Purpose: Presence of pelvic lymph node metastases is the main prognostic factor in early-stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early-stage cervical cancer.

Experimental Design: Gene expression profiles (Affymetrix U133 plus 2.0) of 20 patients with negative (N0) and 19 with positive lymph nodes (N+), were compared with gene sets that represent all 285 presently available pathway signatures. Validation immunostaining of tumors of 274 consecutive early-stage cervical cancer patients was performed for representatives of the identified pathways.

Results: Analysis of 285 pathways resulted in identification of five pathways (TGF-β, NFAT, ALK, BAD, and PAR1) that were dysregulated in the N0, and two pathways (β-catenin and Glycosphingolipid Biosynthesis Neo Lactoseries) in the N+ group. Class comparison analysis revealed that five of 149 genes that were most significantly differentially expressed between N0 and N+ tumors (P < 0.001) were involved in β-catenin signaling (TCF4, CTNNAL1, CTNND1/p120, DKK3, and WNT5a). Immunohistochemical validation of two well-known cellular tumor pathways (TGF-β and β-catenin) confirmed that the TGF-β pathway (positivity of Smad4) was related to N0 (OR: 0.20, 95% CI: 0.06–0.66) and the β-catenin pathway (p120 positivity) to N+ (OR: 1.79, 95%CI: 1.05–3.05).

Conclusions: Our study provides new, validated insights in the molecular mechanism of lymph node metastasis in cervical cancer. Pathway analysis of the microarray expression profile suggested that the TGF-β and p120-associated noncanonical β-catenin pathways are important in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res; 17(6); 1317–30. ©2011 AACR.

Translational relevance

Presence of lymph node metastases is still the most important factor in the choice of treatment for early-stage cervical cancer patients. No other markers are currently available for accurate prediction of pelvic lymph node metastases. To identify cellular tumor pathways associated with lymph node metastasis, we analyzed all 285 presently available pathways, using differential expression array data and novel gene set enrichment algorithms. Interestingly, of the 285 pathway signatures, two well-known cellular tumor pathways (TGF-β pathway activation and dysregulation of the p120-associated noncanonical β-catenin pathway) were found to be predictive. Our data indicate that markers characteristic for these pathways can be used to predict presence of lymph node metastasis, which can influence treatment management in early-stage cervical cancer. More importantly, by the identification of these two pathways involved in lymph node metastasis in early-stage cervical cancer, new opportunities for pathway-targeted therapy can be considered to inhibit the metastatic potential.

Standard treatment of early-stage cervical cancer patients consists of radical hysterectomy and pelvic lymphadenectomy. For this group of patients, the presence of lymph node metastases is the most important prognostic factor (1). Early-stage cervical cancer patients with negative lymph nodes have a 5-year survival of 90% versus only 65% in patients with lymph node metastases (2). Patients with lymph node metastases are therefore treated with adjuvant (chemo)radiation. However, the combination of surgery and (chemo)radiation is associated with severe morbidity (3). If the presence of metastatic lymph nodes could be predicted prior to treatment, primary chemoradiation could be considered, which is equally effective, but associated with a different treatment-related morbidity pattern.

Several histopathological characteristics such as tumor size, lymph vascular space involvement, and depth of invasion have been associated with lymph node metastases in cervical cancer but none of these is of sufficient clinical relevance (4). Furthermore, various molecular tumor markers like the expression of VEGF and p16 have been reported to be related with lymph node metastases in cervical cancer (5, 6), but presently no markers are available to predict lymph node status with high sensitivity and specificity. Non- and minimal invasive diagnostic techniques, such as sentinel lymph node biopsy are currently being explored to better identify patients with disease outside the cervix (7).

Little is known about biological pathways involved in lymph node metastasis in cervical cancer. Metastasis is a complex, multistep process involving decreased cell–cell interaction, increased cell migration, disruption of the basal membrane, intravasation into the circulation, survival of direct exposure to the immune system and extreme mechanic forces in the bloodstream, and finally extravasation and growth in metastatic sites (8). Apart from tumor-specific changes, many processes in the tumor microenvironment of the primary tumor have shown also to be important for initiation of the metastatic potential at the primary site (9).

Gene expression profiling has provided tools to identify patterns of biological differences between different tumor types, cancers with diverse clinical outcome or treatment responses (10, 11). To get insight into the mechanism of lymph node metastasis in head and neck (12), colorectal (13), and cervical cancer (14–17), gene expression profiling has been used. However, in most studies little overlap was found between differentially expressed genes, which may be due to a variety of methodological issues (18). Explanations that have been debated extensively in the literature are the use of different microarray platforms (18, 19) and the restricted number of samples used to select genes from a large pool of probes (20). Therefore, comparing gene expression profiles with gene sets that represent unique pathways may provide more insight into the mechanism of lymph node metastasis. Different pathway analysis methods have been developed, including Gene Set Enrichment Analysis (GSEA). GSEA is used to determine whether predefined gene sets available for example in the Kyoto Encyclopedia of Genes and Genomes (KEGG; ref. 21) and Biocarta data bases (http://www.biocarta.com/), show significant, concordant differences between 2 phenotypes (22). Another method has recently been developed by Bild and colleagues (23). Experimentally generated expression signatures using human primary mammary epithelial cell cultures (HMEC) that reflect the activation of various oncogenic signaling pathways (c-Myc, H-Ras, c-Src, E2F3, and β-catenin) can be used to assess the activation probability of the oncogenic pathways in individual expression profiles. Both methods have not been applied previously for differentiating between lymph node negative and positive cervical cancer patients.

The aim of this study was to identify cellular tumor pathways associated with pelvic lymph node status in patients with early-stage cervical cancer. Apart from obtaining more insights on the molecular processes of lymph node metastasis in early-stage cervical cancer, our findings might contribute to individual treatment strategies. To identify such pathways, expression array analysis was performed on a well defined series of cervical squamous cell carcinomas of patients with histologically confirmed lymph node metastases (N+) versus patients with histological and clinically confirmed negative lymph nodes (N0). Potential markers representing the predictive value of pathways were validated in a large consecutive series of early-stage cervical cancer patients by immunohistochemistry on tissue microarrays (TMA).

Patients and tumor samples

Since 1980 clinicopathological characteristics of all cervical cancer patients referred to the Department of Gynecological Oncology of the University Medical Center Groningen are prospectively collected in a database. For the present study, patients with stage IB-IIA disease, primarily treated with surgery between 1980 and 2004 were selected (n = 337). Follow-up data were collected for at least 5 years. Staging was performed according to FIGO guidelines. Primary treatment consisted of type 3 radical hysterectomy and pelvic lymph node dissection. In case of poor prognostic factors, such as lymph node metastases or positive resection margins, patients were treated with adjuvant radiotherapy or chemoradiation. From these patients paraffin-embedded, formalin-fixed primary tumor tissue was collected. All tumor tissues were histological revised and only tumor specimens with sufficient tumor cells were included in the study for construction of the TMA. In 274 cases, sufficient pretreatment paraffin-embedded tissue was available for TMA construction. Of 274 patients, 112 (41%) received adjuvant (chemo)radiation. Median follow-up time for patients on the TMA was 5.5 years (range 0.3–18.6). Since 1990, when sufficient material was available, pretreatment fresh frozen tumor tissue was stored. For the microarray experiment, we selected fresh frozen primary cervical cancer tissue, containing at least 80% tumor cells, of patients with histologically confirmed N0 (n = 20) and of patients with N+ (n = 19). The N0 and N+ groups were matched for age, FIGO stage, and histology (all squamous cell carcinoma). However, as expected the groups differed regarding presence of lymphangioinvasion (P = 0.024) and infiltration depth (P = 0.001). Patient and tumor characteristics are summarized in Table 1. In the University Medical Center Groningen, clinicopathologic and follow-up data are prospectively obtained during standard treatment and follow-up and stored in a computerized registration database. For the present study, all relevant data were retrieved from this computerized database into a separate, anonymous database. Patient identity was protected by study-specific, unique patient numbers. Codes were only known to 2 dedicated data managers, who also have daily responsibility for the larger database. In case of uncertainties with respect to clinicopathologic and follow-up data, the larger databases could only be checked through the data managers, thereby ascertaining the protection of patients' identity. Using the registration database all tissue specimens were identified by unique patient numbers and retrieved from the archives of the Department of Pathology. Therefore, according to Dutch law no further Institutional Review Board approval was required (http://www.federa.org/).

Table 1.

Patient and tumor characteristics

Microarray experimentMicroarray experimentTissue microarray
Lymph node negativeLymph node positive
n = 20n = 19n = 274
Age at diagnosis, median (range) 47.39 (31.53–72.71) 40.44 (29.10–72.51) 43.65 (23.67–84.65) 
FIGO stage n (%) n (%) n (%) 
 Ib1 11 (55) 10 (53) 174 (64) 
 Ib2 5 (25) 6 (32) 54 (20) 
 IIa 4 (20) 3 (16) 46 (17) 
Histology 
 Squamous cell carcinoma 20 (100) 19 (100) 182 (66) 
 Adenocarcinoma 0 (0) 0 (0) 74 (27) 
 Other 0 (0) 0 (0) 18 (7) 
Grade of differentiation 
 Good/moderate 15 (75) 10 (53) 163 (59) 
 Poor/undifferentiated 4 (20) 9 (47) 106 (39) 
 Unknown 1 (5) 0 (0) 5 (2) 
Lymphangioinvasion 
 No 14 (70) 6 (32) 132 (48) 
 Yes 6 (30) 12 (63) 142 (52) 
 Unknown 0 (0) 1 (5) 0 (0) 
Infiltration depth 
 0–10 mm 14 (70) 3 (16) 135 (49) 
 ≥10 mm 5 (25) 14 (74) 126 (46) 
 Unknown 1 (5) 2 (11) 13 (5) 
Tumor diameter 
 0–4 cm 14 (70) 12 (63) 198 (72) 
 ≥4 cm 6 (30) 7 (37) 76 (28) 
Lymph nodes 
 Negative 20 (100) 0 (0) 194 (71) 
 Positive 0 (0) 19 (100) 80 (29) 
Microarray experimentMicroarray experimentTissue microarray
Lymph node negativeLymph node positive
n = 20n = 19n = 274
Age at diagnosis, median (range) 47.39 (31.53–72.71) 40.44 (29.10–72.51) 43.65 (23.67–84.65) 
FIGO stage n (%) n (%) n (%) 
 Ib1 11 (55) 10 (53) 174 (64) 
 Ib2 5 (25) 6 (32) 54 (20) 
 IIa 4 (20) 3 (16) 46 (17) 
Histology 
 Squamous cell carcinoma 20 (100) 19 (100) 182 (66) 
 Adenocarcinoma 0 (0) 0 (0) 74 (27) 
 Other 0 (0) 0 (0) 18 (7) 
Grade of differentiation 
 Good/moderate 15 (75) 10 (53) 163 (59) 
 Poor/undifferentiated 4 (20) 9 (47) 106 (39) 
 Unknown 1 (5) 0 (0) 5 (2) 
Lymphangioinvasion 
 No 14 (70) 6 (32) 132 (48) 
 Yes 6 (30) 12 (63) 142 (52) 
 Unknown 0 (0) 1 (5) 0 (0) 
Infiltration depth 
 0–10 mm 14 (70) 3 (16) 135 (49) 
 ≥10 mm 5 (25) 14 (74) 126 (46) 
 Unknown 1 (5) 2 (11) 13 (5) 
Tumor diameter 
 0–4 cm 14 (70) 12 (63) 198 (72) 
 ≥4 cm 6 (30) 7 (37) 76 (28) 
Lymph nodes 
 Negative 20 (100) 0 (0) 194 (71) 
 Positive 0 (0) 19 (100) 80 (29) 

