Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling.

Experimental Design: The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study.

Results: Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival.

Conclusions: Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

Malignant gliomas are the most common primary malignant brain tumors. The current treatment strategy for malignant gliomas consists of maximum surgical resection followed by radiation therapy combined with chemotherapy. Despite these aggressive therapeutic interventions, these tumors are still difficult to eliminate because of their highly malignant character. Their diffusely infiltrative growth pattern limits the extent of safe surgical resection, and they are often resistant to chemotherapeutic adjuvant therapy. However, the severity of these malignant properties differs between the different histologic types of malignant gliomas.

Currently, the most widely used classification scheme for human glioma is that of the WHO (1). For classic glioma cases with typical morphologic features, histologic diagnoses are generally consistent and accurately predict the corresponding clinical course. However, many gliomas do not fit neatly into any of the WHO categories due to their atypical histologic features. Additionally, because the WHO classification schemes are based largely on visual criteria, they are inevitably subject to considerable interobserver variation (2). As a result, the more atypical a glioma, the more likely that the clinical outcome will fail to match the predicted biological behavior. Generally, there is a distinct prognostic difference between patients with glioblastoma and anaplastic oligodendroglioma (1). However, the clinical task is more complex than merely separating malignant gliomas into these two groups with distinct malignant properties, and the findings to date indicate the essential limitations of current glioma classification schemes (3).

Ideally, tumor diagnosis should be objective, and to the extent to which it is possible, it should correctly reflect the biological behavior and corresponding outcome. Recently, genetic analyses showed that allelic loss of chromosomes 1p and 19q was significantly associated with prolonged survival in anaplastic oligodendroglioma (4). This finding highlights the importance of classifying gliomas into molecularly distinct groups, a prospect that should allow for markedly increased predictive power in the future.

Thus far, we have done gene expression profiling of a total of 1,200 human cancers using adaptor-tagged competitive PCR (ATAC-PCR), a PCR array system based on a high throughput reverse transcription-PCR technique (57), and have constructed a cancer gene expression database that is open to the public (8). In this study, we did gene expression profiling on malignant gliomas to construct a prognostically useful diagnostic system for discriminating anaplastic oligodendroglioma from glioblastoma. The clinical utility of this system was then tested on the microarray-based public data set, which includes outcome information.

Samples and RNA/DNA isolation. In all cases, tumor specimens were dissected into two portions at surgery, one for histologic diagnosis and the other for molecular research. Histologic diagnosis was done on formalin-fixed, paraffin-embedded tissues. Tumor specimens for molecular research were snap frozen immediately at surgical resection and kept at −80°C until use. Total RNA was extracted from 100 mg of tumor specimens with TRIzol reagent (Invitrogen) according to the manufacturer's instructions. When total RNA was extracted from every tumor specimen, adjacent portions of tumors were sectioned for histologic reconfirmation. Tumor specimens containing 20% or more of nontumor or necrotic area were excluded for further analysis. Genomic DNA was isolated from tumor specimens using QIAamp DNA Mini Kit (Qiagen GmbH) according to the manufacturer's instructions. The study protocol was approved by the institutional review board of Kyoto University, and written informed consent was obtained from each of the patients.

Random expressed sequence tag sequencing, ATAC-PCR assay, and data processing. The expression of 3,456 genes was measured by PCR array via the ATAC-PCR method. The selection of objective genes for measurement was based on an expressed sequence tag sequencing survey of the genes expressed in 12 glioma tissues as previously described (9). We obtained 3,012 unique sequences from the EST collection and prepared 3,456 primers for ATAC-PCR, including additional 444 genes selected from a literature survey. Use of tissue-specific genes avoided wasteful measurement of genes not detected in glioma tissues, providing the advantage of reducing noise in the statistical analysis. The ATAC-PCR experimental procedure was done as previously described (7). The raw value describing gene expression levels were divided by the median expression value of each sample. This standardization step corrects for variation in mRNA level from sample to sample. Values <0.05 and >20 were converted to 0.05 and 20, respectively, and subsequently the entire data matrix was converted to a logarithmic scale. The detailed protocols for the ATAC-PCR experimental procedure are available on our Web site. The complete list of genes and expression data collected and analyzed in this study are available as Supplementary Data. The data will be deposited in Center for Information Biology Gene Expression Database in the DNA Data Bank of Japan.

Methylation-specific PCR, loss of heterozygosity analysis of 1p and 19q, and mutation analysis. DNA methylation patterns in the CpG island of the MGMT gene was determined by the method of methylation-specific PCR as previously described (10, 11). Genotypes for multiple loci for loss of heterozygosity analysis were determined by PCR using fluorescent primers tagged with FAM (Hokkaido system science) for microsatellite markers on chromosome 1p36 and 19q13 as previously described (12, 13). P53 mutation status was analyzed by sequencing between exons 4 and 10, including the DNA-binding domain as previously described (14). EGFRvIII was detected by reverse transcription-PCR as previously described (15).

Statistical analysis. Hierarchical cluster analysis and principal component analysis were done using Genmath2.0 software. For the hierarchical cluster analysis, the Ward clustering method was adopted, with Euclid distance used as a similarity coefficient.

The statistical significance of the anaplastic oligodendroglioma/glioblastoma comparison was evaluated for each gene by both P value and q value analysis. The P value of a test measures the minimum false-positive rate that is incurred when calling that test significant. Likewise, the q value of a test measures the minimum false-discovery rate that is incurred when calling that test significant. The false-discovery rate is the expected proportion of false positives among the tests found to be significant (16). The P values were calculated using t statistics. The q values were calculated using the software “Qvalue,” supplied online.3

To construct a molecular diagnostic system to discriminate anaplastic oligodendroglioma from glioblastoma, we used a weighted voting algorithm coupled with gene selection using signal-to-noise ratio ranking. The weighted voting algorithm is a popular supervised learning method with excellent predictive ability for binary classification using gene expression data (17). Briefly, we calculated the signal-to-noise ratio (S), S = (UgbUao) / (σgb + σao), where U and σ represent the mean and SD of expression for each class glioblastoma and anaplastic oligodendroglioma, respectively. The magnitude of the gene vote (V) reflects the deviation of the test sample X value from the average of glioblastoma and anaplastic oligodendroglioma.

We summed the V values to obtain the total votes for glioblastoma and anaplastic oligodendroglioma. The prediction strength (PS) for each sample was defined as: PS = (Vgb − |Vao|) / (Vgb + |Vao|). We adopted a threshold of 0. Samples with PS <0 were judged to be anaplastic oligodendroglioma, whereas those with PS >0 were designated glioblastoma. This model was evaluated by leave-one-out cross-validation. Briefly, one sample was randomly withheld, and the withheld sample was diagnosed using the model that was regenerated using the remaining samples. This process was repeated until every sample was tested and the total diagnostic accuracy was recorded. We chose the optimal number of classifier genes as that demonstrating the best performance by leave-one-out cross-validation.

The functional group analysis estimated the chance of association to a functional group using binomial distribution, described as follows.

where M, N, and p are the number of genes within the functional group among the classifier genes showing higher expression in anaplastic oligodendroglioma cases, that among the classifier genes showing higher expression in glioblastoma cases, and that among the total population, respectively.

The functional group was based on the Biological Process Ontology Guidelines from the Gene Ontology database. The chromosomal position of each gene was based on the RefSeq database.

We obtained the gene expression data of 50 malignant gliomas from a previously published microarray study from the Massachusetts General Hospital (MGH). The processing of the original raw data was done as follows. From the original raw data set, we judged the 9,285 genes that had been “present” in two or more samples to be eligible for further analysis (18). The expression value of each gene was divided by its median expression level among the samples. Values below 0.01 and above 100 were converted to 0.01 and 100, respectively, and subsequently the entire data matrix was converted to a logarithmic scale. Cumulative overall survival rates were calculated by the Kaplan-Meier method, and the differences in the survival curves were estimated by the log-rank test, using SPSS software.

We applied the classifier genes in the MGH study to our data set. Classification by K-nearest neighbor was done with K = 3 and Euclidean distance as the similarity measure. The diagnostic accuracy was evaluated by leave-one-out cross-validation.

Sample characteristics. Thirty-two glioma specimens (12 anaplastic oligodendrogliomas and 20 glioblastomas) were obtained from patients who underwent surgical resection at Kyoto University Hospital or nearby regional hospitals between 1999 and 2004. We conducted a phase II clinical trial using nimustine, carboplatin, vincristine, and IFN-β with radiotherapy for high-grade gliomas (KNOG study; ref. 19), and collected the major part of tumor specimens concomitantly with this trial. In most anaplastic oligodendroglioma cases, patients were treated by radiotherapy with chemotherapy of modified PCV regimen (procarbasine, nimustine, and vincristine). All cases were histologically diagnosed according to the WHO 2000 criteria at the primary hospital by a neuropathologist, and the original slides were reviewed centrally by the Kyoto University pathology unit for a final determination. To identify the diagnostic as well as prognostic genes responsible for differences in outcome between the two tumor classes, we focused on the histologically and clinically classic cases that received unanimous agreement by plural neuropathologists in histological diagnosis and followed the corresponding predicted clinical courses for their tumor type (Fig. 1A).

Fig. 1.

A, Kaplan-Meier estimates of overall survival among 32 malignant gliomas [12 anaplastic oligodendrogliomas (AO) and 20 glioblastomas (GB)]. P value was calculated with the use of the log-rank test. B, principal component analysis of gene expression in 32 malignant gliomas. The variation in the expression levels of the 3,269 genes is reduced to a three-dimensional space. Each sphere represents each sample; green and red, anaplastic oligodendroglioma and glioblastoma, respectively. C, the expected number of false-positive genes versus the total number of significant genes given by the q values. D, unsupervised hierarchical clustering of 32 malignant gliomas using 3,269 genes. Genes (horizontal axis) and samples (vertical axis) were grouped by individual gene expression patterns. Green and red bars, anaplastic oligodendroglioma and glioblastoma, respectively.

Fig. 1.

A, Kaplan-Meier estimates of overall survival among 32 malignant gliomas [12 anaplastic oligodendrogliomas (AO) and 20 glioblastomas (GB)]. P value was calculated with the use of the log-rank test. B, principal component analysis of gene expression in 32 malignant gliomas. The variation in the expression levels of the 3,269 genes is reduced to a three-dimensional space. Each sphere represents each sample; green and red, anaplastic oligodendroglioma and glioblastoma, respectively. C, the expected number of false-positive genes versus the total number of significant genes given by the q values. D, unsupervised hierarchical clustering of 32 malignant gliomas using 3,269 genes. Genes (horizontal axis) and samples (vertical axis) were grouped by individual gene expression patterns. Green and red bars, anaplastic oligodendroglioma and glioblastoma, respectively.

