
MA
,
Chan
DS
,
Neesse
A
,
Bapiro
TE
,
Cook
N
,
Frese
KK
, et al
Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer
.
Gut
2013
;
62
:
112
20
.
4.
Neesse
A
,
Michl
P
,
Frese
KK
,
Feig
C
,
Cook
N
,
Jacobetz
MA
, et al
Stromal biology and therapy in pancreatic cancer
.
Gut
2011
;
60
:
861
8
.
5.
Olive
KP
,
Jacobetz
MA
,
Davidson
CJ
,
Gopinathan
A
,
McIntyre
D
,
Honess
D
, et al
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
.
Science
2009
;
324
:
1457
61
.
6.
Chauhan
VP
,
Boucher
Y
,
Ferrone
CR
,
Roberge
S
,
Martin
JD
,
Stylianopoulos
T
, et al
Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure
.
Cancer Cell
2014
;
26
:
14
5
.
7.
Provenzano
PP
,
Cuevas
C
,
Chang
AE
,
Goel
VK
,
Von Hoff
DD
,
Hingorani
SR
. 
Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma
.
Cancer Cell
2012
;
21
:
418
29
.
8.
Mahadevan
D
,
Von Hoff
DD
. 
Tumor-stroma interactions in pancreatic ductal adenocarcinoma
.
Mol Cancer Ther
2007
;
6
:
1186
97
.
9.
Wehr
AY
,
Furth
EE
,
Sangar
V
,
Blair
IA
,
Yu
KH
. 
Analysis of the human pancreatic stellate cell secreted proteome
.
Pancreas
2011
;
40
:
557
66
.
10.
Tian
H
,
Callahan
CA
,
DuPree
KJ
,
Darbonne
WC
,
Ahn
CP
,
Scales
SJ
, et al
Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis
.
Proc Natl Acad Sci U S A
2009
;
106
:
4254
9
.
11.
Tammi
RH
,
Kultti
A
,
Kosma
VM
,
Pirinen
R
,
Auvinen
P
,
Tammi
MI
. 
Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan
.
Semin Cancer Biol
2008
;
18
:
288
95
.
12.
Ohlund
D
,
Lundin
C
,
Ardnor
B
,
Oman
M
,
Naredi
P
,
Sund
M
. 
Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer
.
Br J Cancer
2009
;
101
:
91
7
.
13.
Ohlund
D
,
Franklin
O
,
Lundberg
E
,
Lundin
C
,
Sund
M
. 
Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop
.
BMC Cancer
2013
;
13
:
154
.
14.
Bailey
JM
,
Swanson
BJ
,
Hamada
T
,
Eggers
JP
,
Singh
PK
,
Caffery
T
, et al
Sonic hedgehog promotes desmoplasia in pancreatic cancer
.
Clin Cancer Res
2008
;
14
:
5995
6004
.
15.
Rhim
AD
,
Oberstein
PE
,
Thomas
DH
,
Mirek
ET
,
Palermo
CF
,
Sastra
SA
, et al
Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma
.
Cancer Cell
2014
;
25
:
735
47
.
16.
Carter
BZ
,
Mak
DH
,
Schober
WD
,
Dietrich
MF
,
Pinilla
C
,
Vassilev
LT
, et al
Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5
.
Blood
2008
;
111
:
3742
50
.
17.
Chan
EW
,
Cheng
SC
,
Sin
FW
,
Xie
Y
. 
Triptolide induced cytotoxic effects on human promyelocytic leukemia, T cell lymphoma and human hepatocellular carcinoma cell lines
.
Toxicol Lett
2001
;
122
:
81
7
.
18.
Chen
YW
,
Lin
GJ
,
Chia
WT
,
Lin
CK
,
Chuang
YP
,
Sytwu
HK
. 
Triptolide exerts anti-tumor effect on oral cancer and KB cells in vitro and in vivo
.
Oral Oncol
2009
;
45
:
562
8
.
19.
Dudeja
V
,
Mujumdar
N
,
Phillips
P
,
Chugh
R
,
Borja-Cacho
D
,
Dawra
RK
, et al
Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms
.
Gastroenterology
2009
;
136
:
1772
82
.
20.
Krosch
TC
,
Sangwan
V
,
Banerjee
S
,
Mujumdar
N
,
Dudeja
V
,
Saluja
AK
, et al
Triptolide-mediated cell death in neuroblastoma occurs by both apoptosis and autophagy pathways and results in inhibition of nuclear factor-kappa B activity
.
Am J Surg
2013
;
205
:
387
96
.
21.
Phillips
PA
,
Dudeja
V
,
McCarroll
JA
,
Borja-Cacho
D
,
Dawra
RK
,
Grizzle
WE
, et al
Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70
.
Cancer Res
2007
;
67
:
9407
16
.
22.
Banerjee
S
,
Sangwan
V
,
McGinn
O
,
Chugh
R
,
Dudeja
V
,
Vickers
SM
, et al
Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1
.
J Biol Chem
2013
;
288
:
33927
38
.
23.
Banerjee
S
,
Thayanithy
V
,
Sangwan
V
,
Mackenzie
TN
,
Saluja
AK
,
Subramanian
S
. 