Microarray experiments

From the frozen biopsies, 4 10-μm-thick sections were cut and used for standard RNA isolation. After cutting, a 3-μm-thick section was stained with hematoxylin/eosin for histological examination and only tissues with more than 80% tumor cells were included. RNA was isolated with TRIzol reagent (Invitrogen) according to manufacturer's protocol. RNA was treated with DNAse and purified using the RNeasy mini-kit (Qiagen). The quality and quantity of the RNA was determined by Agilent Lab-on-Chip analysis. For labeling, 10 μg of total RNA was amplified by in vitro transcription using T7 RNA polymerase. Labelled RNA samples were hybridized according to a randomized design to the human genome U133 plus 2.0 microarrays (Affymetrix). The microarrays were loaded with 200 μL of hybridization cocktail solution and then placed in Genechip Hybridization Oven 640 (Affymetrix) rotating at 60 rpm at 45°C for 16 hours. After hybridization, the arrays were washed on Genechip Fluidics Station 400 (Affymetrix) and scanned using Genechip Scanner 3000 (Affymetrix) according to the manufacturers' procedure. Labeling of the RNA, quality control, the microarray hybridization, and scanning were performed by ServiceXS (Leiden, http://www.serviceXS.com) according to Affymetrix standards. Preprocessing of CEL files was performed with Affymetrix Expression Console software. Probe set expression summary was done using the Robust Multi-array Average (RMA) algorithm. Quality of the microarray data was checked using histograms, box plots, and a RNA degradation plot. Principal component analysis (PCA) was performed for controlling the quality of the hybridizations (24). The MIAME-compliant microarray data are available at http://www.ncbi.nlm.nih.gov/geo/ under accession number GSE26511.

Pathway analysis

GSEA was performed with the software package GSEA 2.0, developed by the Broad Institute of MIT and Harvard (22). Each gene was ranked according to its relative difference in expression between the N0 and N+ group using the Student's t statistic. Ranked expression data for all annotated 20,606 genes (in case of more than one probe per gene, the probe with the highest intensity was considered) were compared against a large collection of biological gene sets to determine whether genes both at the top or bottom of the ranked list were enriched in these functional gene sets. GSEA analysis was performed separately with a total of 155 gene sets in the KEGG (21) and 125 gene sets in the Biocarta data base. The gene sets used are available at the Molecular Signature Database (http://www.broadinstitute.org/gsea/msigdb/). Statistical enrichment was determined using an empirical phenotype-based permutation test based on 1,000 permutations. Furthermore, for each functional set the false discovery rate (FDR) and nominal P- value were calculated. P values of less than 0.05 were considered statistically significant.

In addition, oncogenic pathway activation analysis was performed using experimentally generated expression signatures from HMECs that reflect the activation of various oncogenic signaling pathways (c-Myc, H-Ras, c-Src, E2F3, and β-catenin; ref. 23). Publicly available software implementing these models (BinReg; ref. 23) was used to assess the activation probability of the oncogenic pathways in our 39 cervical tumor samples. Principal Component Analysis (PCA) was used to correct for variances due to possible unreliable activation probabilities (24–27). The oncogenic pathway activation analysis and PCA are described in detail in the supplementary data.

Class comparison

Class comparison was performed using the software package BRB Array Tools 3.7.0, developed by the Biometric Research Branch of the US National Cancer Institute (http://linus.nci.nih.gov/BRB-ArrayTools.html). Differentially expressed probe sets were identified using a parametric 2-sample t test (with random variance model) with a significance threshold of P < 0.001. In addition, for each probe set the FDR was determined (28). Finally, a global test was performed to assess the probability of getting the observed number of identified significant probe sets by chance, that is, under the assumption that there is no difference in expression between the N0 and N+ group. Differentially expressed genes were ranked according to lowest FDR and lowest parametric P value.

Immunohistochemical validation

Immunohistochemistry of the relevant proteins (Smad2, pSmad2, Smad4, β-catenin, E-cadherin, and p120) was first performed on whole tumor slides of a small series of 20 randomly selected cervical cancer tissues (see supplementary data for more details). Only if a homogeneous staining pattern was found, immunostaining was performed on TMAs. TMAs were constructed as previously described (29). For immunohistochemistry, 3-μm sections from the TMAs were immunostained with antibodies directed against β-catenin, p120, Smad4, and pSmad2. Normal cervical epithelium was used as a positive control. Scoring was performed by 2 independent observers without knowledge of clinical data. A concordance of more than 90% was found for all stainings. The discordant cases were reviewed and scores were reassigned on consensus of opinion. Staining intensity was semiquantitatively scored as negative (0), weak positive (1), moderate positive (2), and strong positive (3). Also the percentage of positive cells was recorded. Positive Smad4 expression was defined as presence of both more than 50% moderate/strong positive nuclear and moderate/strong positive cytoplasmic staining (30). β-catenin and p120 positivity was defined as membranous staining at any intensity (1–3) in more than 50% of cells (31).

Statistical analysis was performed with SPSS 16.0 for Windows (SPSS Inc.). Associations between immunostainings and lymph node metastases were compared using logistic regression models, in which immunostainings were used as dependent factors and the clinicopathological characteristics as independent factors. P values of less than 0.05 were considered statistically significant.

Biological pathways associated with pelvic lymph node status

GSEA using biological pathway definitions according to KEGG and Biocarta data bases revealed that 5 pathways (TGF-β, NFAT, ALK, BAD, and PAR1 pathway) were significantly enriched in the N0 group, whereas only 1 pathway (Glycosphingolipid Biosynthesis Neo Lactoseries pathway) was enriched in the N+ group (Table 2). The ALK pathway is defined by genes that are also present in the β-catenin and TGF-β pathways such as WNT1, CTNNB1, TGFB2, TGFR2, and SMADs (http://www.broadinstitute.org/gsea/msigdb/).

Table 2.

Results of GSEA using pathway definitions of Biocarta and KEGG

PathwayPFDREnriched in
NFAT (Biocarta) 0.004 0.252 N0 
ALK (Biocarta) 0.013 0.269 N0 
BAD (Biocarta) 0.016 0.492 N0 
TGF-β (KEGG) 0.027 1.000 N0 
Glycosphingolipid Biosynthesis Neo Lactoseries (KEGG) 0.039 1.000 N+ 
PAR1 (Biocarta) 0.046 0.907 N0 
PathwayPFDREnriched in
NFAT (Biocarta) 0.004 0.252 N0 
ALK (Biocarta) 0.013 0.269 N0 
BAD (Biocarta) 0.016 0.492 N0 
TGF-β (KEGG) 0.027 1.000 N0 
Glycosphingolipid Biosynthesis Neo Lactoseries (KEGG) 0.039 1.000 N+ 
PAR1 (Biocarta) 0.046 0.907 N0 

Abbreviation: FDR = False discovery rate

Analyzing the association between oncogenic pathways and lymph node status, using expression signatures that reflect the activation of 5 major oncogenic signaling pathways (c-Myc, H-Ras, c-Src, E2F3, and β-catenin) revealed that the activation probabilities of the oncogenic β-catenin pathway correlated highly significantly with N+ (P = 0.001). Supplementary Table 1 shows the predicted probabilities for all 5 oncogenic pathways. A scatter plot of the activation probability of β-catenin for our 39 cervical tumor samples shows that tumor samples with a low or high probability of β-catenin activation are predominantly N0 or N+ tumor samples, respectively (Fig. 1).

Figure 1.

Scatter plot of the activation probability of β-catenin for the 39 cervical tumor samples

Figure 1.

Scatter plot of the activation probability of β-catenin for the 39 cervical tumor samples

Close modal

Of these 7 pathways, only the β-catenin and TGF-β pathways, or separate components within these pathways, have been implicated in metastasis or tumor progression (32–35). Therefore, in this manuscript we decided to especially validate whether these tumor cell pathways are predictive for pelvic lymph node status in early cervical cancer.

Individual genes of the β-catenin pathway are related to lymph node status

We identified probe sets that were differentially expressed between N0 and N+ samples using a random-variance t test. P values, fold changes, and FDRs for all 54,675 probe sets are given in Supplementary Table 2. Using this analysis, we identified 188 probe sets that are differentially expressed at a significance level of P < 0.001 (Table 3). The probability of finding at least 188 significant probe sets by chance, that is, under the assumption that there are no differences between the N0 and N+ groups was P = 0.035. These 188 probe sets represented 149 unique genes of which 46 genes were upregulated and 103 genes were downregulated in the N+ group. Interestingly, 14 probe sets representing 5 unique genes (TCF4, CTNNAL1, DKK3, CTNND1/p120, and WNT5a) belong to the β-catenin pathway. This is in good agreement with our pathway analysis using all genes.

Table 3.