Close modal

We examined known molecular prognostic factors, revealing that our anaplastic oligodendroglioma cases typically possessed a favorable molecular feature. Of 11 assessable anaplastic oligodendroglioma cases, 1p loss and combined loss of 1p and 19q were present in all 11 and 10 cases, respectively. On the other hand, of 13 assessable glioblastoma cases, 1p loss and combined loss of 1p and 19q were present in three and one case, respectively. MGMT promoter methylation was present in 5 of the 13 glioblastoma and 10 of the 11 anaplastic oligodendroglioma cases assessable. Interestingly, all 10 anaplastic oligodendroglioma cases with MGMT silencing simultaneously showed combined loss of 1p and 19q. p53 mutation was detected in 3 of the 16 glioblastoma assessable cases and none of all 12 anaplastic oligodendroglioma cases. EGFRvIII was present in only 1 glioblastoma case of 20 assessable cases, including 10 glioblastoma and 10 anaplastic oligodendroglioma cases. The clinical and molecular features of all 32 patients are summarized in Table 1.

Table 1.

Summary of the clinical and pathologic features in all 32 patients

Sample no.HistologyVital statusSurvival (mo)*Treatmentp53mutEGFRvlllmutMGMT methylation1p LOH19q LOH
GB Dead 10 KNOG − − NA NA NA 
GB Dead RT + ACNU NA NA NA NA NA 
GB Dead 12 KNOG − − NA NA NA 
GB Dead 11 KNOG NA − − − 
GB Dead RT + ACNU − − − − 
GB Dead 10 KNOG − NA − 
GB Dead 23 KNOG − − − − 
GB Dead 12 KNOG − NA − − 
GB Dead KNOG − − − 
10 GB Dead KNOG − NA − − 
11 GB Dead KNOG − NA − 
12 GB Dead KNOG NA NA − − 
13 GB Dead KNOG NA − 
14 GB Dead 16 KNOG − − NA NA NA 
15 GB Dead 14 KNOG − − NA NA NA 
16 GB Dead 10 KNOG − − − − 
17 GB Dead KNOG − − NA NA NA 
18 GB Dead KNOG − − − − 
19 GB Dead 12 KNOG NA NA − − − 
20 GB Dead KNOG NA NA NA NA NA 
21 AO Alive PAV alone − NA 
22 AO Alive RT + PAV − NA 
23 AO Dead 72 RT + PAV − − 
24 AO Alive 17 KNOG − − NA NA NA 
25 AO Alive 63 RT + PAV − − 
26 AO Alive 20 RT + PAV − − 
27 AO Alive 18 RT + PAV − − 
28 AO Alive 18 KNOG − − 
29 AO Alive 18 RT + PAV − − 
30 AO Alive 36 RT + PAV − − 
31 AO Alive 16 RT + PAV − − − − 
32 AO Alive 15 KNOG − − 
Sample no.HistologyVital statusSurvival (mo)*Treatmentp53mutEGFRvlllmutMGMT methylation1p LOH19q LOH
GB Dead 10 KNOG − − NA NA NA 
GB Dead RT + ACNU NA NA NA NA NA 
GB Dead 12 KNOG − − NA NA NA 
GB Dead 11 KNOG NA − − − 
GB Dead RT + ACNU − − − − 
GB Dead 10 KNOG − NA − 
GB Dead 23 KNOG − − − − 
GB Dead 12 KNOG − NA − − 
GB Dead KNOG − − − 
10 GB Dead KNOG − NA − − 
11 GB Dead KNOG − NA − 
12 GB Dead KNOG NA NA − − 
13 GB Dead KNOG NA − 
14 GB Dead 16 KNOG − − NA NA NA 
15 GB Dead 14 KNOG − − NA NA NA 
16 GB Dead 10 KNOG − − − − 
17 GB Dead KNOG − − NA NA NA 
18 GB Dead KNOG − − − − 
19 GB Dead 12 KNOG NA NA − − − 
20 GB Dead KNOG NA NA NA NA NA 
21 AO Alive PAV alone − NA 
22 AO Alive RT + PAV − NA 
23 AO Dead 72 RT + PAV − − 
24 AO Alive 17 KNOG − − NA NA NA 
25 AO Alive 63 RT + PAV − − 
26 AO Alive 20 RT + PAV − − 
27 AO Alive 18 RT + PAV − − 
28 AO Alive 18 KNOG − − 
29 AO Alive 18 RT + PAV − − 
30 AO Alive 36 RT + PAV − − 
31 AO Alive 16 RT + PAV − − − − 
32 AO Alive 15 KNOG − − 

Abbreviations: LOH, loss of heterozygosity; AO, anaplastic oligodendroglioma; GB glioblastoma; KNOG, nimustine, carboplatin, vincristine, and IFN-β with radiotherapy; PAV, procarbazine, nimustine, vincristine; RT, radiotherapy; ACNU, nimustine; NA, not analyzed.

*

Survival from date of operation given for all patients. For living patients, survival was given to time of last follow-up.

Gene expression profiling. We measured the relative gene expression levels of 3,456 genes in the 32 gliomas using ATAC-PCR. Of the 3,456 genes, 3,269 genes were used for further analyses, excluding 187 genes that were missing in 20% or more of the cases.

First, we did an unsupervised analysis to obtain a general view of global gene expression signatures. Hierarchical cluster analysis of the 3,269 genes in all 32 gliomas showed that there were distinct patterns of expression for both anaplastic oligodendroglioma and glioblastoma (Fig. 1D). Principal component analysis also showed a clear separation between anaplastic oligodendroglioma and glioblastoma in reduced three-dimensional space (Fig. 1B). These results raise the possibility of classifying anaplastic oligodendroglioma and glioblastoma based on the expression levels of the diagnostic genes that they differentially express.

Then, we evaluated the statistical significance of the anaplastic oligodendroglioma/glioblastoma comparison for each gene by performing both P value and q value analyses. Of the 3,269 genes, 416 genes differed significantly between anaplastic oligodendroglioma and glioblastoma with a cutoff of P value = 0.001.The estimated number of false-positive genes was <2, with a q value of 0.00354 (Fig. 1C).

Next, we did a supervised analysis to construct a diagnostic system for classifying anaplastic oligodendroglioma and glioblastoma for practical use. We adopted a weighted voting algorithm with gene selection by signal-to-noise ratio ranking (17). This diagnostic system was confirmed using leave-one-out cross-validation, showing stable 100% (95% confidence interval, 89.4-100%) diagnostic accuracy in differentiating the test anaplastic oligodendroglioma and glioblastoma cases, using at least the 168 top-ranked genes (Supplementary Figure). Accordingly, we established the top 168 genes by signal-to-noise ratio ranking for all 32 cases as the classifier set. These genes were a subset of the 300 genes whose expression levels were significantly different between anaplastic oligodendroglioma and glioblastoma, with a rigid cutoff value of P = 0.0003, q = 0.0011.

Of the 168 selected classifier genes, the 87 genes showed higher expression in anaplastic oligodendroglioma samples (anaplastic oligodendroglioma classifier genes), including a group of genes involved in general neuronal function or neuronal differentiation (Table 2). On the other hand, the 81 genes with higher expression in glioblastoma samples (glioblastoma classifier genes) included a group of genes for which high expression was previously reported to be correlated with the malignant character of glioblastoma (Table 3). Functional group analysis revealed that the biological process in which classifier genes involved were distinctively different between two tumor classes. Significantly more glioblastoma classifier genes were associated with cell motility and cell adhesion, whereas prominently more anaplastic oligodendroglioma classifier genes were associated with neuron-related functions such as neuron fate commitment, nervous system development, and synaptic activity (Table 4). Analysis of chromosomal positions of classifier genes revealed that there were fewer anaplastic oligodendroglioma classifier genes on 1p and 19q than glioblastoma classifier genes, reflecting the loss of 1p and 19q in most anaplastic oligodendroglioma cases (Tables 2 and 3).

Table 2.