Minnelide reduces tumor burden in preclinical models of osteosarcoma
.
Cancer Lett
2013
;
335
:
412
20
.
24.
Chugh
R
,
Sangwan
V
,
Patil
SP
,
Dudeja
V
,
Dawra
RK
,
Banerjee
S
, et al
A preclinical evaluation of minnelide as a therapeutic agent against pancreatic cancer
.
Sci Transl Med
2012
;
4
:
156ra39
.
25.
Alsaied
OA
,
Sangwan
V
,
Banerjee
S
,
Krosch
TC
,
Chugh
R
,
Saluja
A
, et al
Sorafenib and triptolide as combination therapy for hepatocellular carcinoma
.
Surgery
2014
;
156
:
270
9
.
26.
Banerjee
S
,
Nomura
A
,
Sangwan
V
,
Chugh
R
,
Dudeja
V
,
Vickers
SM
, et al
CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide
.
Clin Cancer Res
2014
;
20
:
2388
99
.
27.
Rousalova
I
,
Banerjee
S
,
Sangwan
V
,
Evenson
K
,
McCauley
JA
,
Kratzke
R
, et al
Minnelide: a novel therapeutic that promotes apoptosis in non-small cell lung carcinoma in vivo
.
PLoS ONE
2013
;
8
:
e77411
.
28.
Itano
N
,
Sawai
T
,
Atsumi
F
,
Miyaishi
O
,
Taniguchi
S
,
Kannagi
R
, et al
Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation
.
J Biol Chem
2004
;
279
:
18679
87
.
29.
Sharon
Y
,
Alon
L
,
Glanz
S
,
Servais
C
,
Erez
N
. 
Isolation of normal and cancer-associated fibroblasts from fresh tissues by Fluorescence Activated Cell Sorting (FACS)
.
J Vis Exp
2013
:
e4425
.
30.
Waghray
M
,
Yalamanchili
M
,
di Magliano
MP
,
Simeone
DM
. 
Deciphering the role of stroma in pancreatic cancer
.
Curr Opin Gastroenterol
2013
;
29
:
537
43
.
31.
Apte
MV
,
Wilson
JS
,
Lugea
A
,
Pandol
SJ
. 
A starring role for stellate cells in the pancreatic cancer microenvironment
.
Gastroenterology
2013
;
144
:
1210
9
.
32.
Provenzano
PP
,
Hingorani
SR
. 
Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer
.
Br J Cancer
2013
;
108
:
1
8
.
33.
Bijlsma
MF
,
van Laarhoven
HW
. 
The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal
.
Cancer Metastasis Rev
2015
;
34
:
97
114
.
34.
Sherman
MH
,
Yu
RT
,
Engle
DD
,
Ding
N
,
Atkins
AR
,
Tiriac
H
, et al
Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy
.
Cell
2014
;
159
:
80
93
.
35.
Hingorani
SR
,
Wang
L
,
Multani
AS
,
Combs
C
,
Deramaudt
TB
,
Hruban
RH
, et al
Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
.
Cancer Cell
2005
;
7
:
469
83
.
36.
Vigetti
D
,
Karousou
E
,
Viola
M
,
Deleonibus
S
,
De Luca
G
,
Passi
A
. 
Hyaluronan: biosynthesis and signaling
.
Biochim Biophys Acta
2014
;
1840
:
2452
9
.
37.
Meizel
S
. 
Molecules that initiate or help stimulate the acrosome reaction by their interaction with the mammalian sperm surface
.
Am J Anatomy
1985
;
174
:
285
302
.
38.
Yan
SX
,
Wang
Y
. 
Inhibitory effects of Triptolide on interferon-gamma-induced human leucocyte antigen-DR, intercellular adhesion molecule-1, CD40 expression on retro-ocular fibroblasts derived from patients with Graves' ophthalmopathy
.
Clin Experiment Ophthalmol
2006
;
34
:
265
71
.
39.
Jokela
TA
,
Makkonen
KM
,
Oikari
S
,
Karna
R
,
Koli
E
,
Hart
GW
, et al
Cellular content of UDP-N-acetylhexosamines controls hyaluronan synthase 2 expression and correlates with O-linked N-acetylglucosamine modification of transcription factors YY1 and SP1
.
J Biol Chem
2011
;
286
:
33632
40
.
40.
Monslow
J
,
Williams
JD
,
Fraser
DJ
,
Michael
DR
,
Foka
P
,
Kift-Morgan
AP
, et al
Sp1 and Sp3 mediate constitutive transcription of the human hyaluronan synthase 2 gene
.
J Biol Chem
2006
;
281
:
18043
50
.
41.
Michael
DR
,
Phillips
AO
,
Krupa
A
,
Martin
J
,
Redman
JE
,
Altaher
A
, et al
The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell
.
J Biol Chem
2011
;
286
:
19523
32
.
42.
Xu
Z
,
Pothula
SP
,
Wilson
JS
,
Apte
MV
. 
Pancreatic cancer and its stroma: a conspiracy theory
.
World J Gastroenterol
2014
;
20
:
11216
29
.