188 probe sets differentially expressed between N0 samples and N+ samples

Upregulated in N0
RankParametric P valueFDRFold-changeProbe setGene symbolDescription
0.0000012 0.042 2.054 222146_s_at TCF4 transcription factor 4 
0.0000023 0.042 1.623 209250_at DEGS1 degenerative spermatocyte homologue 1, lipid desaturase (Drosophila) 
0.0000064 0.075 1.795 212387_at TCF4 transcription factor 4 
0.0000069 0.075 2.173 203753_at TCF4 transcription factor 4 
0.0000142 0.111 2.165 226931_at TMTC1 transmembrane and tetratricopeptide repeat containing 1 
0.0000168 0.115 1.979 212382_at TCF4 transcription factor 4 
0.0000197 0.120 1.684 232304_at PELI1 pellino homologue 1 (Drosophila) 
10 0.0000221 0.121 1.391 1559249_at ATXN1 ataxin 1 
11 0.0000264 0.125 1.556 209281_s_at ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 
12 0.0000318 0.125 1.473 221683_s_at CEP290 centrosomal protein 290kDa 
13 0.0000323 0.125 2.795 226084_at MAP1B microtubule-associated protein 1B 
15 0.0000344 0.125 1.504 212509_s_at MXRA7 matrix-remodelling associated 7 
16 0.0000414 0.127 1.807 214724_at DIXDC1 DIX domain containing 1 
17 0.0000416 0.127 1.818 212386_at TCF4 transcription factor 4 
18 0.0000429 0.127 1.791 213891_s_at TCF4 transcription factor 4 
19 0.0000445 0.127 1.571 226546_at  Not available 
20 0.0000483 0.127 1.672 226676_at ZNF521 zinc finger protein 521 
21 0.0000495 0.127 2.243 227812_at TNFRSF19 tumor necrosis factor receptor superfamily, member 19 
22 0.0000513 0.127 2.269 226322_at TMTC1 transmembrane and tetratricopeptide repeat containing 1 
23 0.0000562 0.134 2.047 225946_at RASSF8 Ras association (RalGDS/AF-6) domain family 8 
24 0.0000627 0.141 1.528 235834_at CALD1 caldesmon 1 
25 0.0000655 0.141 1.786 1554007_at ZNF483 zinc finger protein 483 
26 0.0000677 0.141 1.668 231869_at ZNF451 zinc finger protein 451 
28 0.0000738 0.141 1.369 207604_s_at SLC4A7 solute carrier family 4, sodium bicarbonate cotransporter, member 7 
29 0.0000748 0.141 2.051 235599_at LOC339535 hypothetical protein LOC339535 
30 0.0000792 0.143 1.382 202126_at PRPF4B PRP4 pre-mRNA processing factor 4 homologue B (yeast) 
31 0.0000810 0.143 1.704 235592_at ELL2 elongation factor, RNA polymerase II, 2 
32 0.0000849 0.145 1.516 208662_s_at TTC3 tetratricopeptide repeat domain 3 
34 0.0000913 0.147 1.674 209682_at CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequence b 
36 0.0000977 0.148 1.682 204466_s_at SNCA synuclein, alpha (non A4 component of amyloid precursor) 
37 0.0001040 0.154 1.249 206862_at ZNF254 zinc finger protein 254 
38 0.0001140 0.161 1.384 202144_s_at ADSL adenylosuccinate lyase 
39 0.0001146 0.161 1.548 225246_at STIM2 stromal interaction molecule 2 
40 0.0001243 0.170 1.504 204964_s_at SSPN sarcospan (Kras oncogene-associated gene) 
41 0.0001274 0.170 1.341 236796_at BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 
42 0.0001375 0.177 1.364 206240_s_at ZNF136 zinc finger protein 136 
43 0.0001402 0.177 2.443 202468_s_at CTNNAL1 catenin (cadherin-associated protein), alpha-like 1 
44 0.0001424 0.177 1.724 229307_at ANKRD28 ankyrin repeat domain 28 
46 0.0001660 0.196 1.665 214741_at ZNF131 zinc finger protein 131 
47 0.0001719 0.196 1.554 202909_at EPM2AIP1 EPM2A (laforin) interacting protein 1 
50 0.0001827 0.198 2.587 238852_at PRRX1 paired related homeobox 1 
51 0.0001846 0.198 1.892 224911_s_at DCBLD2 discoidin, CUB and LCCL domain containing 2 
52 0.0001909 0.199 1.930 214247_s_at DKK3 dickkopf homologue 3 (Xenopus laevis) 
53 0.0001927 0.199 2.111 202149_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
54 0.0001996 0.200 1.236 242470_at EID2B EP300 interacting inhibitor of differentiation 2B 
55 0.0002015 0.200 2.131 212190_at SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 
58 0.0002382 0.211 1.233 225417_at EPC1 enhancer of polycomb homologue 1 (Drosophila) 
60 0.0002396 0.211 1.574 223519_at ZAK sterile alpha motif and leucine zipper containing kinase AZK 
62 0.0002422 0.211 1.739 220145_at MAP9 microtubule-associated protein 9 
63 0.0002433 0.211 1.402 220917_s_at WDR19 WD repeat domain 19 
64 0.0002520 0.215 1.300 214078_at PAK3 p21 (CDKN1A)-activated kinase 3 
65 0.0002700 0.222 1.807 213954_at KIAA0888 KIAA0888 protein 
66 0.0002796 0.222 1.479 208993_s_at PPIG peptidylprolyl isomerase G (cyclophilin G) 
67 0.0002799 0.222 1.433 209537_at EXTL2 exostoses (multiple)-like 2 
68 0.0002815 0.222 1.226 230212_at SPRY1 sprouty homologue 1, antagonist of FGF signaling (Drosophila) 
69 0.0002860 0.222 1.982 204359_at FLRT2 fibronectin leucine rich transmembrane protein 2 
70 0.0002868 0.222 1.370 221829_s_at TNPO1 transportin 1 
71 0.0002932 0.222 1.731 229228_at CREB5 cAMP responsive element binding protein 5 
72 0.0002936 0.222 1.606 215716_s_at ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 
74 0.0003077 0.225 1.567 204422_s_at FGF2 fibroblast growth factor 2 (basic) 
76 0.0003123 0.225 1.550 202207_at ARL4C ADP-ribosylation factor-like 4C 
77 0.0003203 0.225 1.385 225324_at CRLS1 cardiolipin synthase 1 
82 0.0003690 0.245 1.296 232064_at  Not available 
84 0.0003894 0.249 1.742 219765_at ZNF329 zinc finger protein 329 
85 0.0003953 0.249 1.896 235102_x_at GRAP GRB2-related adaptor protein 
86 0.0003955 0.249 1.451 218263_s_at ZBED5 zinc finger, BED-type containing 5 
87 0.0003998 0.249 1.661 233223_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
88 0.0004024 0.249 1.736 212385_at TCF4 transcription factor 4 
94 0.0004467 0.249 1.372 202379_s_at NKTR natural killer-tumor recognition sequence 
95 0.0004474 0.249 1.987 221958_s_at GPR177 G protein-coupled receptor 177 
96 0.0004563 0.249 2.021 212233_at MAP1B microtubule-associated protein 1B 
98 0.0004632 0.249 1.470 229504_at RAB23 RAB23, member RAS oncogene family 
100 0.0004788 0.249 1.377 214212_x_at PLEKHC1 pleckstrin homology domain containing, family C (with FERM domain) member 1 
101 0.0004809 0.249 1.529 212985_at  Not available 
102 0.0004847 0.249 1.319 218724_s_at TGIF2 TGFB-induced factor homeobox 2 
103 0.0004848 0.249 1.681 221898_at PDPN podoplanin 
105 0.0004878 0.249 1.358 207719_x_at CEP170 centrosomal protein 170kDa 
106 0.0004879 0.249 1.434 201363_s_at IVNS1ABP influenza virus NS1A binding protein 
108 0.0004977 0.249 1.639 209763_at CHRDL1 chordin-like 1 
110 0.0005001 0.249 1.976 205498_at GHR growth hormone receptor 
111 0.0005223 0.251 1.871 232113_at  Not available 
115 0.0005310 0.251 1.337 215164_at TCF4 transcription factor 4 
116 0.0005320 0.251 1.783 222313_at CNOT2 CCR4-NOT transcription complex, subunit 2 
118 0.0005771 0.261 1.467 224763_at RPL37 ribosomal protein L37 
119 0.0005776 0.261 1.610 209204_at LMO4 LIM domain only 4 
120 0.0005823 0.261 1.408 227847_at EPM2AIP1 EPM2A (laforin) interacting protein 1 
121 0.0005829 0.261 1.539 208663_s_at TTC3 tetratricopeptide repeat domain 3 
122 0.0005896 0.261 1.200 230578_at ZNF471 zinc finger protein 471 
124 0.0006142 0.261 1.892 202196_s_at DKK3 dickkopf homologue 3 (Xenopus laevis) 
125 0.0006208 0.261 1.483 239768_x_at  Not available 
127 0.0006305 0.261 2.216 204105_s_at NRCAM neuronal cell adhesion molecule 
128 0.0006319 0.261 1.308 212970_at APBB2 amyloid beta (A4) precursor protein-binding, family B, member 2 
132 0.0006388 0.261 1.556 232063_x_at FARSB phenylalanyl-tRNA synthetase, beta subunit 
133 0.0006487 0.261 2.005 220253_s_at LRP12 low density lipoprotein-related protein 12 
134 0.0006488 0.261 1.265 226843_s_at PAPD5 PAP associated domain containing 5 
135 0.0006501 0.261 1.563 211698_at EID1 EP300 interacting inhibitor of differentiation 1 
136 0.0006511 0.261 1.715 213425_at WNT5A wingless-type MMTV integration site family, member 5A 
139 0.0006907 0.266 1.468 208661_s_at TTC3 tetratricopeptide repeat domain 3 
140 0.0006972 0.266 1.686 229530_at GUCY1A3 guanylate cyclase 1, soluble, alpha 3 
142 0.0006992 0.266 1.645 219174_at IFT74 intraflagellar transport 74 homologue (Chlamydomonas) 
143 0.0007020 0.266 2.073 209289_at NFIB nuclear factor I/B 
144 0.0007035 0.266 1.166 210742_at CDC14A CDC14 cell division cycle 14 homologue A (S. cerevisiae) 
145 0.0007101 0.266 1.438 209737_at MAGI2 membrane associated guanylate kinase, WW and PDZ domain containing 2 
146 0.0007116 0.266 1.931 204463_s_at EDNRA endothelin receptor type A 
150 0.0007383 0.266 1.262 200702_s_at DDX24 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 
151 0.0007394 0.266 1.523 223463_at RAB23 RAB23, member RAS oncogene family 
152 0.0007406 0.266 1.300 225565_at FAM119A family with sequence similarity 119, member A 
154 0.0007903 0.280 1.611 218788_s_at SMYD3 SET and MYND domain containing 3 
155 0.0007943 0.280 1.161 241002_at  Not available 
156 0.0008043 0.282 1.567 235368_at ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif, 5 (aggrecanase-2) 
157 0.0008090 0.282 4.220 211756_at PTHLH parathyroid hormone-like hormone 
158 0.0008157 0.282 1.288 212746_s_at CEP170 centrosomal protein 170kDa 
159 0.0008251 0.282 3.270 226847_at FST follistatin 
161 0.0008325 0.282 1.610 205609_at ANGPT1 angiopoietin 1 
163 0.0008462 0.282 1.559 201810_s_at SH3BP5 SH3-domain binding protein 5 (BTK-associated) 
164 0.0008593 0.282 1.412 1556543_at ZCCHC7 zinc finger, CCHC domain containing 7 
167 0.0008649 0.282 1.501 230424_at C5orf13 chromosome 5 open reading frame 13 
168 0.0008661 0.282 1.278 210438_x_at TROVE2 TROVE domain family, member 2 
169 0.0008764 0.284 1.680 205381_at LRRC17 leucine rich repeat containing 17 
170 0.0009009 0.284 2.125 209290_s_at NFIB nuclear factor I/B 
171 0.0009055 0.284 1.745 234996_at CALCRL calcitonin receptor-like 
173 0.0009087 0.284 2.649 230493_at TMEM46 transmembrane protein 46 
174 0.0009110 0.284 3.152 231867_at ODZ2 odz, odd Oz/ten-m homologue 2 (Drosophila) 
175 0.0009192 0.284 1.377 225735_at ANKRD50 ankyrin repeat domain 50 