List of genes showing higher expression in anaplastic oligodendrogliomas

NoSTNRGS no.Gene symbolGenomic locationGenbank accession no.DefinitionGeneral neuronal function or neuronal differentiation
2.136 GS14040 INA 10q24.33 NM_032727 Homo sapiens internexin neuronal intermediate filament protein, α (INA), mRNA 
1.964 GS1818 NDRG2 14q11.2 NM_201538 Homo sapiens NDRG family member 2 (NDRG2), transcript variant 5, mRNA 
1.926 — SOX4 6p22.3 NM_003107 Homo sapiens SRY (sex determining region Y)-box 4 (SOX4), mRNA 
1.864 GS13667 BRSK2 11p15.5 NM_003957 Homo sapiens BR serine/threonine kinase 2 (BRSK2), mRNA 
1.853 GS13989 TUB 11p15.5 NM_003320 Homo sapiens tubby homologue (mouse; TUB), transcript variant 1, mRNA 
1.848 GS14085 GDAP1L1 20q12 NM_024034 Homo sapiens ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1), mRNA 
1.815 GS13275 RPIP8 17q21.31 AB209802 Homo sapiens mRNA for RaP2 interacting protein 8 variant protein 
1.808 GS12750 ACTL6B 7q22 NM_016188 Homo sapiens actin-like 6B (ACTL6B), mRNA 
1.775 GS12811 SCG3 15q21 NM_013243 Homo sapiens secretogranin III (SCG3), mRNA 
10 1.752 GS13065 ATP1A3 19q13.31 NM_152296 Homo sapiens ATPase, Na+/K+ transporting, α3 polypeptide (ATP1A3), mRNA 
11 1.747 GS14014 SPTBN2 11q13 NM_006946 Homo sapiens spectrin, β, nonerythrocytic 2 (SPTBN2), mRNA 
12 1.746 GS6687 CHGB 20pter-p12 NM_001819 Homo sapiens chromogranin B (secretogranin 1; CHGB), mRNA 
13 1.714 GS13304 CA10 17q21 NM_020178 Homo sapiens carbonic anhydrase X (CA10), mRNA  
14 1.697 GS4519 ALCAM 3q13.1 NM_001627 Homo sapiens activated leukocyte cell adhesion molecule (ALCAM), mRNA 
15 1.606 GS13651 PEN11B 11p15.5 AF020089 Homo sapiens PEN11B mRNA, complete cds 
16 1.593 GS4155 SYN1 Xp11.23 M58378 Human synapsin I (SYN1) gene, exon 13 
17 1.577 GS12571 DNAJC12 10q22.1 NM_021800 Homo sapiens DnaJ (Hsp40) homologue, subfamily C, member 12 (DNAJC12), transcript variant 1, mRNA  
18 1.543 GS12884 CPLX2 5q35.2 NM_001008220 Homo sapiens complexin 2 (CPLX2), transcript variant 2, mRNA 
19 1.538 — RIMS2 8q22.3 NM_014677 Homo sapiens regulating synaptic membrane exocytosis 2 (RIMS2),mRNA 
20 1.524 GS13961 PHYHIPL 10q11 NM_032439 Homo sapiens phytanoyl-CoA hydroxylase interacting protein-like (PHYHIPL), mRNA  
21 1.465 GS12771 SYP Xp11.23-p11.22 NM_003179 Homo sapiens synaptophysin (SYP), mRNA 
22 1.458 GS12839 HMP19 5q35.2 NM_015980 Homo sapiens HMP19 protein (HMP19), mRNA 
23 1.448 GS14072 KCNQ2 20q13.3 NM_004518 Homo sapiens potassium voltage-gated channel, KQT-like subfamily, member 2 (KCNQ2), transcript variant 3, mRNA 
24 1.438 GS11751 EST — — —  
25 1.414 GS13137 ARHGDIG 16p13.3 NM_001176 Homo sapiens Rho GDP dissociation inhibitor (GDI) γ (ARHGDIG), mRNA 
26 1.385 GS13019 HES6 2q37.3 NM_018645 Homo sapiens hairy and enhancer of split 6 (Drosophila; HES6), mRNA 
27 1.382 GS13762 KIAA0927 protein 22q12.1 AB023144 Homo sapiens mRNA for KIAA0927 protein, partial cds  
28 1.344 GS7227 DKFZp434J212 1pter-q31.3 BC078676 Homo sapiens kinesin family member 21B, mRNA (cDNA clone IMAGE:5141761)  
29 1.323 GS13181 TNK2 3q29 NM_001010938 Homo sapiens tyrosine kinase, nonreceptor, 2 (TNK2), transcript variant 2, mRNA 
30 1.320 GS13046 Ells1 7p15.1 NM_152793 Hypothetical protein FLJ39214  
31 1.309 — ABCC8 11p15.1 NM_000352 Homo sapiens ATP-binding cassette, subfamily C (CFTR/MRP), member8 (ABCC8), mRNA  
32 1.284 GS14148 DKFZp434H205 — AL117636 Homo sapiens mRNA; cDNA DKFZp434H205 (from clone DKFZp434H205)  
33 1.279 GS12813 ATP6V1G2 6p21.3 NM_138282 ATPase, H+ transporting, lysosomal, V1 subunit  
34 1.278 GS11593 APBB1 11p15 NM_001164 Homo sapiens amyloid β (A4) precursor protein-binding, family B, member 1 (Fe65; APBB1), transcript variant 1, mRNA 
35 1.273 GS13340 PKNOX2 — NM_022062 Homo sapiens PBX/knotted 1 homeobox 2 (PKNOX2), mRNA  
36 1.267 GS10002 ALDOC 17cen-q12 NM_005165 Homo sapiens aldolase C, fructose-bisphosphate (ALDOC), mRNA 
37 1.264 GS13880 JPH4 14q11 NM_032452 Homo sapiens junctophilin 4 (JPH4), mRNA 
38 1.253 GS1752 ABAT 16p13.2 NM_000663 Homo sapiens 4-aminobutyrate aminotransferase (ABAT), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA 
39 1.252 GS13457 clone24425 — AF070565 Homo sapiens clone 24425 mRNA sequence  
40 1.243 GS3816 NFIX 19p13.3 NM_002501 Homo sapiens nuclear factor I/X (CCAAT-binding transcription factor; NFIX), mRNA  
41 1.232 GS11850 BC024752 16q22.1 BC024752 Homo sapiens cDNA clone IMAGE:5123182, partial cds  
42 1.223 — SNCB 5q35 NM_001001502 Homo sapiens synuclein, β (SNCB), transcript variant 1, mRNA 
43 1.219 GS13487 OLIG1 21q22.11 NM_138983 Homo sapiens oligodendrocyte transcription factor 1 (OLIG1), mRNA  
44 1.214 GS14208 BC041405 — BC041405 Homo sapiens, clone IMAGE:5284125, mRNA  
45 1.209 GS12762 ATCAY 19p13.3 NM_033064 Homo sapiens ataxia, cerebellar, Cayman type (caytaxin; ATCAY), mRNA 
46 1.207 GS6693 KIAA0471 1q24 AB007940 Homo sapiens mRNA for KIAA0471 protein, partial cds  
47 1.203 — SOX8 16p13.3 NM_014587 Homo sapiens SRY (sex determining region Y)-box 8 (SOX8), mRNA  
48 1.201 GS14478 L1CAM Xq28 NM_000425 Homo sapiens L1 cell adhesion molecule (L1CAM), transcript variant 1, mRNA 
49 1.198 — OLIG1 21q22.11 NM_138983 Homo sapiens oligodendrocyte transcription factor 1 (OLIG1), mRNA  
50 1.195 GS14103 BC094805 — BC094805 Homo sapiens cDNA clone IMAGE:5015789  
51 1.168 GS685 SLC22A17 14q11.2 NM_020372 Homo sapiens solute carrier family 22 (organic cation transporter), member 17 (SLC22A17), transcript variant 1, mRNA  
52 1.160 GS14283 BC040444 17q21.1 BC040444 Homo sapiens cDNA clone IMAGE:5770508  
53 1.157 GS12682 OLIG2 21q22.11 NM_005806 Homo sapiens oligodendrocyte lineage transcription factor 2 (OLIG2), mRNA  
54 1.152 GS14490 EST 8q21.2 AF070623 Homo sapiens clone 24468 mRNA sequence  
55 1.149 GS13380 KIAA1337 1p36.22 AB037758 Homo sapiens mRNA for KIAA1337 protein, partial cds  
56 1.149 GS12805 EST — — —  
57 1.148 — MYCN 2p24.1 NM_005378 Homo sapiens v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian; MYCN), mRNA  
58 1.146 GS643 RPL15 3p24.2 NM_002948 Homo sapiens ribosomal protein L15 (RPL15), mRNA  
59 1.141 GS14691 CKLFSF5 — NM_181618 Homo sapiens chemokine-like factor superfamily 5 (CKLFSF5), transcript variant 2, mRNA  
60 1.131 GS14254 FAM19A5 22q13.32 NM_015381 Homo sapiens family with sequence similarity 19 (chemokine (C-C motif)-like), member A5 (FAM19A5), mRNA 
61 1.128 GS13133 AB056341 — AB056341 Macaca fascicularis brain cDNA, clone:QflA-15195  
62 1.124 — OMG 17q11.2 NM_002544 Homo sapiens oligodendrocyte myelin glycoprotein (OMG), mRNA  
63 1.118 GS13976 RIPX 4q13.3 NM_014961 Homo sapiens rap2 interacting protein x (RIPX), mRNA  
64 1.116 GS11781 DKFZp761P2314 — AL834342 Homo sapiens mRNA; cDNA DKFZp761P2314 (from clone DKFZp761P2314)  
65 1.107 GS12728 BCAN 1q31 NM_021948 Homo sapiens brevican (BCAN), mRNA 
66 1.103 GS13198 PPP1R3F Xp11.23 NM_033215 Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3F (PPP1R3F), mRNA  
67 1.100 GS12906 STXBP1 9q34.1 NM_003165 Homo sapiens syntaxin binding protein 1 (STXBP1), mRNA 
68 1.090 GS14082 ELAVL3 19p13.2 NM_032281 Homo sapiens ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu antigen C; ELAVL3), transcript variant 2, mRNA 
69 1.083 GS13726 RNF41 12q13.2 NM_194359 Homo sapiens ring finger protein 41 (RNF41), transcript variant 3, mRNA  
70 1.083 GS12702 KIAA1128 10q23.1 NM_018999 Homo sapiens KIAA1128 (KIAA1128), mRNA  
71 1.080 GS13482 EST — — —  
72 1.077 GS14338 CNTFR 9p13 NM_147164 Homo sapiens ciliary neurotrophic factor receptor (CNTFR), mRNA 
73 1.074 GS12998 CAMK2N2 3q27.1 NM_033259 Homo sapiens calcium/calmodulin-dependent protein kinase II inhibitor 2 (CAMK2N2), mRNA 
74 1.074 GS14540 KIAA0527 3p22.3 AB011099 Homo sapiens mRNA for KIAA0527 protein, partial cds  
75 1.061 GS13729 FLJ30046 13q22.3 NM_144595 Homo sapiens hypothetical protein FLJ30046 (FLJ30046), mRNA  
76 1.059 GS7935 FXYD6 11q23.3 NM_022003 Homo sapiens FXYD domain containing ion transport regulator 6 (FXYD6), mRNA  
77 1.052 GS13356 PDZK4 Xq28 NM_032512 Homo sapiens PDZ domain containing 4 (PDZK4), mRNA  
78 1.052 GS11619 SLC6A1 3p25-p24 NM_003042 Homo sapiens solute carrier family 6 (neurotransmitter transporter, GABA), member 1 (SLC6A1), mRNA  
79 1.049 GS14578 DKFZp761E1116 AL390131 Homo sapiens mRNA; cDNA DKFZp761E1116 (from clone DKFZp761E1116)  
80 1.039 GS6318 HR 8p21.2 NM_005144 Homo sapiens hairless homologue (mouse; HR), mRNA  
81 1.035 GS3177 MGC40157 17p11.2 NM_152350 Hypothetical protein MGC40157  
82 1.032 GS14588 GRIA2 4q32-q33 NM_000826 Homo sapiens glutamate receptor, ionotropic, AMPA 2 (GRIA2), mRNA 
83 1.029 GS191 NACA 12q23-q24.1 NM_005594 Homo sapiens nascent-polypeptide-associated complex α polypeptide (NACA), mRNA  
84 1.021 GS2746 EST — — —  
85 1.019 GS4380 IDI1 10p15.3 NM_004508 Homo sapiens isopentenyl-diphosphate δ isomerase (IDI1), mRNA  
86 1.008 GS13230 FLJ39293 5p15.31 AK096612 Homo sapiens cDNA FLJ39293 fis, clone OCBBF2012678  
87 1.005 — ACCN2 12q12 NM_020039 Homo sapiens amiloride-sensitive cation channel 2, neuronal (ACCN2), transcript variant 1, mRNA 
