Abstract
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR) and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko's fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by Methylation Specific PCR.
In MDA MB 231 cells a synergistic antiproliferative effect was observed with a combination of 10 µM 5-aza-CdR and these 3 anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RAR 2, Slit2, GSTP1 and MGMT.
Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.
Citation Information: Clin Cancer Res 2010;16(14 Suppl):A48.