176 0.0009212 0.284 1.305 219078_at GPATCH2 G patch domain containing 2 
178 0.0009236 0.284 1.507 224989_at  Not available 
179 0.0009406 0.287 1.466 202150_s_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
180 0.0009579 0.288 1.668 202133_at WWTR1 WW domain containing transcription regulator 1 
181 0.0009606 0.288 1.435 208670_s_at EID1 EP300 interacting inhibitor of differentiation 1 
182 0.0009666 0.288 1.911 204686_at IRS1 insulin receptor substrate 1 
183 0.0009670 0.288 1.434 202132_at WWTR1 WW domain containing transcription regulator 1 
184 0.0009679 0.288 1.416 225961_at KLHDC5 kelch domain containing 5 
186 0.0009892 0.289 1.329 243305_at  Not available 
188 0.0009983 0.289 1.447 242300_at UBB ubiquitin B 
Upregulated in N+ 
Rank Parametric P value FDR Fold-change Probe set Gene symbol Description 
0.0000021 0.042 0.346 220013_at ABHD9 abhydrolase domain containing 9 
0.0000085 0.077 0.635 223540_at PVRL4 poliovirus receptor-related 4 
14 0.0000330 0.125 0.766 239377_at MGC11102 hypothetical protein MGC11102 
27 0.0000703 0.141 0.760 204188_s_at RARG retinoic acid receptor, gamma 
33 0.0000876 0.145 0.767 208104_s_at TSC22D4 TSC22 domain family, member 4 
35 0.0000959 0.148 0.738 239825_at ATF6 activating transcription factor 6 
45 0.0001493 0.181 0.785 212147_at SMG5 Smg-5 homologue, nonsense mediated mRNA decay factor (C. elegans) 
48 0.0001721 0.196 0.749 218928_s_at SLC37A1 solute carrier family 37 (glycerol-3-phosphate transporter), member 1 
49 0.0001775 0.198 0.646 205204_at NMB neuromedin B 
56 0.0002063 0.201 0.620 238804_at  Not available 
57 0.0002209 0.211 0.702 209679_s_at LOC57228 small trans-membrane and glycosylated protein 
59 0.0002395 0.211 0.760 210678_s_at AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta) 
61 0.0002421 0.211 0.837 215106_at TTC22 tetratricopeptide repeat domain 22 
73 0.0002965 0.222 0.821 235234_at FLJ36874 FLJ36874 protein 
75 0.0003083 0.225 0.205 213240_s_at KRT4 keratin 4 
78 0.0003206 0.225 0.755 237063_at  Not available 
79 0.0003300 0.228 0.847 220335_x_at CES3 carboxylesterase 3 (brain) 
80 0.0003346 0.229 0.805 239230_at HES5 hairy and enhancer of split 5 (Drosophila) 
81 0.0003464 0.234 0.636 209261_s_at NR2F6 nuclear receptor subfamily 2, group F, member 6 
83 0.0003720 0.245 0.615 1557944_s_at CTNND1 catenin (cadherin-associated protein), delta 1 
89 0.0004172 0.249 0.707 229493_at HOXD9 homeobox D9 
90 0.0004215 0.249 0.851 236676_at NUDCD3 NudC domain containing 3 
91 0.0004255 0.249 0.756 206949_s_at RUSC1 RUN and SH3 domain containing 1 
92 0.0004286 0.249 0.648 235871_at LIPH lipase, member H 
93 0.0004387 0.249 0.666 205977_s_at EPHA1 EPH receptor A1 
97 0.0004607 0.249 0.757 1555784_s_at IRAK1 interleukin-1 receptor-associated kinase 1 
99 0.0004724 0.249 0.744 220599_s_at CARD14 caspase recruitment domain family, member 14 
104 0.0004856 0.249 0.838 207566_at MR1 major histocompatibility complex, class I-related 
107 0.0004928 0.249 0.857 1563147_at  Not available 
109 0.0004986 0.249 0.662 211240_x_at CTNND1 catenin (cadherin-associated protein), delta 1 
112 0.0005283 0.251 0.784 231788_at GPR92 G protein-coupled receptor 92 
113 0.0005286 0.251 0.790 236725_at WWC1 WW and C2 domain containing 1 
114 0.0005291 0.251 0.799 232608_x_at CARD14 caspase recruitment domain family, member 14 
117 0.0005408 0.253 0.554 1553611_s_at FLJ33790 hypothetical protein FLJ33790 
123 0.0006007 0.261 0.828 218749_s_at SLC24A6 solute carrier family 24 (sodium/potassium/calcium exchanger), member 6 
126 0.0006225 0.261 0.422 206595_at CST6 cystatin E/M 
129 0.0006343 0.261 0.778 1553072_at BNIPL BCL2/adenovirus E1B 19kD interacting protein like 
130 0.0006354 0.261 0.678 222809_x_at C14orf65 chromosome 14 open reading frame 65 
131 0.0006384 0.261 0.712 207525_s_at GIPC1 GIPC PDZ domain containing family, member 1 
137 0.0006534 0.261 0.828 231248_at CST6 cystatin E/M 
138 0.0006787 0.266 0.655 220289_s_at AIM1L absent in melanoma 1-like 
141 0.0006973 0.266 0.813 1487_at ESRRA estrogen-related receptor alpha 
147 0.0007208 0.266 0.701 203918_at PCDH1 protocadherin 1 
148 0.0007290 0.266 0.776 204827_s_at CCNF cyclin F 
149 0.0007310 0.266 0.626 216010_x_at FUT3 fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group) 
153 0.0007781 0.278 0.845 220962_s_at PADI1 peptidyl arginine deiminase, type I 
160 0.0008325 0.282 0.678 230252_at GPR92 G protein-coupled receptor 92 
162 0.0008440 0.282 0.748 236616_at  Not available 
165 0.0008616 0.282 0.695 235988_at GPR110 G protein-coupled receptor 110 
166 0.0008645 0.282 0.645 1552685_a_at GRHL1 grainyhead-like 1 (Drosophila) 
172 0.0009064 0.284 0.280 203757_s_at CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen) 
177 0.0009227 0.284 0.724 235095_at CCDC64B coiled-coil domain containing 64B 
185 0.0009826 0.289 0.873 233154_at AFF3 AF4/FMR2 family, member 3 
187 0.0009963 0.289 0.696 226638_at ARHGAP23 Rho GTPase activating protein 23 
Upregulated in N0
RankParametric P valueFDRFold-changeProbe setGene symbolDescription
0.0000012 0.042 2.054 222146_s_at TCF4 transcription factor 4 
0.0000023 0.042 1.623 209250_at DEGS1 degenerative spermatocyte homologue 1, lipid desaturase (Drosophila) 
0.0000064 0.075 1.795 212387_at TCF4 transcription factor 4 
0.0000069 0.075 2.173 203753_at TCF4 transcription factor 4 
0.0000142 0.111 2.165 226931_at TMTC1 transmembrane and tetratricopeptide repeat containing 1 
0.0000168 0.115 1.979 212382_at TCF4 transcription factor 4 
0.0000197 0.120 1.684 232304_at PELI1 pellino homologue 1 (Drosophila) 
10 0.0000221 0.121 1.391 1559249_at ATXN1 ataxin 1 
11 0.0000264 0.125 1.556 209281_s_at ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 
12 0.0000318 0.125 1.473 221683_s_at CEP290 centrosomal protein 290kDa 
13 0.0000323 0.125 2.795 226084_at MAP1B microtubule-associated protein 1B 
15 0.0000344 0.125 1.504 212509_s_at MXRA7 matrix-remodelling associated 7 
16 0.0000414 0.127 1.807 214724_at DIXDC1 DIX domain containing 1 
17 0.0000416 0.127 1.818 212386_at TCF4 transcription factor 4 
18 0.0000429 0.127 1.791 213891_s_at TCF4 transcription factor 4 
19 0.0000445 0.127 1.571 226546_at  Not available 
20 0.0000483 0.127 1.672 226676_at ZNF521 zinc finger protein 521 
21 0.0000495 0.127 2.243 227812_at TNFRSF19 tumor necrosis factor receptor superfamily, member 19 
22 0.0000513 0.127 2.269 226322_at TMTC1 transmembrane and tetratricopeptide repeat containing 1 
23 0.0000562 0.134 2.047 225946_at RASSF8 Ras association (RalGDS/AF-6) domain family 8 
24 0.0000627 0.141 1.528 235834_at CALD1 caldesmon 1 
25 0.0000655 0.141 1.786 1554007_at ZNF483 zinc finger protein 483 
26 0.0000677 0.141 1.668 231869_at ZNF451 zinc finger protein 451 
28 0.0000738 0.141 1.369 207604_s_at SLC4A7 solute carrier family 4, sodium bicarbonate cotransporter, member 7 
29 0.0000748 0.141 2.051 235599_at LOC339535 hypothetical protein LOC339535 
30 0.0000792 0.143 1.382 202126_at PRPF4B PRP4 pre-mRNA processing factor 4 homologue B (yeast) 
31 0.0000810 0.143 1.704 235592_at ELL2 elongation factor, RNA polymerase II, 2 
32 0.0000849 0.145 1.516 208662_s_at TTC3 tetratricopeptide repeat domain 3 
34 0.0000913 0.147 1.674 209682_at CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequence b 
36 0.0000977 0.148 1.682 204466_s_at SNCA synuclein, alpha (non A4 component of amyloid precursor) 
37 0.0001040 0.154 1.249 206862_at ZNF254 zinc finger protein 254 
38 0.0001140 0.161 1.384 202144_s_at ADSL adenylosuccinate lyase 
39 0.0001146 0.161 1.548 225246_at STIM2 stromal interaction molecule 2 
40 0.0001243 0.170 1.504 204964_s_at SSPN sarcospan (Kras oncogene-associated gene) 
41 0.0001274 0.170 1.341 236796_at BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 
42 0.0001375 0.177 1.364 206240_s_at ZNF136 zinc finger protein 136 
43 0.0001402 0.177 2.443 202468_s_at CTNNAL1 catenin (cadherin-associated protein), alpha-like 1 
44 0.0001424 0.177 1.724 229307_at ANKRD28 ankyrin repeat domain 28 
46 0.0001660 0.196 1.665 214741_at ZNF131 zinc finger protein 131 
47 0.0001719 0.196 1.554 202909_at EPM2AIP1 EPM2A (laforin) interacting protein 1 
50 0.0001827 0.198 2.587 238852_at PRRX1 paired related homeobox 1 
51 0.0001846 0.198 1.892 224911_s_at DCBLD2 discoidin, CUB and LCCL domain containing 2 
52 0.0001909 0.199 1.930 214247_s_at DKK3 dickkopf homologue 3 (Xenopus laevis) 
53 0.0001927 0.199 2.111 202149_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
54 0.0001996 0.200 1.236 242470_at EID2B EP300 interacting inhibitor of differentiation 2B 
55 0.0002015 0.200 2.131 212190_at SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 
58 0.0002382 0.211 1.233 225417_at EPC1 enhancer of polycomb homologue 1 (Drosophila) 
60 0.0002396 0.211 1.574 223519_at ZAK sterile alpha motif and leucine zipper containing kinase AZK 
62 0.0002422 0.211 1.739 220145_at MAP9 microtubule-associated protein 9 
63 0.0002433 0.211 1.402 220917_s_at WDR19 WD repeat domain 19 
64 0.0002520 0.215 1.300 214078_at PAK3 p21 (CDKN1A)-activated kinase 3 
65 0.0002700 0.222 1.807 213954_at KIAA0888 KIAA0888 protein 
66 0.0002796 0.222 1.479 208993_s_at PPIG peptidylprolyl isomerase G (cyclophilin G) 
67 0.0002799 0.222 1.433 209537_at EXTL2 exostoses (multiple)-like 2 
68 0.0002815 0.222 1.226 230212_at SPRY1 sprouty homologue 1, antagonist of FGF signaling (Drosophila) 
69 0.0002860 0.222 1.982 204359_at FLRT2 fibronectin leucine rich transmembrane protein 2 
70 0.0002868 0.222 1.370 221829_s_at TNPO1 transportin 1 
71 0.0002932 0.222 1.731 229228_at CREB5 cAMP responsive element binding protein 5 
72 0.0002936 0.222 1.606 215716_s_at ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 
74 0.0003077 0.225 1.567 204422_s_at FGF2 fibroblast growth factor 2 (basic) 
76 0.0003123 0.225 1.550 202207_at ARL4C ADP-ribosylation factor-like 4C 