NoSTNRGS no.Gene symbolGenomic locationGenbank accession no.DefinitionGeneral neuronal function or neuronal differentiation
2.136 GS14040 INA 10q24.33 NM_032727 Homo sapiens internexin neuronal intermediate filament protein, α (INA), mRNA 
1.964 GS1818 NDRG2 14q11.2 NM_201538 Homo sapiens NDRG family member 2 (NDRG2), transcript variant 5, mRNA 
1.926 — SOX4 6p22.3 NM_003107 Homo sapiens SRY (sex determining region Y)-box 4 (SOX4), mRNA 
1.864 GS13667 BRSK2 11p15.5 NM_003957 Homo sapiens BR serine/threonine kinase 2 (BRSK2), mRNA 
1.853 GS13989 TUB 11p15.5 NM_003320 Homo sapiens tubby homologue (mouse; TUB), transcript variant 1, mRNA 
1.848 GS14085 GDAP1L1 20q12 NM_024034 Homo sapiens ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1), mRNA 
1.815 GS13275 RPIP8 17q21.31 AB209802 Homo sapiens mRNA for RaP2 interacting protein 8 variant protein 
1.808 GS12750 ACTL6B 7q22 NM_016188 Homo sapiens actin-like 6B (ACTL6B), mRNA 
1.775 GS12811 SCG3 15q21 NM_013243 Homo sapiens secretogranin III (SCG3), mRNA 
10 1.752 GS13065 ATP1A3 19q13.31 NM_152296 Homo sapiens ATPase, Na+/K+ transporting, α3 polypeptide (ATP1A3), mRNA 
11 1.747 GS14014 SPTBN2 11q13 NM_006946 Homo sapiens spectrin, β, nonerythrocytic 2 (SPTBN2), mRNA 
12 1.746 GS6687 CHGB 20pter-p12 NM_001819 Homo sapiens chromogranin B (secretogranin 1; CHGB), mRNA 
13 1.714 GS13304 CA10 17q21 NM_020178 Homo sapiens carbonic anhydrase X (CA10), mRNA  
14 1.697 GS4519 ALCAM 3q13.1 NM_001627 Homo sapiens activated leukocyte cell adhesion molecule (ALCAM), mRNA 
15 1.606 GS13651 PEN11B 11p15.5 AF020089 Homo sapiens PEN11B mRNA, complete cds 
16 1.593 GS4155 SYN1 Xp11.23 M58378 Human synapsin I (SYN1) gene, exon 13 
17 1.577 GS12571 DNAJC12 10q22.1 NM_021800 Homo sapiens DnaJ (Hsp40) homologue, subfamily C, member 12 (DNAJC12), transcript variant 1, mRNA  
18 1.543 GS12884 CPLX2 5q35.2 NM_001008220 Homo sapiens complexin 2 (CPLX2), transcript variant 2, mRNA 
19 1.538 — RIMS2 8q22.3 NM_014677 Homo sapiens regulating synaptic membrane exocytosis 2 (RIMS2),mRNA 
20 1.524 GS13961 PHYHIPL 10q11 NM_032439 Homo sapiens phytanoyl-CoA hydroxylase interacting protein-like (PHYHIPL), mRNA  
21 1.465 GS12771 SYP Xp11.23-p11.22 NM_003179 Homo sapiens synaptophysin (SYP), mRNA 
22 1.458 GS12839 HMP19 5q35.2 NM_015980 Homo sapiens HMP19 protein (HMP19), mRNA 
23 1.448 GS14072 KCNQ2 20q13.3 NM_004518 Homo sapiens potassium voltage-gated channel, KQT-like subfamily, member 2 (KCNQ2), transcript variant 3, mRNA 
24 1.438 GS11751 EST — — —  
25 1.414 GS13137 ARHGDIG 16p13.3 NM_001176 Homo sapiens Rho GDP dissociation inhibitor (GDI) γ (ARHGDIG), mRNA 
26 1.385 GS13019 HES6 2q37.3 NM_018645 Homo sapiens hairy and enhancer of split 6 (Drosophila; HES6), mRNA 
27 1.382 GS13762 KIAA0927 protein 22q12.1 AB023144 Homo sapiens mRNA for KIAA0927 protein, partial cds  
28 1.344 GS7227 DKFZp434J212 1pter-q31.3 BC078676 Homo sapiens kinesin family member 21B, mRNA (cDNA clone IMAGE:5141761)  
29 1.323 GS13181 TNK2 3q29 NM_001010938 Homo sapiens tyrosine kinase, nonreceptor, 2 (TNK2), transcript variant 2, mRNA 
30 1.320 GS13046 Ells1 7p15.1 NM_152793 Hypothetical protein FLJ39214  
31 1.309 — ABCC8 11p15.1 NM_000352 Homo sapiens ATP-binding cassette, subfamily C (CFTR/MRP), member8 (ABCC8), mRNA  
32 1.284 GS14148 DKFZp434H205 — AL117636 Homo sapiens mRNA; cDNA DKFZp434H205 (from clone DKFZp434H205)  
33 1.279 GS12813 ATP6V1G2 6p21.3 NM_138282 ATPase, H+ transporting, lysosomal, V1 subunit  
34 1.278 GS11593 APBB1 11p15 NM_001164 Homo sapiens amyloid β (A4) precursor protein-binding, family B, member 1 (Fe65; APBB1), transcript variant 1, mRNA 
35 1.273 GS13340 PKNOX2 — NM_022062 Homo sapiens PBX/knotted 1 homeobox 2 (PKNOX2), mRNA  
36 1.267 GS10002 ALDOC 17cen-q12 NM_005165 Homo sapiens aldolase C, fructose-bisphosphate (ALDOC), mRNA 
37 1.264 GS13880 JPH4 14q11 NM_032452 Homo sapiens junctophilin 4 (JPH4), mRNA 
38 1.253 GS1752 ABAT 16p13.2 NM_000663 Homo sapiens 4-aminobutyrate aminotransferase (ABAT), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA 
39 1.252 GS13457 clone24425 — AF070565 Homo sapiens clone 24425 mRNA sequence  
40 1.243 GS3816 NFIX 19p13.3 NM_002501 Homo sapiens nuclear factor I/X (CCAAT-binding transcription factor; NFIX), mRNA  
41 1.232 GS11850 BC024752 16q22.1 BC024752 Homo sapiens cDNA clone IMAGE:5123182, partial cds  
42 1.223 — SNCB 5q35 NM_001001502 Homo sapiens synuclein, β (SNCB), transcript variant 1, mRNA 
43 1.219 GS13487 OLIG1 21q22.11 NM_138983 Homo sapiens oligodendrocyte transcription factor 1 (OLIG1), mRNA  
44 1.214 GS14208 BC041405 — BC041405 Homo sapiens, clone IMAGE:5284125, mRNA  
45 1.209 GS12762 ATCAY 19p13.3 NM_033064 Homo sapiens ataxia, cerebellar, Cayman type (caytaxin; ATCAY), mRNA 
46 1.207 GS6693 KIAA0471 1q24 AB007940 Homo sapiens mRNA for KIAA0471 protein, partial cds  
47 1.203 — SOX8 16p13.3 NM_014587 Homo sapiens SRY (sex determining region Y)-box 8 (SOX8), mRNA  
48 1.201 GS14478 L1CAM Xq28 NM_000425 Homo sapiens L1 cell adhesion molecule (L1CAM), transcript variant 1, mRNA 
49 1.198 — OLIG1 21q22.11 NM_138983 Homo sapiens oligodendrocyte transcription factor 1 (OLIG1), mRNA  
50 1.195 GS14103 BC094805 — BC094805 Homo sapiens cDNA clone IMAGE:5015789  
51 1.168 GS685 SLC22A17 14q11.2 NM_020372 Homo sapiens solute carrier family 22 (organic cation transporter), member 17 (SLC22A17), transcript variant 1, mRNA  
52 1.160 GS14283 BC040444 17q21.1 BC040444 Homo sapiens cDNA clone IMAGE:5770508  
53 1.157 GS12682 OLIG2 21q22.11 NM_005806 Homo sapiens oligodendrocyte lineage transcription factor 2 (OLIG2), mRNA  
54 1.152 GS14490 EST 8q21.2 AF070623 Homo sapiens clone 24468 mRNA sequence  
55 1.149 GS13380 KIAA1337 1p36.22 AB037758 Homo sapiens mRNA for KIAA1337 protein, partial cds  
56 1.149 GS12805 EST — — —  
57 1.148 — MYCN 2p24.1 NM_005378 Homo sapiens v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian; MYCN), mRNA  
58 1.146 GS643 RPL15 3p24.2 NM_002948 Homo sapiens ribosomal protein L15 (RPL15), mRNA  
59 1.141 GS14691 CKLFSF5 — NM_181618 Homo sapiens chemokine-like factor superfamily 5 (CKLFSF5), transcript variant 2, mRNA  
60 1.131 GS14254 FAM19A5 22q13.32 NM_015381 Homo sapiens family with sequence similarity 19 (chemokine (C-C motif)-like), member A5 (FAM19A5), mRNA 
61 1.128 GS13133 AB056341 — AB056341 Macaca fascicularis brain cDNA, clone:QflA-15195  
62 1.124 — OMG 17q11.2 NM_002544 Homo sapiens oligodendrocyte myelin glycoprotein (OMG), mRNA  
63 1.118 GS13976 RIPX 4q13.3 NM_014961 Homo sapiens rap2 interacting protein x (RIPX), mRNA  
64 1.116 GS11781 DKFZp761P2314 — AL834342 Homo sapiens mRNA; cDNA DKFZp761P2314 (from clone DKFZp761P2314)  
65 1.107 GS12728 BCAN 1q31 NM_021948 Homo sapiens brevican (BCAN), mRNA 
66 1.103 GS13198 PPP1R3F Xp11.23 NM_033215 Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3F (PPP1R3F), mRNA  
67 1.100 GS12906 STXBP1 9q34.1 NM_003165 Homo sapiens syntaxin binding protein 1 (STXBP1), mRNA 
68 1.090 GS14082 ELAVL3 19p13.2 NM_032281 Homo sapiens ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu antigen C; ELAVL3), transcript variant 2, mRNA 
69 1.083 GS13726 RNF41 12q13.2 NM_194359 Homo sapiens ring finger protein 41 (RNF41), transcript variant 3, mRNA  
70 1.083 GS12702 KIAA1128 10q23.1 NM_018999 Homo sapiens KIAA1128 (KIAA1128), mRNA  
71 1.080 GS13482 EST — — —  
72 1.077 GS14338 CNTFR 9p13 NM_147164 Homo sapiens ciliary neurotrophic factor receptor (CNTFR), mRNA 
73 1.074 GS12998 CAMK2N2 3q27.1 NM_033259 Homo sapiens calcium/calmodulin-dependent protein kinase II inhibitor 2 (CAMK2N2), mRNA 
74 1.074 GS14540 KIAA0527 3p22.3 AB011099 Homo sapiens mRNA for KIAA0527 protein, partial cds  
75 1.061 GS13729 FLJ30046 13q22.3 NM_144595 Homo sapiens hypothetical protein FLJ30046 (FLJ30046), mRNA  
76 1.059 GS7935 FXYD6 11q23.3 NM_022003 Homo sapiens FXYD domain containing ion transport regulator 6 (FXYD6), mRNA  
77 1.052 GS13356 PDZK4 Xq28 NM_032512 Homo sapiens PDZ domain containing 4 (PDZK4), mRNA  
78 1.052 GS11619 SLC6A1 3p25-p24 NM_003042 Homo sapiens solute carrier family 6 (neurotransmitter transporter, GABA), member 1 (SLC6A1), mRNA  
79 1.049 GS14578 DKFZp761E1116 AL390131 Homo sapiens mRNA; cDNA DKFZp761E1116 (from clone DKFZp761E1116)  
80 1.039 GS6318 HR 8p21.2 NM_005144 Homo sapiens hairless homologue (mouse; HR), mRNA  
81 1.035 GS3177 MGC40157 17p11.2 NM_152350 Hypothetical protein MGC40157  
82 1.032 GS14588 GRIA2 4q32-q33 NM_000826 Homo sapiens glutamate receptor, ionotropic, AMPA 2 (GRIA2), mRNA 
83 1.029 GS191 NACA 12q23-q24.1 NM_005594 Homo sapiens nascent-polypeptide-associated complex α polypeptide (NACA), mRNA  
84 1.021 GS2746 EST — — —  
85 1.019 GS4380 IDI1 10p15.3 NM_004508 Homo sapiens isopentenyl-diphosphate δ isomerase (IDI1), mRNA  
86 1.008 GS13230 FLJ39293 5p15.31 AK096612 Homo sapiens cDNA FLJ39293 fis, clone OCBBF2012678  
87 1.005 — ACCN2 12q12 NM_020039 Homo sapiens amiloride-sensitive cation channel 2, neuronal (ACCN2), transcript variant 1, mRNA 

NOTE: The genes are listed in ascending order determined by the absolute value of signal-to-noise ratio. GS number is the in-house gene identification number.

*

The genes marked with an asterisk were reported to be involved in general neuronal function or neuronal differentiation.

Table 3.

List of genes showing higher expression in glioblastomas

No.STNRGS no.Gene symbolGenomic locationGenbank accession no.Definition
2.209 GS1683 IFITM3 11p15.5 NM_021034 Homo sapiens IFN induced transmembrane protein 3 (1-8U; IFITM3), mRNA 
1.998 — TNC 9q33 NM_002160 Homo sapiens tenascin C (hexabrachion; TNC), mRNA 
1.891 GS475 LDHA 11p15.4 NM_005566 Homo sapiens lactate dehydrogenase A (LDHA), mRNA 
1.831 — VIM 10p13 NM_003380 Homo sapiens vimentin (VIM), mRNA 
1.816 GS4232 TNC 9q33 NM_002160 Tenascin C (hexabrachion) 
1.751 GS2482 IGFBP2 2q33-q34 NM_000597 Homo sapiens insulin-like growth factor binding protein 2, 36 kDa (IGFBP2), mRNA 
1.663 GS208 IFI30 19p13.1 NM_006332 Homo sapiens IFN, γ-inducible protein 30 (IFI30), mRNA 
1.654 GS7306 RHOC 1p13.1 NM_175744 Homo sapiens ras homologue gene family, member C (RHOC), mRNA 
1.601 GS10556 MSN Xq11.2-q12 NM_002444 Homo sapiens moesin (MSN), mRNA 
10 1.571 GS12786 LAMB2 3p21 NM_002292 Homo sapiens laminin, β2 (laminin S; LAMB2), mRNA 
11 1.567 GS3926 MYL6 12q13.2 NM_079423 Homo sapiens myosin, light polypeptide 6, alkali, smooth muscle and nonmuscle (MYL6), transcript variant 2, mRNA 
12 1.563 — YKL40 1q32.1 NM_001276 Homo sapiens chitinase 3-like 1 (cartilage glycoprotein-39; CHI3L1), mRNA 
13 1.537 GS4923 TIMP1 Xp11.3-p11.23 NM_003254 Homo sapiens tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor; TIMP1), mRNA 
14 1.511 GS2427 CD14 5q22-q32;5q31.1 NM_000591 Homo sapiens CD14 antigen (CD14), mRNA 
15 1.498 GS1769 ENO1 1p36.3-p36.2 NM_001428 Homo sapiens enolase 1, (α; ENO1), mRNA 
16 1.495 GS4332 RPN2 20q12-q13.1 NM_002951 Homo sapiens ribophorin II (RPN2), mRNA 
17 1.485 GS4168 TAGLN2 1q21-q25 NM_003564 Homo sapiens transgelin 2 (TAGLN2), mRNA 
18 1.475 GS13490 DKFZp564P143 — AL049298 Homo sapiens mRNA; cDNA DKFZp564P143 (from clone DKFZp564P143) 
19 1.413 GS4080 PSMD8 19q13.2 NM_002812 Homo sapiens proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 (PSMD8), mRNA 
20 1.410 GS421 TMSB4X Xq21.3-q22 NM_021109 Homo sapiens thymosin, β 4, X-linked (TMSB4X), mRNA 
21 1.404 GS3240 CD63 12q12-q13 NM_001780 Homo sapiens CD63 antigen (melanoma 1 antigen; CD63), mRNA 
22 1.390 GS3483 ZYX 7q32 NM_001010972 Homo sapiens zyxin (ZYX), mRNA 
23 1.347 GS3909 VMP1 17q23.1 NM_030938 Hypothetical protein DKFZp566I133, Alt-splicing 
24 1.342 GS9541 ARPC1B 7q22.1 NM_005720 Homo sapiens actin related protein 2/3 complex, subunit 1B, 41 kDa (ARPC1B), mRNA 
25 1.323 GS139 FTL 19q13.3-q13.4 NM_000146 Homo sapiens ferritin, light polypeptide (FTL), mRNA 
26 1.295 GS4210 NPC2 14q24.3 NM_006432 Homo sapiens Niemann-Pick disease, type C2 (NPC2), mRNA 
27 1.294 — TYROBP 19q13.1 NM_003332 Homo sapiens TYRO protein tyrosine kinase binding protein (TYROBP), transcript variant 1, mRNA 
28 1.285 GS7820 CD99 Xp22.32; Yp11.3 NM_002414 Homo sapiens CD99 antigen (CD99), mRNA 
29 1.282 — TMSB10 2p11.2 NM_021103 Homo sapiens thymosin, β 10 (TMSB10), mRNA 
30 1.274 GS1756 LR8 7q36.1 NM_014020 Homo sapiens LR8 protein (LR8), mRNA 
31 1.257 GS6132 PLEKHA4 19q13.33 NM_020904 Homo sapiens pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4 (PLEKHA4), mRNA 
32 1.257 GS1458 MRCL3 18p11.31 NM_006471 Homo sapiens myosin regulatory light chain MRCL3 (MRCL3), mRNA 
33 1.254 — FN14 16p13.3 NM_016639 Homo sapiens tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A), mRNA 
34 1.251 GS242 S100A10 1q21 NM_002966 Homo sapiens S100 calcium binding protein A10 (Annexin II ligand, calpactin I, light polypeptide (p11); S100A10), mRNA 
35 1.251 GS1890 LGALS1 22q13.1 NM_002305 Homo sapiens lectin, galactoside-binding, soluble, 1 (galectin 1; LGALS1), mRNA 
36 1.241 GS315 SFRS11 1p31 NM_004768 Homo sapiens splicing factor, arginine/serine-rich 11 (SFRS11), mRNA 
37 1.237 GS2223 SOD2 6q25.3 NM_001024466 Homo sapiens superoxide dismutase 2, mitochondrial (SOD2), nuclear gene encoding mitochondrial protein, transcript variant 3, mRNA 
38 1.234 — A2M 12p13.3-p12.3 NM_000014 Homo sapiens α-2-macroglobulin (A2M), mRNA 
39 1.233 GS846 CD74 5q32 NM_004355 Homo sapiens CD74 antigen (invariant polypeptide of MHC, class II antigen-associated; CD74), mRNA 
40 1.226 GS9792 ATP6V0B 1p32.3 NM_004047 Homo sapiens ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit c″ (ATP6V0B), mRNA 
41 1.218 GS1071 DKFZp686L01105 — BX647603 Homo sapiens mRNA; cDNA DKFZp686L01105 (from clone DKFZp686L01105) 
42 1.215 GS3760 AEBP1 7p13 NM_001129 Homo sapiens AE binding protein 1 (AEBP1), mRNA 
43 1.201 — FLNA Xq28 NM_001456 Homo sapiens filamin A, α (actin binding protein 280; FLNA), mRNA 
44 1.200 GS4681 CLIC4 1p36.11 NM_013943 Homo sapiens chloride intracellular channel 4 (CLIC4), mRNA 
45 1.186 GS6844 GPI 19q13.1 NM_000175 Homo sapiens glucose phosphate isomerase (GPI), mRNA 
46 1.168 GS11909 TCTE1L Xp21 NM_006520 Homo sapiens t-complex-associated-testis-expressed 1-like (TCTE1L), mRNA 
47 1.159 — MMP14 14q11-q12 NM_004995 Homo sapiens matrix metallopeptidase 14 (membrane-inserted; MMP14), mRNA 
48 1.147 — ANX1 9q12-q21.2;9q12-q21.2 NM_000700 Homo sapiens Annexin A1 (ANXA1), mRNA 
49 1.134 GS1771 ATPIF1 — NM_178191 Homo sapiens ATPase inhibitory factor 1 (ATPIF1), nuclear gene encoding mitochondrial protein, transcript variant 3, mRNA 
50 1.133 GS1089 ARPC3 12q24.11 NM_005719 Homo sapiens actin related protein 2/3 complex, subunit 3, 21 kDa (ARPC3), mRNA 
51 1.128 GS464 SPI1 11p11.2 NM_003120 Homo sapiens spleen focus forming virus (SFFV) proviral integration oncogene spi1 (SPI1), mRNA 
52 1.127 GS2882 SERF2 15q15.3 NM_001018108 Homo sapiens small EDRK-rich factor 2 (SERF2), mRNA 
53 1.118 GS214 TAPBP 6p21.3 NM_003190 Homo sapiens TAP binding protein (tapasin; TAPBP), transcript variant 1, mRNA 