77 0.0003203 0.225 1.385 225324_at CRLS1 cardiolipin synthase 1 
82 0.0003690 0.245 1.296 232064_at  Not available 
84 0.0003894 0.249 1.742 219765_at ZNF329 zinc finger protein 329 
85 0.0003953 0.249 1.896 235102_x_at GRAP GRB2-related adaptor protein 
86 0.0003955 0.249 1.451 218263_s_at ZBED5 zinc finger, BED-type containing 5 
87 0.0003998 0.249 1.661 233223_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
88 0.0004024 0.249 1.736 212385_at TCF4 transcription factor 4 
94 0.0004467 0.249 1.372 202379_s_at NKTR natural killer-tumor recognition sequence 
95 0.0004474 0.249 1.987 221958_s_at GPR177 G protein-coupled receptor 177 
96 0.0004563 0.249 2.021 212233_at MAP1B microtubule-associated protein 1B 
98 0.0004632 0.249 1.470 229504_at RAB23 RAB23, member RAS oncogene family 
100 0.0004788 0.249 1.377 214212_x_at PLEKHC1 pleckstrin homology domain containing, family C (with FERM domain) member 1 
101 0.0004809 0.249 1.529 212985_at  Not available 
102 0.0004847 0.249 1.319 218724_s_at TGIF2 TGFB-induced factor homeobox 2 
103 0.0004848 0.249 1.681 221898_at PDPN podoplanin 
105 0.0004878 0.249 1.358 207719_x_at CEP170 centrosomal protein 170kDa 
106 0.0004879 0.249 1.434 201363_s_at IVNS1ABP influenza virus NS1A binding protein 
108 0.0004977 0.249 1.639 209763_at CHRDL1 chordin-like 1 
110 0.0005001 0.249 1.976 205498_at GHR growth hormone receptor 
111 0.0005223 0.251 1.871 232113_at  Not available 
115 0.0005310 0.251 1.337 215164_at TCF4 transcription factor 4 
116 0.0005320 0.251 1.783 222313_at CNOT2 CCR4-NOT transcription complex, subunit 2 
118 0.0005771 0.261 1.467 224763_at RPL37 ribosomal protein L37 
119 0.0005776 0.261 1.610 209204_at LMO4 LIM domain only 4 
120 0.0005823 0.261 1.408 227847_at EPM2AIP1 EPM2A (laforin) interacting protein 1 
121 0.0005829 0.261 1.539 208663_s_at TTC3 tetratricopeptide repeat domain 3 
122 0.0005896 0.261 1.200 230578_at ZNF471 zinc finger protein 471 
124 0.0006142 0.261 1.892 202196_s_at DKK3 dickkopf homologue 3 (Xenopus laevis) 
125 0.0006208 0.261 1.483 239768_x_at  Not available 
127 0.0006305 0.261 2.216 204105_s_at NRCAM neuronal cell adhesion molecule 
128 0.0006319 0.261 1.308 212970_at APBB2 amyloid beta (A4) precursor protein-binding, family B, member 2 
132 0.0006388 0.261 1.556 232063_x_at FARSB phenylalanyl-tRNA synthetase, beta subunit 
133 0.0006487 0.261 2.005 220253_s_at LRP12 low density lipoprotein-related protein 12 
134 0.0006488 0.261 1.265 226843_s_at PAPD5 PAP associated domain containing 5 
135 0.0006501 0.261 1.563 211698_at EID1 EP300 interacting inhibitor of differentiation 1 
136 0.0006511 0.261 1.715 213425_at WNT5A wingless-type MMTV integration site family, member 5A 
139 0.0006907 0.266 1.468 208661_s_at TTC3 tetratricopeptide repeat domain 3 
140 0.0006972 0.266 1.686 229530_at GUCY1A3 guanylate cyclase 1, soluble, alpha 3 
142 0.0006992 0.266 1.645 219174_at IFT74 intraflagellar transport 74 homologue (Chlamydomonas) 
143 0.0007020 0.266 2.073 209289_at NFIB nuclear factor I/B 
144 0.0007035 0.266 1.166 210742_at CDC14A CDC14 cell division cycle 14 homologue A (S. cerevisiae) 
145 0.0007101 0.266 1.438 209737_at MAGI2 membrane associated guanylate kinase, WW and PDZ domain containing 2 
146 0.0007116 0.266 1.931 204463_s_at EDNRA endothelin receptor type A 
150 0.0007383 0.266 1.262 200702_s_at DDX24 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 
151 0.0007394 0.266 1.523 223463_at RAB23 RAB23, member RAS oncogene family 
152 0.0007406 0.266 1.300 225565_at FAM119A family with sequence similarity 119, member A 
154 0.0007903 0.280 1.611 218788_s_at SMYD3 SET and MYND domain containing 3 
155 0.0007943 0.280 1.161 241002_at  Not available 
156 0.0008043 0.282 1.567 235368_at ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif, 5 (aggrecanase-2) 
157 0.0008090 0.282 4.220 211756_at PTHLH parathyroid hormone-like hormone 
158 0.0008157 0.282 1.288 212746_s_at CEP170 centrosomal protein 170kDa 
159 0.0008251 0.282 3.270 226847_at FST follistatin 
161 0.0008325 0.282 1.610 205609_at ANGPT1 angiopoietin 1 
163 0.0008462 0.282 1.559 201810_s_at SH3BP5 SH3-domain binding protein 5 (BTK-associated) 
164 0.0008593 0.282 1.412 1556543_at ZCCHC7 zinc finger, CCHC domain containing 7 
167 0.0008649 0.282 1.501 230424_at C5orf13 chromosome 5 open reading frame 13 
168 0.0008661 0.282 1.278 210438_x_at TROVE2 TROVE domain family, member 2 
169 0.0008764 0.284 1.680 205381_at LRRC17 leucine rich repeat containing 17 
170 0.0009009 0.284 2.125 209290_s_at NFIB nuclear factor I/B 
171 0.0009055 0.284 1.745 234996_at CALCRL calcitonin receptor-like 
173 0.0009087 0.284 2.649 230493_at TMEM46 transmembrane protein 46 
174 0.0009110 0.284 3.152 231867_at ODZ2 odz, odd Oz/ten-m homologue 2 (Drosophila) 
175 0.0009192 0.284 1.377 225735_at ANKRD50 ankyrin repeat domain 50 
176 0.0009212 0.284 1.305 219078_at GPATCH2 G patch domain containing 2 
178 0.0009236 0.284 1.507 224989_at  Not available 
179 0.0009406 0.287 1.466 202150_s_at NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
180 0.0009579 0.288 1.668 202133_at WWTR1 WW domain containing transcription regulator 1 
181 0.0009606 0.288 1.435 208670_s_at EID1 EP300 interacting inhibitor of differentiation 1 
182 0.0009666 0.288 1.911 204686_at IRS1 insulin receptor substrate 1 
183 0.0009670 0.288 1.434 202132_at WWTR1 WW domain containing transcription regulator 1 
184 0.0009679 0.288 1.416 225961_at KLHDC5 kelch domain containing 5 
186 0.0009892 0.289 1.329 243305_at  Not available 
188 0.0009983 0.289 1.447 242300_at UBB ubiquitin B 
Upregulated in N+ 
Rank Parametric P value FDR Fold-change Probe set Gene symbol Description 
0.0000021 0.042 0.346 220013_at ABHD9 abhydrolase domain containing 9 
0.0000085 0.077 0.635 223540_at PVRL4 poliovirus receptor-related 4 
14 0.0000330 0.125 0.766 239377_at MGC11102 hypothetical protein MGC11102 
27 0.0000703 0.141 0.760 204188_s_at RARG retinoic acid receptor, gamma 
33 0.0000876 0.145 0.767 208104_s_at TSC22D4 TSC22 domain family, member 4 
35 0.0000959 0.148 0.738 239825_at ATF6 activating transcription factor 6 
45 0.0001493 0.181 0.785 212147_at SMG5 Smg-5 homologue, nonsense mediated mRNA decay factor (C. elegans) 
48 0.0001721 0.196 0.749 218928_s_at SLC37A1 solute carrier family 37 (glycerol-3-phosphate transporter), member 1 
49 0.0001775 0.198 0.646 205204_at NMB neuromedin B 
56 0.0002063 0.201 0.620 238804_at  Not available 
57 0.0002209 0.211 0.702 209679_s_at LOC57228 small trans-membrane and glycosylated protein 
59 0.0002395 0.211 0.760 210678_s_at AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta) 
61 0.0002421 0.211 0.837 215106_at TTC22 tetratricopeptide repeat domain 22 
73 0.0002965 0.222 0.821 235234_at FLJ36874 FLJ36874 protein 
75 0.0003083 0.225 0.205 213240_s_at KRT4 keratin 4 
78 0.0003206 0.225 0.755 237063_at  Not available 
79 0.0003300 0.228 0.847 220335_x_at CES3 carboxylesterase 3 (brain) 
80 0.0003346 0.229 0.805 239230_at HES5 hairy and enhancer of split 5 (Drosophila) 
81 0.0003464 0.234 0.636 209261_s_at NR2F6 nuclear receptor subfamily 2, group F, member 6 
83 0.0003720 0.245 0.615 1557944_s_at CTNND1 catenin (cadherin-associated protein), delta 1 
89 0.0004172 0.249 0.707 229493_at HOXD9 homeobox D9 
90 0.0004215 0.249 0.851 236676_at NUDCD3 NudC domain containing 3 
91 0.0004255 0.249 0.756 206949_s_at RUSC1 RUN and SH3 domain containing 1 
92 0.0004286 0.249 0.648 235871_at LIPH lipase, member H 
93 0.0004387 0.249 0.666 205977_s_at EPHA1 EPH receptor A1 
97 0.0004607 0.249 0.757 1555784_s_at IRAK1 interleukin-1 receptor-associated kinase 1 
99 0.0004724 0.249 0.744 220599_s_at CARD14 caspase recruitment domain family, member 14 
104 0.0004856 0.249 0.838 207566_at MR1 major histocompatibility complex, class I-related 
107 0.0004928 0.249 0.857 1563147_at  Not available 
109 0.0004986 0.249 0.662 211240_x_at CTNND1 catenin (cadherin-associated protein), delta 1 
112 0.0005283 0.251 0.784 231788_at GPR92 G protein-coupled receptor 92 
113 0.0005286 0.251 0.790 236725_at WWC1 WW and C2 domain containing 1 
114 0.0005291 0.251 0.799 232608_x_at CARD14 caspase recruitment domain family, member 14 
117 0.0005408 0.253 0.554 1553611_s_at FLJ33790 hypothetical protein FLJ33790 
123 0.0006007 0.261 0.828 218749_s_at SLC24A6 solute carrier family 24 (sodium/potassium/calcium exchanger), member 6 
126 0.0006225 0.261 0.422 206595_at CST6 cystatin E/M 
129 0.0006343 0.261 0.778 1553072_at BNIPL BCL2/adenovirus E1B 19kD interacting protein like 
130 0.0006354 0.261 0.678 222809_x_at C14orf65 chromosome 14 open reading frame 65 
131 0.0006384 0.261 0.712 207525_s_at GIPC1 GIPC PDZ domain containing family, member 1 
137 0.0006534 0.261 0.828 231248_at CST6 cystatin E/M 
138 0.0006787 0.266 0.655 220289_s_at AIM1L absent in melanoma 1-like 
141 0.0006973 0.266 0.813 1487_at ESRRA estrogen-related receptor alpha 
147 0.0007208 0.266 0.701 203918_at PCDH1 protocadherin 1 
148 0.0007290 0.266 0.776 204827_s_at CCNF cyclin F 
149 0.0007310 0.266 0.626 216010_x_at FUT3 fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group) 
153 0.0007781 0.278 0.845 220962_s_at PADI1 peptidyl arginine deiminase, type I 
160 0.0008325 0.282 0.678 230252_at GPR92 G protein-coupled receptor 92 
162 0.0008440 0.282 0.748 236616_at  Not available 
165 0.0008616 0.282 0.695 235988_at GPR110 G protein-coupled receptor 110 
166 0.0008645 0.282 0.645 1552685_a_at GRHL1 grainyhead-like 1 (Drosophila) 
172 0.0009064 0.284 0.280 203757_s_at CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen) 
177 0.0009227 0.284 0.724 235095_at CCDC64B coiled-coil domain containing 64B 
185 0.0009826 0.289 0.873 233154_at AFF3 AF4/FMR2 family, member 3 
187 0.0009963 0.289 0.696 226638_at ARHGAP23 Rho GTPase activating protein 23 