54 1.118 GS7407 TRIP6 7q22 NM_003302 Homo sapiens thyroid hormone receptor interactor 6 (TRIP6), mRNA 
55 1.114 GS8756 GATM 15q21.1 NM_001482 Homo sapiens glycine amidinotransferase (l-arginine:glycine amidinotransferase; GATM), mRNA 
56 1.108 — ALOX5AP 13q12 NM_001629 Homo sapiens arachidonate 5-lipoxygenase-activating protein (ALOX5AP), mRNA 
57 1.097 — CD44 11p13 NM_000610 Homo sapiens CD44 antigen (homing function and Indian blood group system; CD44), transcript variant 1, mRNA 
58 1.096 GS13416 CAPNS1 19q13.12 NM_001003962 Homo sapiens calpain, small subunit 1 (CAPNS1), transcript variant 2, mRNA 
59 1.091 GS13941 MEP50 1p13.2 NM_024102 Homo sapiens methylosome protein 50 (MEP50), mRNA 
60 1.091 GS13486 CGI-38 16q22.1 NM_015964 Homo sapiens brain-specific protein (CGI-38), mRNA 
61 1.090 GS7265 P8 16p11.2 NM_012385 Homo sapiens p8 protein (candidate of metastasis 1; P8), mRNA 
62 1.081 GS6741 PKIG 20q12-q13.1 NM_181805 Homo sapiens protein kinase (cAMP-dependent, catalytic) inhibitor γ (PKIG), transcript variant 1, mRNA 
63 1.078 GS946 LAPTM4A 2p24.1 NM_014713 Homo sapiens lysosomal-associated protein transmembrane 4α (LAPTM4A), mRNA 
64 1.069 GS4571 SDC4 20q12 NM_002999 Homo sapiens syndecan 4 (amphiglycan, ryudocan; SDC4), mRNA 
65 1.066 GS4202 NDUFA3 19q13.42 NM_004542 Homo sapiens NADH dehydrogenase (ubiquinone) 1α subcomplex, 3, 9 kDa (NDUFA3), mRNA 
66 1.065 — ITGA5 12q11-q13 NM_002205 Homo sapiens integrin, α 5 (fibronectin receptor, αpolypeptide; ITGA5), mRNA 
67 1.063 GS2065 TMED9 5q35.3 NM_017510 Homo sapiens transmembrane emp24 protein transport domain containing 9 (TMED9), mRNA 
68 1.063 GS13922 F13A1 6p25.3-p24.3 NM_000129 Homo sapiens coagulation factor XIII, A1 polypeptide (F13A1), mRNA 
69 1.061 GS13564 GPSM3 6p21.3 NM_022107 Homo sapiens G-protein signaling modulator 3 (AGS3-like, C. elegans; GPSM3), mRNA 
70 1.060 — MCP1 17q11.2-q12 NM_002982 Homo sapiens chemokine (C-C motif) ligand 2 (CCL2), mRNA 
71 1.060 GS2782 CLIC1 6p22.1-p21.2 NM_001288 Homo sapiens chloride intracellular channel 1 (CLIC1), mRNA 
72 1.059 GS3317 RABAC1 19q13.2 NM_006423 Homo sapiens Rab acceptor 1 (prenylated; RABAC1), mRNA 
73 1.058 GS13503 UPP1 7p12.3 NM_181597 Homo sapiens uridine phosphorylase 1 (UPP1), transcript variant 2, mRNA 
74 1.050 — PLAUR 19q13 NM_001005376 Homo sapiens plasminogen activator, urokinase receptor (PLAUR), transcript variant 2, mRNA 
75 1.048 GS220 PSMC2 7q22.1-q22.3 NM_002803 Homo sapiens proteasome (prosome, macropain) 26S subunit, ATPase, 2 (PSMC2), mRNA 
76 1.046 GS1833 HSPA5 9q33-q34.1 NM_005347 Homo sapiens heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa; HSPA5), mRNA 
77 1.042 GS8061 AXL 19q13.1 NM_001699 Homo sapiens AXL receptor tyrosine kinase (AXL), transcript variant 2, mRNA 
78 1.038 GS19 PPP1A 11q13 NM_002708 Protein phosphatase 1, catalytic subunit, α isoform 
79 1.034 GS3823 CTSD 11p15.5 NM_001909 Homo sapiens cathepsin D (lysosomal aspartyl protease; CTSD), mRNA 
80 1.014 — PAI1 7q21.3-q22 NM_000602 Homo sapiens serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1), mRNA 
81 1.006 GS2570 UBE2D2 5q31.2 NM_181838 Homo sapiens ubiquitin-conjugating enzyme E2D 2 (UBC4/5 homologue, yeast; UBE2D2), transcript variant 2, mRNA 
No.STNRGS no.Gene symbolGenomic locationGenbank accession no.Definition
2.209 GS1683 IFITM3 11p15.5 NM_021034 Homo sapiens IFN induced transmembrane protein 3 (1-8U; IFITM3), mRNA 
1.998 — TNC 9q33 NM_002160 Homo sapiens tenascin C (hexabrachion; TNC), mRNA 
1.891 GS475 LDHA 11p15.4 NM_005566 Homo sapiens lactate dehydrogenase A (LDHA), mRNA 
1.831 — VIM 10p13 NM_003380 Homo sapiens vimentin (VIM), mRNA 
1.816 GS4232 TNC 9q33 NM_002160 Tenascin C (hexabrachion) 
1.751 GS2482 IGFBP2 2q33-q34 NM_000597 Homo sapiens insulin-like growth factor binding protein 2, 36 kDa (IGFBP2), mRNA 
1.663 GS208 IFI30 19p13.1 NM_006332 Homo sapiens IFN, γ-inducible protein 30 (IFI30), mRNA 
1.654 GS7306 RHOC 1p13.1 NM_175744 Homo sapiens ras homologue gene family, member C (RHOC), mRNA 
1.601 GS10556 MSN Xq11.2-q12 NM_002444 Homo sapiens moesin (MSN), mRNA 
10 1.571 GS12786 LAMB2 3p21 NM_002292 Homo sapiens laminin, β2 (laminin S; LAMB2), mRNA 
11 1.567 GS3926 MYL6 12q13.2 NM_079423 Homo sapiens myosin, light polypeptide 6, alkali, smooth muscle and nonmuscle (MYL6), transcript variant 2, mRNA 
12 1.563 — YKL40 1q32.1 NM_001276 Homo sapiens chitinase 3-like 1 (cartilage glycoprotein-39; CHI3L1), mRNA 
13 1.537 GS4923 TIMP1 Xp11.3-p11.23 NM_003254 Homo sapiens tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor; TIMP1), mRNA 
14 1.511 GS2427 CD14 5q22-q32;5q31.1 NM_000591 Homo sapiens CD14 antigen (CD14), mRNA 
15 1.498 GS1769 ENO1 1p36.3-p36.2 NM_001428 Homo sapiens enolase 1, (α; ENO1), mRNA 
16 1.495 GS4332 RPN2 20q12-q13.1 NM_002951 Homo sapiens ribophorin II (RPN2), mRNA 
17 1.485 GS4168 TAGLN2 1q21-q25 NM_003564 Homo sapiens transgelin 2 (TAGLN2), mRNA 
18 1.475 GS13490 DKFZp564P143 — AL049298 Homo sapiens mRNA; cDNA DKFZp564P143 (from clone DKFZp564P143) 
19 1.413 GS4080 PSMD8 19q13.2 NM_002812 Homo sapiens proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 (PSMD8), mRNA 
20 1.410 GS421 TMSB4X Xq21.3-q22 NM_021109 Homo sapiens thymosin, β 4, X-linked (TMSB4X), mRNA 
21 1.404 GS3240 CD63 12q12-q13 NM_001780 Homo sapiens CD63 antigen (melanoma 1 antigen; CD63), mRNA 
22 1.390 GS3483 ZYX 7q32 NM_001010972 Homo sapiens zyxin (ZYX), mRNA 
23 1.347 GS3909 VMP1 17q23.1 NM_030938 Hypothetical protein DKFZp566I133, Alt-splicing 
24 1.342 GS9541 ARPC1B 7q22.1 NM_005720 Homo sapiens actin related protein 2/3 complex, subunit 1B, 41 kDa (ARPC1B), mRNA 
25 1.323 GS139 FTL 19q13.3-q13.4 NM_000146 Homo sapiens ferritin, light polypeptide (FTL), mRNA 
26 1.295 GS4210 NPC2 14q24.3 NM_006432 Homo sapiens Niemann-Pick disease, type C2 (NPC2), mRNA 
27 1.294 — TYROBP 19q13.1 NM_003332 Homo sapiens TYRO protein tyrosine kinase binding protein (TYROBP), transcript variant 1, mRNA 
28 1.285 GS7820 CD99 Xp22.32; Yp11.3 NM_002414 Homo sapiens CD99 antigen (CD99), mRNA 
29 1.282 — TMSB10 2p11.2 NM_021103 Homo sapiens thymosin, β 10 (TMSB10), mRNA 