Immunohistochemical validation of the TGF-β and β-catenin pathway

To validate the association between the lymph node status in early-stage cervical cancer and the oncogenic TGF-β signaling and β-catenin pathways, we performed immunohistochemistry using antibodies directed against proteins that are representative of both these pathways. For this purpose, we used a series of pretreatment early-stage cervical cancer tissues of 274 patients.

Phosphorylation of Smad2/3 and concomitant translocation into the nucleus is an important step in transforming growth factor β (TGF-β) signaling and expression of Smad4 is an essential partner of Smad2/3 in the formation of transcriptional complexes (36, 37). To validate whether Smad2, pSmad2, and/or Smad4 staining on the TMA are representative for the whole tumor, first whole tumor slides of a small series of 20 randomly selected cervical cancer tissues were immunostained. This immunostaining revealed that only Smad4 staining was homogeneous (data not shown). Therefore, Smad4 staining on the TMA reflects best the staining of the whole tumor. Thirty-five out of 255 evaluable cervical carcinomas showed positive Smad4 staining (see Supplementary Fig. 1 for representative immunostainings). Univariate logistic regression analysis of various clinicopathological features revealed that Smad4 positivity was not only related to N0, (OR: 0.20, 95% CI: 0.06–0.66) but also to infiltration depth less than 10 mm (OR: 0.35, 95% CI: 0.16–0.76; Table 4).

Table 4.

Logistic regression analysis for the relation between clinicopathological characteristics and stainings

Smad4 (n = 255)Smad4–Smad4+Smad4 positive OR (95% CI)
n/total%n/total%
Age (continuous)      
Age ≥43 111/220 50% 21/35 60% 1.00 (0.98–1.03) 
Stage ≥Ib2 83/220 38% 11/35 31% 0.76 (0.35–1.62) 
SCC 150/206 73% 20/31 65% 0.68 (0.31–1.51) 
Poor differentiation 87/216 40% 17/34 50% 1.48 (0.72–3.06) 
Lymphangioinvasion 119/220 54% 15/35 43% 0.64 (0.31–1.31) 
Infiltration depth ≥10 mm 111/207 54% 10/35 29% 0.35 (0.16–0.76) 
Tumor diameter ≥4 cm 65/220 30% 6/35 17% 0.49 (0.20–1.24) 
Positive lymph nodes 71/220 32% 3/35 9% 0.20 (0.06–0.66) 
 
p120 (n = 268) p120– p120+ p120 positive 
 n/total % n/total % OR (95% CI) 
Age (continuous)      
Age ≥43 78/156 50% 60/112 54% 1.00 (0.98–1.02) 
Stage ≥Ib2 58/156 37% 40/112 36% 0.94 (0.57–1.56) 
SCC 88/142 62% 90/108 83% 3.07 (1.67–5.64) 
Poor differentiation 64/153 42% 41/110 37% 0.83 (0.50–1.37) 
Lymphangioinvasion 70/156 45% 68/112 61% 1.90 (1.16–3.11) 
Infiltration depth ≥10 mm 70/147 48% 54/108 50% 1.10 (0.67–1.81) 
Tumor diameter ≥4 cm 44/156 28% 31/112 28% 0.97 (0.57–1.67) 
Positive lymph nodes 37/156 24% 40/112 36% 1.79 (1.05–3.05) 
 
β-catenin (n = 272) β-catenin− β-catenin+ β-catenin positive 
 n/total % n/total % OR (95% CI) 
Age (continuous)      
Age ≥43 63/132 48% 76/140 54% 1.01 (0.99–1.03) 
Stage ≥Ib2 48/132 36% 52/140 37% 1.03 (0.63–1.69) 
SCC 81/126 64% 101/129 78% 2.00 (1.15–3.49) 
Poor differentiation 52/132 39% 53/135 39% 0.99 (0.61–1.62) 
Lymphangioinvasion 63/132 48% 77/140 55% 1.34 (0.83–2.16) 
Infiltration depth ≥10 mm 64/125 51% 61/134 46% 0.80 (0.49–1.30) 
Tumor diameter ≥4 cm 38/132 29% 38/140 27% 0.92 (0.54–1.57) 
Positive lymph nodes 37/132 28% 43/140 31% 1.14 (0.67–1.92) 
Smad4 (n = 255)Smad4–Smad4+Smad4 positive OR (95% CI)
n/total%n/total%
Age (continuous)      
Age ≥43 111/220 50% 21/35 60% 1.00 (0.98–1.03) 
Stage ≥Ib2 83/220 38% 11/35 31% 0.76 (0.35–1.62) 
SCC 150/206 73% 20/31 65% 0.68 (0.31–1.51) 
Poor differentiation 87/216 40% 17/34 50% 1.48 (0.72–3.06) 
Lymphangioinvasion 119/220 54% 15/35 43% 0.64 (0.31–1.31) 
Infiltration depth ≥10 mm 111/207 54% 10/35 29% 0.35 (0.16–0.76) 
Tumor diameter ≥4 cm 65/220 30% 6/35 17% 0.49 (0.20–1.24) 
Positive lymph nodes 71/220 32% 3/35 9% 0.20 (0.06–0.66) 
 
p120 (n = 268) p120– p120+ p120 positive 
 n/total % n/total % OR (95% CI) 
Age (continuous)      
Age ≥43 78/156 50% 60/112 54% 1.00 (0.98–1.02) 
Stage ≥Ib2 58/156 37% 40/112 36% 0.94 (0.57–1.56) 
SCC 88/142 62% 90/108 83% 3.07 (1.67–5.64) 
Poor differentiation 64/153 42% 41/110 37% 0.83 (0.50–1.37) 
Lymphangioinvasion 70/156 45% 68/112 61% 1.90 (1.16–3.11) 
Infiltration depth ≥10 mm 70/147 48% 54/108 50% 1.10 (0.67–1.81) 
Tumor diameter ≥4 cm 44/156 28% 31/112 28% 0.97 (0.57–1.67) 
Positive lymph nodes 37/156 24% 40/112 36% 1.79 (1.05–3.05) 
 
β-catenin (n = 272) β-catenin− β-catenin+ β-catenin positive 
 n/total % n/total % OR (95% CI) 
Age (continuous)      
Age ≥43 63/132 48% 76/140 54% 1.01 (0.99–1.03) 
Stage ≥Ib2 48/132 36% 52/140 37% 1.03 (0.63–1.69) 
SCC 81/126 64% 101/129 78% 2.00 (1.15–3.49) 
Poor differentiation 52/132 39% 53/135 39% 0.99 (0.61–1.62) 
Lymphangioinvasion 63/132 48% 77/140 55% 1.34 (0.83–2.16) 
Infiltration depth ≥10 mm 64/125 51% 61/134 46% 0.80 (0.49–1.30) 
Tumor diameter ≥4 cm 38/132 29% 38/140 27% 0.92 (0.54–1.57) 
Positive lymph nodes 37/132 28% 43/140 31% 1.14 (0.67–1.92) 

NOTE: Bold signifies P < 0.05

SCC = squamous cell carcinoma

The proportion of patients with less than 2 representative tissue cores varied from 1%–7%

To validate whether β-catenin signaling is associated with presence of lymph node metastases in cervical cancer, immunohistochemical staining was performed for β-catenin, E-cadherin, and p120 on whole tumor slides of 20 cervical cancer tissues. This revealed that E-cadherin was not a homogeneous staining. Immunostaining of β-catenin, a key protein in the canonical β-catenin pathway (38), and CTNND1/p120 that is involved in noncanonical β-catenin signaling (35) and was one of the 5 β-catenin related transcripts present in the list of 149 differentially expressed genes (188 probe sets; Table 3), was therefore performed on TMAs. Positive p120 immunostaining was observed in 112 of 268 (42%) and positive β-catenin in 140 of 272 (51%) patients (see Supplementary Fig. 1 for examples). Logistic regression analysis revealed no association between β-catenin protein expression and presence of lymph node metastases (Table 4). However, positive p120 staining was associated with N+ (OR: 1.79, 95% CI: 1.05–3.05), in agreement with our microarray results.

In the present study, pathways associated with pelvic lymph node metastases in 39 (20 N0 and 19 N+) early-stage cervical cancer patients were identified. Our analysis of well-known and novel (n = 285) pathway signatures revealed an association of lymph node metastases with only few gene sets or signatures, including 2 well-known oncogenic biological gene sets. Enrichment of the TGF-β pathway was related to N0, whereas oncogenic pathway activation of β-catenin was associated with N+ patients. The association of both the TGF-β and the β-catenin signaling pathway with lymph node metastases was validated in a large consecutive series of early-stage cervical cancer patients by immunohistochemistry. Immunostaining of Smad4 and p120 representing the TGF-β and β-catenin signaling pathway, respectively, confirmed the association with lymph node metastasis in early-stage cervical cancer.

Until now, all studies using microarray platforms for differentiating between patient with and without lymph node metastases in cervical cancer focused on gene profiles and individual genes present in these profiles (14–17). Another approach is to identify biological pathways that are involved in biological differences between cancers, using pathway analysis methods on all genes that are differentially expressed between 2 phenotypes. For example, Lagarde and colleagues identified pathways that differentiated between N0 and N+ esophageal adenocarcinomas (39). Furthermore, Crijns and colleagues identified pathways contributing to clinical outcome of serous ovarian cancer (24). Interestingly, many of these pathways were known for being important in carcinogenesis or cancer progression, which indicates the strength of this approach. To our knowledge, we are the first to identify pathways for discriminating between N0 and N+ cervical cancer patients using pathway analysis methods.

Our analysis showed that TGF-β is one of the most important pathways affecting the metastatic potential in early-stage cervical cancer. First, of all 280 tested unique pathways (from the KEGG and Biocarta data bases), the TGF-β pathway was significantly enriched in N0 (Table 2). Binding of the TGF-β ligand to its receptors initiates intracellular signaling by phosphorylation of Smad2 and Smad3. These phosphorylated Smads then bind to Smad4 and translocate into the nucleus, where this Smad complex is involved in regulation of gene transcription (36, 37). Immunostaining using Smad4 of 255 early-stage cervical carcinomas confirmed that TGF-β pathway activation was related to absence of lymph node metastases. Although Smad4 is a key protein in TGF-β signaling (36, 37), it is not known whether Smad4 immunostaining is representative of TGF-β signaling activity throughput. Immunostaining of more members of the TGF-β pathway would enhance our results, however no homogeneous staining was found for Smad2 and pSmad2 and therefore these stainings could not be performed on TMAs. Early in carcinogenesis, the TGF-β pathway contributes to tumor suppression, for example by stimulating apoptosis and inhibition of growth (36, 37) However, later in the process of tumor progression or in invasive cancer, oncogenic activity of TGF-β signaling is predominantly present, including increased migration and invasiveness, which may result in metastases. This transition from a tumor suppressor to an oncogenic pathway can be due to various alterations in TGF-β signaling, such as loss of Smad signaling and activation of Smad-independent, more oncogenic pathways, such as MAPK pathways (36, 37). Furthermore, TGF-β is directly involved in the formation of metastases, as it contributes to the establishment and outgrowth of lung and bone metastases in breast cancer models (32, 34). Smad4 downregulation is associated with TGF-β downregulation and has been implicated in cervical cancer (30) and metastatic mouse models (32). The downregulation of Smad4 in N+ is consistent with these data and establishes TGF-β as one of the pathways affecting the metastatic potential in early-stage cervical cancer.

In addition to the TGF-β pathway, GSEA revealed that the NFAT, ALK, BAD, and PAR1 pathways are significantly enriched in the N0 group and the Glycosphingolipid Biosynthesis Neo Lactoseries pathway in the N+ group (Table 2). Presently, we and others have not characterized these pathways in detail for their possible association with the metastatic behavior of tumor cells. However, as these 5 pathways are also significantly associated with lymph node status, more detailed analysis is warranted to confirm their possible role in lymph node metastasis in early-stage cervical cancer.

A limitation of GSEA is that pathway activation can not be assessed for an individual patient. Therefore, another strategy was developed in which expression signatures are experimentally generated to reflect activation status of various oncogenic signaling pathways (23). This pathway analysis indicates that N+ patients had a higher probability of β-catenin pathway activation than N0 patients, pointing to a role for the β-catenin pathway in formation of lymph node metastases (Fig. 1). Interestingly, the gene set of 188 differentially expressed probe sets between N0 and N+, included 5 unique genes involved in the β-catenin-pathway including p120 (CTNND1 or catenin delta 1), CTNNAL1 (catenin alpha-like 1), DKK3 (dickkopf homologue 3), WNT5a, and TCF4 (transcription factor 4), but did not include β-catenin. In good agreement with these findings, immunohistochemistry confirmed the association of p120 and the lack of correlation of β-catenin with N+. β-catenin is an important member of both the WNT-signaling pathway and the cell–cell adhesion pathway. However, immunohistochemical analysis revealed no relation between β-catenin and lymph node metastases, which is in agreement with other studies (31, 40) and indicates that the canonical Wnt/β-catenin pathway (containing β-catenin, Wnt1, APC) is not involved in mediating the invasive potential in cervical cancer. In normal cervical epithelium, β-catenin is involved in E-cadherin mediated cell–cell adhesion, by binding to the cytoplasmic domain of E-cadherin. Loss of E-cadherin causes disruption of cell adhesion and therefore might contribute to metastases (35, 38). P120 (also referred to as CTNND1 or delta-catenin) is a member of the catenin family and was originally reported to stabilize the cadherin-complex by direct interaction with the proximal domain of E-cadherin (35, 38). On the other hand, p120 (especially p120 isoform 1) promotes cell motility and invasiveness in cancer (33). P120 was reported to exert its effects by modulating the activities of Rho GTPases, for example by inhibiting activity of RhoA and activation of Rac and Cdc42 (33, 41). To our knowledge our study is the first that reports that p120 expression is associated with presence of lymph node metastases in early-stage cervical cancer. The link of p120 to Rho GTPases in activating the metastatic potential might also offer new opportunities for therapy, as invasion has been inhibited successfully using Rho-inhibitors (42).

Thus, both the TGF-β and the p120-associated noncanonical β-catenin pathway are related to lymph node metastases in cervical cancer. This indicates an important role for epithelial to mesenchymal transition (EMT), as both pathways may contribute to EMT. EMT is characterized by loss of the epithelial phenotype of cells and cells adopt a mesenchymal phenotype. It can be induced by alterations in TGF-β signaling, such as loss of Smad4 (43) and EMT is characterized by loss of E-cadherin, with disruption of cell adhesion as a consequence. Furthermore, EMT results in increased motility of cells, and increased invasion. All these processes contribute to the formation of metastases (44, 45). TGF-β signaling and β-catenin also cooperate in EMT. Loss of E-cadherin causes increased β-catenin signaling, which cooperates with autocrine TGF-β signaling to maintain an mesenchymal phenotype (46). Thus, deregulation of both the TGF-β and the β-catenin pathway, as observed in our study, indicates a role for EMT in lymph node metastasis in cervical cancer. Interestingly, miR-200a which is known for inhibition of TGF-β-mediated EMT by maintaining the epithelial phenotype through regulating expression of the E-cadherin transcriptional repressors ZEB1 and ZEB2 (47), was found to be a suppressor of metastasis in cervical cancer (48). This supports the importance of EMT in lymph node metastasis in cervical cancer.

Presence of lymph node metastases is still one of the most important factors in the choice of treatment for early-stage cervical cancer patients. No markers are currently available for accurate prediction of lymph node metastases before primary surgery. By evaluation of the primary tumor, expression levels of proteins such as Smad4 and p120 as representatives for the TGF-β signaling and β-catenin pathway, respectively, also cannot accurately predict presence of pelvic lymph node metastasis. However, more detailed analysis of these pathways might result in the identification of additional markers that will increase the clinical sensitivity en specificity. More importantly, by identifying pathways involved in lymph node metastasis in early-stage cervical cancer, new opportunities for pathway targeted therapy can be considered to inhibit the metastatic potential, as reported for both pathways (49, 50).

No potential conflicts of interest were disclosed.