30 1.274 GS1756 LR8 7q36.1 NM_014020 Homo sapiens LR8 protein (LR8), mRNA 
31 1.257 GS6132 PLEKHA4 19q13.33 NM_020904 Homo sapiens pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4 (PLEKHA4), mRNA 
32 1.257 GS1458 MRCL3 18p11.31 NM_006471 Homo sapiens myosin regulatory light chain MRCL3 (MRCL3), mRNA 
33 1.254 — FN14 16p13.3 NM_016639 Homo sapiens tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A), mRNA 
34 1.251 GS242 S100A10 1q21 NM_002966 Homo sapiens S100 calcium binding protein A10 (Annexin II ligand, calpactin I, light polypeptide (p11); S100A10), mRNA 
35 1.251 GS1890 LGALS1 22q13.1 NM_002305 Homo sapiens lectin, galactoside-binding, soluble, 1 (galectin 1; LGALS1), mRNA 
36 1.241 GS315 SFRS11 1p31 NM_004768 Homo sapiens splicing factor, arginine/serine-rich 11 (SFRS11), mRNA 
37 1.237 GS2223 SOD2 6q25.3 NM_001024466 Homo sapiens superoxide dismutase 2, mitochondrial (SOD2), nuclear gene encoding mitochondrial protein, transcript variant 3, mRNA 
38 1.234 — A2M 12p13.3-p12.3 NM_000014 Homo sapiens α-2-macroglobulin (A2M), mRNA 
39 1.233 GS846 CD74 5q32 NM_004355 Homo sapiens CD74 antigen (invariant polypeptide of MHC, class II antigen-associated; CD74), mRNA 
40 1.226 GS9792 ATP6V0B 1p32.3 NM_004047 Homo sapiens ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit c″ (ATP6V0B), mRNA 
41 1.218 GS1071 DKFZp686L01105 — BX647603 Homo sapiens mRNA; cDNA DKFZp686L01105 (from clone DKFZp686L01105) 
42 1.215 GS3760 AEBP1 7p13 NM_001129 Homo sapiens AE binding protein 1 (AEBP1), mRNA 
43 1.201 — FLNA Xq28 NM_001456 Homo sapiens filamin A, α (actin binding protein 280; FLNA), mRNA 
44 1.200 GS4681 CLIC4 1p36.11 NM_013943 Homo sapiens chloride intracellular channel 4 (CLIC4), mRNA 
45 1.186 GS6844 GPI 19q13.1 NM_000175 Homo sapiens glucose phosphate isomerase (GPI), mRNA 
46 1.168 GS11909 TCTE1L Xp21 NM_006520 Homo sapiens t-complex-associated-testis-expressed 1-like (TCTE1L), mRNA 
47 1.159 — MMP14 14q11-q12 NM_004995 Homo sapiens matrix metallopeptidase 14 (membrane-inserted; MMP14), mRNA 
48 1.147 — ANX1 9q12-q21.2;9q12-q21.2 NM_000700 Homo sapiens Annexin A1 (ANXA1), mRNA 
49 1.134 GS1771 ATPIF1 — NM_178191 Homo sapiens ATPase inhibitory factor 1 (ATPIF1), nuclear gene encoding mitochondrial protein, transcript variant 3, mRNA 
50 1.133 GS1089 ARPC3 12q24.11 NM_005719 Homo sapiens actin related protein 2/3 complex, subunit 3, 21 kDa (ARPC3), mRNA 
51 1.128 GS464 SPI1 11p11.2 NM_003120 Homo sapiens spleen focus forming virus (SFFV) proviral integration oncogene spi1 (SPI1), mRNA 
52 1.127 GS2882 SERF2 15q15.3 NM_001018108 Homo sapiens small EDRK-rich factor 2 (SERF2), mRNA 
53 1.118 GS214 TAPBP 6p21.3 NM_003190 Homo sapiens TAP binding protein (tapasin; TAPBP), transcript variant 1, mRNA 
54 1.118 GS7407 TRIP6 7q22 NM_003302 Homo sapiens thyroid hormone receptor interactor 6 (TRIP6), mRNA 
55 1.114 GS8756 GATM 15q21.1 NM_001482 Homo sapiens glycine amidinotransferase (l-arginine:glycine amidinotransferase; GATM), mRNA 
56 1.108 — ALOX5AP 13q12 NM_001629 Homo sapiens arachidonate 5-lipoxygenase-activating protein (ALOX5AP), mRNA 
57 1.097 — CD44 11p13 NM_000610 Homo sapiens CD44 antigen (homing function and Indian blood group system; CD44), transcript variant 1, mRNA 
58 1.096 GS13416 CAPNS1 19q13.12 NM_001003962 Homo sapiens calpain, small subunit 1 (CAPNS1), transcript variant 2, mRNA 
59 1.091 GS13941 MEP50 1p13.2 NM_024102 Homo sapiens methylosome protein 50 (MEP50), mRNA 
60 1.091 GS13486 CGI-38 16q22.1 NM_015964 Homo sapiens brain-specific protein (CGI-38), mRNA 
61 1.090 GS7265 P8 16p11.2 NM_012385 Homo sapiens p8 protein (candidate of metastasis 1; P8), mRNA 
62 1.081 GS6741 PKIG 20q12-q13.1 NM_181805 Homo sapiens protein kinase (cAMP-dependent, catalytic) inhibitor γ (PKIG), transcript variant 1, mRNA 
63 1.078 GS946 LAPTM4A 2p24.1 NM_014713 Homo sapiens lysosomal-associated protein transmembrane 4α (LAPTM4A), mRNA 
64 1.069 GS4571 SDC4 20q12 NM_002999 Homo sapiens syndecan 4 (amphiglycan, ryudocan; SDC4), mRNA 
65 1.066 GS4202 NDUFA3 19q13.42 NM_004542 Homo sapiens NADH dehydrogenase (ubiquinone) 1α subcomplex, 3, 9 kDa (NDUFA3), mRNA 
66 1.065 — ITGA5 12q11-q13 NM_002205 Homo sapiens integrin, α 5 (fibronectin receptor, αpolypeptide; ITGA5), mRNA 
67 1.063 GS2065 TMED9 5q35.3 NM_017510 Homo sapiens transmembrane emp24 protein transport domain containing 9 (TMED9), mRNA 
68 1.063 GS13922 F13A1 6p25.3-p24.3 NM_000129 Homo sapiens coagulation factor XIII, A1 polypeptide (F13A1), mRNA 
69 1.061 GS13564 GPSM3 6p21.3 NM_022107 Homo sapiens G-protein signaling modulator 3 (AGS3-like, C. elegans; GPSM3), mRNA 
70 1.060 — MCP1 17q11.2-q12 NM_002982 Homo sapiens chemokine (C-C motif) ligand 2 (CCL2), mRNA 
71 1.060 GS2782 CLIC1 6p22.1-p21.2 NM_001288 Homo sapiens chloride intracellular channel 1 (CLIC1), mRNA 
72 1.059 GS3317 RABAC1 19q13.2 NM_006423 Homo sapiens Rab acceptor 1 (prenylated; RABAC1), mRNA 
73 1.058 GS13503 UPP1 7p12.3 NM_181597 Homo sapiens uridine phosphorylase 1 (UPP1), transcript variant 2, mRNA 
74 1.050 — PLAUR 19q13 NM_001005376 Homo sapiens plasminogen activator, urokinase receptor (PLAUR), transcript variant 2, mRNA 
75 1.048 GS220 PSMC2 7q22.1-q22.3 NM_002803 Homo sapiens proteasome (prosome, macropain) 26S subunit, ATPase, 2 (PSMC2), mRNA 
76 1.046 GS1833 HSPA5 9q33-q34.1 NM_005347 Homo sapiens heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa; HSPA5), mRNA 
77 1.042 GS8061 AXL 19q13.1 NM_001699 Homo sapiens AXL receptor tyrosine kinase (AXL), transcript variant 2, mRNA 
78 1.038 GS19 PPP1A 11q13 NM_002708 Protein phosphatase 1, catalytic subunit, α isoform 
79 1.034 GS3823 CTSD 11p15.5 NM_001909 Homo sapiens cathepsin D (lysosomal aspartyl protease; CTSD), mRNA 
80 1.014 — PAI1 7q21.3-q22 NM_000602 Homo sapiens serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1), mRNA 
81 1.006 GS2570 UBE2D2 5q31.2 NM_181838 Homo sapiens ubiquitin-conjugating enzyme E2D 2 (UBC4/5 homologue, yeast; UBE2D2), transcript variant 2, mRNA 