Dutch Cancer Society (project number RUG 2004-3161). P.D. Moerland acknowledges support by the BioRange programme of The Netherlands Bioinformatics Centre (NBIC), supported by a BSIK grant through the Netherlands Genomics Initiative (NGI). EVLvT was supported by the FP6 European Union Project “Peroxisome” (LSHG-CT-2004-512018).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Creasman
WT
,
Kohler
MF
. 
Is lymph vascular space involvement an independent prognostic factor in early cervical cancer?
Gynecol Oncol
2004
;
92
:
525
9
.
2.
Sakuragi
N
. 
Up-to-date management of lymph node metastasis and the role of tailored lymphadenectomy in cervical cancer
.
Int J Clin Oncol
2007
;
12
:
165
75
.
3.
Landoni
F
,
Maneo
A
,
Colombo
A
,
Placa
F
,
Milani
R
,
Perego
P
, et al
Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer
.
Lancet
1997
;
350
:
535
40
.
4.
Sevin
BU
,
Nadji
M
,
Lampe
B
,
Lu
Y
,
Hilsenbeck
S
,
Koechli
OR
, et al
Prognostic factors of early stage cervical cancer treated by radical hysterectomy
.
Cancer
1995
;
76
:
1978
86
.
5.
van de Putte
G
,
Holm
R
,
Lie
AK
,
Trope
CG
,
Kristensen
GB
. 
Expression of p27, p21, and p16 protein in early squamous cervical cancer and its relation to prognosis
.
Gynecol Oncol
2003
;
89
:
140
7
.
6.
Lee
IJ
,
Park
KR
,
Lee
KK
,
Song
JS
,
Lee
KG
,
Lee
JY
, et al
Prognostic value of vascular endothelial growth factor in Stage IB carcinoma of the uterine cervix
.
Int J Radiat Oncol Biol Phys
2002
;
54
:
768
79
.
7.
Gortzak-Uzan
L
,
Jimenez
W
,
Nofech-Mozes
S
,
Ismiil
N
,
Khalifa
MA
,
Dubé
V
, et al
Sentinel lymph node biopsy vs. pelvic lymphadenectomy in early stage cervical cancer: is it time to change the gold standard?
Gynecol Oncol
2010
;
116
:
28
32
.
8.
Chambers
AF
,
Groom
AC
,
MacDonald
IC
. 
Dissemination and growth of cancer cells in metastatic sites
.
Nat Rev Cancer
2002
;
2
:
563
72
.
9.
Molloy
T
,
van't Veer
LJ
. 
Recent advances in metastasis research
.
Curr Opin Genet Dev
2008
;
18
:
35
41
.
10.
van't Veer
LJ
,
Dai
H
,
van de Vijver
MJ
,
He
YD
,
Hart
AA
,
Mao
M
, et al
Gene expression profiling predicts clinical outcome of breast cancer
.
Nature
2002
;
415
:
530
6
.
11.
Beer
DG
,
Kardia
SL
,
Huang
CC
,
Giordano
TJ
,
Levin
AM
,
Misek
DE
, et al
Gene-expression profiles predict survival of patients with lung adenocarcinoma
.
Nat Med
2002
;
8
:
816
24
.
12.
Roepman
P
,
Wessels
LF
,
Kettelarij
N
,
Kemmeren
P
,
Miles
AJ
,
Lijnzaad
P
, et al
An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas
.
Nat Genet
2005
;
37
:
182
6
.
13.
Kwon
HC
,
Kim
SH
,
Roh
MS
,
Kim
JS
,
Lee
HS
,
Choi
HJ
, et al
Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer
.
Dis Colon Rectum
2004
;
47
:
141
52
.
14.
Biewenga
P
,
Buist
MR
,
Moerland
PD
,
Ver Loren van Themaat
E
,
van Kampen
AH
,
ten Kate
FJ
, et al
Gene expression in early stage cervical cancer
.
Gynecol Oncol
2008
;
108
:
520
6
.
15.
Lyng
H
,
Brøvig
RS
,
Svendsrud
DH
,
Holm
R
,
Kaalhus
O
,
Knutstad
K
, et al
Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer
.
BMC Genomics
2006
;
7
:
268
.
16.
Grigsby
PW
,
Watson
M
,
Powell
MA
,
Zhang
Z
,
Rader
JS
. 
Gene expression patterns in advanced human cervical cancer
.
Int J Gynecol Cancer
2006
;
16
:
562
7
.
17.
Kim
TJ
,
Choi
JJ
,
Kim
WY
,
Choi
CH
,
Lee
JW
,
Bae
DS
, et al
Gene expression profiling for the prediction of lymph node metastasis in patients with cervical cancer
.
Cancer Sci
2008
;
99
:
31
8
.
18.
Draghici
S
,
Khatri
P
,
Eklund
AC
,
Szallasi
Z
. 
Reliability and reproducibility issues in DNA microarray measurements
.
Trends Genet
2006
;
22
:
101
9
.
19.
Jarvinen
AK
,
Hautaniemi
S
,
Edgren
H
,
Auvinen
P
,
Saarela
J
,
Kallioniemi
OP
, et al
Are data from different gene expression microarray platforms comparable?
Genomics
2004
;
83
:
1164
8
.
20.
Ransohoff
DF
. 
Rules of evidence for cancer molecular-marker discovery and validation
.
Nat Rev Cancer
2004
;
4
:
309
14
.
21.
Kanehisa
M
,
Araki
M
,
Goto
S
,
Hattori
M
,
Hirakawa
M
,
Itoh
M
, et al
KEGG for linking genomes to life and the environment
.
Nucleic Acids Res
2008
;
36
:
D480
4
.
22.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
,
Mukherjee
S
,
Ebert
BL
,
Gillette
MA
, et al
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
2005
;
102
:
15545
50
.
23.
Bild
AH
,
Yao
G
,
Chang
JT
,
Wang
Q
,
Potti
A
,
Chasse
D
, et al
Oncogenic pathway signatures in human cancers as a guide to targeted therapies
.
Nature
2006
;
439
:
353
7
.
24.
Crijns
AP
,
Fehrmann
RS
,
de
JS
,
Gerbens
F
,
Meersma
GJ
,
Klip
HG
, et al
Survival-related profile, pathways, and transcription factors in ovarian cancer
.
PLoS Med
2009
;
6
:
e24
.
25.
Scotlandi
K
,
Remondini
D
,
Castellani
G
,
Manara
MC
,
Nardi
F
,
Cantiani
L
, et al
Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome
.
J Clin Oncol
2009
;
27
:
2209
16
.
26.
Sherlock
G
. 
Analysis of large-scale gene expression data
.
Brief Bioinform
2001
;
2
:
350
62
.
27.
Alter
O
,
Brown
PO
,
Botstein
D
. 
Singular value decomposition for genome-wide expression data processing and modeling
.
Proc Natl Acad Sci U S A
2000
;
97
:
10101
6
.
28.
Benjamini
Y
,
Hochberg
Y
. 
Controlling the false discovery rate: a practical and powerful approach to multiple testing
.
J R Statist Soc B
1995
;
57
:
289
300
.
29.
Noordhuis
MG
,
Eijsink
JJ
,
ten Hoor
KA
,
Roossink
F
,
Hollema
H
,
Arts
HJ
, et al
Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer
.
Clin Cancer Res
2009
;
15
:
7389
97
.
30.
Kloth
JN
,
Kenter
GG
,
Spijker
HS
,
Uljee
S
,
Corver
WE
,
Jordanova
ES
, et al
Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival
.
Mod Pathol
2008
;
21
:
866
75
.
31.
Van de Putte
G
,
Kristensen
GB
,
Baekelandt
M
,
Lie
AK
,
Holm
R
. 
E-cadherin and catenins in early squamous cervical carcinoma
.
Gynecol Oncol
2004
;
94
:
521
7
.
32.
Padua
D
,
Zhang
XH
,
Wang
Q
,
Nadal
C
,
Gerald
WL
,
Gomis
RR
, et al
TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4
.
Cell
2008
;
133
:
66
77
.
33.
Yanagisawa
M
,
Huveldt
D
,
Kreinest
P
,
Lohse
CM
,
Cheville
JC
,
Parker
AS
, et al
A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease
.
J Biol Chem
2008
;
283
:
18344
54
.
34.
Mourskaia
AA
,
Dong
Z
,
Ng
S
,
Banville
M
,
Zwaagstra
JC
,
O'Connor-McCourt
MD
, et al
Transforming growth factor-beta1 is the predominant isoform required for breast cancer cell outgrowth in bone
.
Oncogene
2009
;
28
:
1005
15
.
35.
Wheelock
MJ
,
Johnson
KR
. 
Cadherin-mediated cellular signaling
.
Curr Opin Cell Biol
2003
;
15
:
509
14
.
36.
Elliott
RL
,
Blobe
GC
. 
Role of transforming growth factor Beta in human cancer
.
J Clin Oncol
2005
;
23
:
2078
93
.
37.
Jakowlew
SB
. 
Transforming growth factor-beta in cancer and metastasis
.
Cancer Metastasis Rev
2006
;
25
:
435
57
.
38.
Nelson
WJ
,
Nusse
R
. 
Convergence of Wnt, beta-catenin, and cadherin pathways
.
Science
2004
;
303
:
1483
7
.
39.
Lagarde
SM
,
Ver Loren van Themaat
PE
,
Moerland
PD
,
Gilhuijs-Pederson
LA
,
Ten Kate
FJ
,
Reitsma
PH
, et al
Analysis of gene expression identifies differentially expressed genes and pathways associated with lymphatic dissemination in patients with adenocarcinoma of the esophagus
.
Ann Surg Oncol
2008
;
15
:
3459
70
.
40.
Imura
J
,
Ichikawa
K
,
Takeda
J
,
Fujimori
T
. 
Beta-catenin expression as a prognostic indicator in cervical adenocarcinoma
.
Int J Mol Med
2001
;
8
:
353
8
.
41.
Reynolds
AB
,
Roczniak-Ferguson
A
. 
Emerging roles for p120-catenin in cell adhesion and cancer
.
Oncogene
2004
;
23
:
7947
56
.
42.
Fritz
G
,
Kaina
B
. 
Rho GTPases: promising cellular targets for novel anticancer drugs
.
Curr Cancer Drug Targets
2006
;
6
:
1
14
.
43.
Zhao
S
,
Venkatasubbarao
K
,
Lazor
JW
,
Sperry
J
,
Jin
C
,
Cao
L
, et al
Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells
.
Cancer Res
2008
;
68
:
4221
8
.
44.
Thiery
JP
. 
Epithelial-mesenchymal transitions in development and pathologies
.
Curr Opin Cell Biol
2003
;
15
:
740
6
.
45.
Rees
JR
,
Onwuegbusi
BA
,
Save
VE
,
Alderson
D
,
Fitzgerald
RC
. 
In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma
.
Cancer Res
2006
;
66
:
9583
90
.
46.
Eger
A
,
Stockinger
A
,
Park
J
,
Langkopf
E
,
Mikula
M
,
Gotzmann
J
, et al
Beta-catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition
.
Oncogene
2004
;
23
:
2672
80
.
47.
Gregory
PA
,
Bert
AG
,
Paterson
EL
,
Barry
SC
,
Tsykin
A
,
Farshid
G
, et al
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
.
Nat Cell Biol
2008
;
10
:
593
601
.
48.
Hu
X
,
Schwarz
JK
,
Lewis
JS
 Jr.
,
Huettner
PC
,
Rader
JS
,
Deasy
JO
, et al
A microRNA expression signature for cervical cancer prognosis
.
Cancer Res
2010
;
70
:
1441
8
.
49.
Dihlmann
S
,
von Knebel
DM
. 
Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics
.
Int J Cancer
2005
;
113
:
515
24
.
50.
Nagaraj
NS
,
Datta
PK
. 
Targeting the transforming growth factor-beta signaling pathway in human cancer
.
Expert Opin Investig Drugs
2010
;
19
:
77
91
.

Supplementary data