Abbreviation: STNR, signal-to-noise ratio.

Table 4.

Functional group analysis revealed the biological process in classifier genes

GO terms3,269 genesAO classifier (87 genes)PGB classifier (81 genes)P
Biological process enriched in AO      
    Neuron fate commitment 6* 3* 0.001 0* — 
    Establishment of cell polarity 0.001 — 
    Nervous system development 84 0.002 0.619 
    Ion transport 57 0.004 0.168 
    Vesicle docking during exocytosis 0.011 — 
    Neurotransmitter transport 0.011 — 
    Potassium ion transport 22 0.021 — 
    Sodium ion transport 0.024 — 
    Synaptic transmission 42 0.026 0.649 
    Behavioral response to cocaine 0.026 — 
    Synaptic vesicle maturation 0.026 — 
    Exocrine pancreas development 0.026 — 
    Oligodendrocyte differentiation 0.026 — 
    Carotenoid biosynthetic process 0.026 — 
    Synaptic vesicle membrane organization and biogenesis 0.026 — 
    Negative regulation of microtubule depolymerization 0.026 — 
    γ-Aminobutyric acid catabolic process 0.026 — 
    Mast cell degranulation 0.026 — 
    Negative regulation of thymidylate synthase biosynthetic process 0.026 — 
    Dopamine metabolic process 0.026 — 
Biological process enriched in GB      
    Cell motility 48 — 0.000 
    Cell adhesion 105 0.148 11 0.000 
    Neuromuscular junction development — 0.001 
    Antigen processing and presentation of exogenous peptide antigen via MHC class II — 0.001 
    Peptide cross-linking — 0.001 
    Cell surface receptor linked signal transduction 25 — 0.004 
    Immune response 61 — 0.004 
    Blood coagulation 17 — 0.009 
    Chloride transport — 0.013 
    Inflammatory response 38 — 0.015 
    Humoral immune response — 0.017 
    Erythrocyte maturation — 0.024 
    Cholesterol homeostasis — 0.024 
    T-cell selection — 0.024 
    Positive thymic T-cell selection — 0.024 
    Uridine metabolic process — 0.24 
    Negative regulation of nucleotide metabolic process — 0.024 
    Negative regulation of T-cell differentiation — 0.024 
    Negative thymic T-cell selection — 0.024 
    Regulation of smooth muscle contraction — 0.024 
    Age-dependent response to reactive oxygen species — 0.24 
    Creatine biosynthetic process — 0.024 
    Regulation of proteolysis — 0.24 
    Lymphocyte differentiation — 0.024 
    Negative regulation of hydrolase activity — 0.024 
    Peptide antigen stabilization — 0.024 
    Immunoglobulin-mediated immune response — 0.024 
    Fibrinolysis — 0.024 
    Positive regulation of transcription factor import into nucleus — 0.024 
    Arachidonic acid secretion — 0.024 
    Negative regulation of membrane protein ectodomain proteolysis — 0.024 
    Regulation of isoprenoid metabolic process — 0.024 
    Leukotriene biosynthetic process — 0.024 
    Response to superoxide — 0.024 
    Release of cytoplasmic sequestered nuclear factor-κB — 0.024 
    Granulocyte differentiation — 0.024 
    Nucleotide catabolic process — 0.024 
    Antigen processing and presentation of endogenous antigen — 0.024 
GO terms3,269 genesAO classifier (87 genes)PGB classifier (81 genes)P
Biological process enriched in AO      
    Neuron fate commitment 6* 3* 0.001 0* — 
    Establishment of cell polarity 0.001 — 
    Nervous system development 84 0.002 0.619 
    Ion transport 57 0.004 0.168 
    Vesicle docking during exocytosis 0.011 — 
    Neurotransmitter transport 0.011 — 
    Potassium ion transport 22 0.021 — 
    Sodium ion transport 0.024 — 
    Synaptic transmission 42 0.026 0.649 
    Behavioral response to cocaine 0.026 — 
    Synaptic vesicle maturation 0.026 — 
    Exocrine pancreas development 0.026 — 
    Oligodendrocyte differentiation 0.026 — 
    Carotenoid biosynthetic process 0.026 — 
    Synaptic vesicle membrane organization and biogenesis 0.026 — 
    Negative regulation of microtubule depolymerization 0.026 — 
    γ-Aminobutyric acid catabolic process 0.026 — 
    Mast cell degranulation 0.026 — 
    Negative regulation of thymidylate synthase biosynthetic process 0.026 — 
    Dopamine metabolic process 0.026 — 
Biological process enriched in GB      
    Cell motility 48 — 0.000 
    Cell adhesion 105 0.148 11 0.000 
    Neuromuscular junction development — 0.001 
    Antigen processing and presentation of exogenous peptide antigen via MHC class II — 0.001 
    Peptide cross-linking — 0.001 
    Cell surface receptor linked signal transduction 25 — 0.004 
    Immune response 61 — 0.004 
    Blood coagulation 17 — 0.009 
    Chloride transport — 0.013 
    Inflammatory response 38 — 0.015 
    Humoral immune response — 0.017 
    Erythrocyte maturation — 0.024 
    Cholesterol homeostasis — 0.024 
    T-cell selection — 0.024 
    Positive thymic T-cell selection — 0.024 
    Uridine metabolic process — 0.24 
    Negative regulation of nucleotide metabolic process — 0.024 
    Negative regulation of T-cell differentiation — 0.024 
    Negative thymic T-cell selection — 0.024 
    Regulation of smooth muscle contraction — 0.024 
    Age-dependent response to reactive oxygen species — 0.24 
    Creatine biosynthetic process — 0.024 
    Regulation of proteolysis — 0.24 
    Lymphocyte differentiation — 0.024 
    Negative regulation of hydrolase activity — 0.024 
    Peptide antigen stabilization — 0.024 
    Immunoglobulin-mediated immune response — 0.024 
    Fibrinolysis — 0.024 
    Positive regulation of transcription factor import into nucleus — 0.024 
    Arachidonic acid secretion — 0.024 
    Negative regulation of membrane protein ectodomain proteolysis — 0.024 
    Regulation of isoprenoid metabolic process — 0.024 
    Leukotriene biosynthetic process — 0.024 
    Response to superoxide — 0.024 
    Release of cytoplasmic sequestered nuclear factor-κB — 0.024 
    Granulocyte differentiation — 0.024 
    Nucleotide catabolic process — 0.024 
    Antigen processing and presentation of endogenous antigen — 0.024 

Abbreviations: GO, Gene Ontology database; AO classifier, classifier genes showing higher expression in anaplastic oligodendroglioma samples; GB classifier, classifier genes showing higher expression in glioblastoma samples.

*

Number of genes belonging to the Gene Ontology terms.

Then, to validate the diagnostic accuracy of our algorithm in an independent test set, we applied our classifier genes to a MGH data set of 50 malignant gliomas from a previous microarray study (20). The 50 gliomas consisted of 26 classic gliomas that were diagnosed in unanimous agreement by multiple neuropathologists and 24 nonclassic gliomas for which the histological diagnoses were controversial. The expression levels of 67 genes of our 168 genes were available, so we did molecular diagnosis on these 50 gliomas using the expression data of these 67 genes. From these calculations, there was an obvious tendency for the calculated PS of the glioblastoma cases to be higher than those of the anaplastic oligodendroglioma cases (Fig. 2A). When the cutoff value was set to zero, our molecular diagnoses were completely consistent with the histological diagnoses for the 14 cases of classic glioblastoma. Our diagnoses were also consistent for three of the seven cases of classic anaplastic oligodendroglioma. Among the seven classic anaplastic oligodendrogliomas, two turned out to have overall survival periods of less than 1 year. Interestingly, these two dismal cases were both classified as glioblastoma by our classifier genes. In total, our molecular diagnoses agreed with those of the original article for 28 of 29 of the nonclassic malignant glioma cases (96.6%). Furthermore, when compared with traditional histopathologic diagnosis, our molecular classifier genes showed significantly greater ability to accurately predict the survival time for all 50 glioma patients (Fig. 2B and C). In addition, among the 28 cases of histologically diagnosed glioblastoma, the patients with a lower PS tended to have prolonged survival. Dividing the glioblastoma cases into two groups with a cutoff value of 0.4 simply set by the break on scatter plots among the classic glioblastomas, the survival rate of the patients with a lower PS was significantly higher than that of patients with a higher PS (Fig. 2D).

Fig. 2.

Our molecular diagnosis system was applied to a MGH data set. A, the scatter plots show the PS values for the 21 classic malignant gliomas for which multiple neuropathologists were unanimous regarding the diagnosis. Red and blue, glioblastoma and anaplastic oligodendroglioma, respectively. ×, cases where overall patient survival was less than 2 y. B and C, Kaplan-Meier estimates of overall survival among all 50 malignant gliomas of a MGH data set. Classification according to (B) our molecular diagnosis system (C) histological diagnosis. D, Kaplan-Meier estimates of overall survival among 26 cases of histologically diagnosed glioblastoma in a MGH data set, stratified according to the PS with a cutoff value 0.4. P value was calculated with the use of the log-rank test.

Fig. 2.

Our molecular diagnosis system was applied to a MGH data set. A, the scatter plots show the PS values for the 21 classic malignant gliomas for which multiple neuropathologists were unanimous regarding the diagnosis. Red and blue, glioblastoma and anaplastic oligodendroglioma, respectively. ×, cases where overall patient survival was less than 2 y. B and C, Kaplan-Meier estimates of overall survival among all 50 malignant gliomas of a MGH data set. Classification according to (B) our molecular diagnosis system (C) histological diagnosis. D, Kaplan-Meier estimates of overall survival among 26 cases of histologically diagnosed glioblastoma in a MGH data set, stratified according to the PS with a cutoff value 0.4. P value was calculated with the use of the log-rank test.

Close modal

Finally, we applied the classifier genes in the MGH study to our data set. Among the genes used in the MGH study, we found 19 genes in our data matrix. As in the MGH study, we did classification by K-nearest neighbor with the 19 genes: 30 of 32 cases (94% accuracy) were accurately predicted.

Classification of gliomas according to their molecular features is expected to reflect their clinical behavior or outcome. In this study, we focused on the clinicopathologically classic anaplastic oligodendroglioma and glioblastoma cases to capture the intrinsic biological difference between two tumor classes. We documented the striking differences in global gene expression signature between two tumor classes and showed that these differences were actually predictive of the future clinical course. We constructed a molecular diagnostic system capable of discriminating anaplastic oligodendroglioma from glioblastoma based on ATAC-PCR gene expression profiling data. Our system displayed clinical utility and provided reproducible prognostic ability as confirmed by testing on a public microarray-based data set.

Interestingly, the selected classifier genes for each class possessed a distinctive feature in functional aspects. Among the classifier genes whose expression levels were higher in anaplastic oligodendroglioma samples, many genes are implicated in general neuronal function or in neural development. In particular, functional group analysis revealed that the genes associated with neuron fate commitment were most enriched in the anaplastic oligodendroglioma classifier genes. Recent study revealed a close correlation between the stage in neural development and the prognostic classes among high-grade gliomas. Similar to our finding, they showed that strong expression of markers of committed neuronal lineage was the characteristic feature of a good prognosis group (21). These results stressed the prognostic significance of the expression of neuronal lineage markers but also might offer clues for understanding the genesis of anaplastic oligodendroglioma. The neuronal feature in classic anaplastic oligodendrogliomas may reflect the cell they originated from. The previous studies showed that most of the genes showing distinctive expression in oligodendroglial tumors with allelic loss of chromosome 1p had neuron-related functions (22, 23). Of the genes they indicated as diagnostic markers for oligodendroglial tumors with 1p loss, SNCB, INA, L1CAM, and RIMS2 were also included in our classifier gene set.

In addition to such a neural character, some anaplastic oligodendroglioma classifier genes have been reported to be expressed in cells of the oligodendroglial lineage. Olig-1 and Olig-2 are both broadly expressed throughout oligodendrocyte development (24). Although previous studies revealed that Olig genes are not necessarily specific markers for oligodendroglial tumors (25, 26), our finding that expression of Olig-1 and Olig-2 was significantly lower in glioblastoma samples than in anaplastic oligodendroglioma samples indicates its utility in discriminating anaplastic oligodendroglioma from glioblastoma. Another pair of transcription factors, Sox-4 and Sox-8, which were also reported to be expressed in cells of the oligodendrocyte lineage, functioned as classifier genes for anaplastic oligodendroglioma and glioblastoma (27, 28). These results suggest that anaplastic oligodendroglioma shares some of the characteristic gene expression patterns of oligodendrocyte progenitors, and that these oligodendrocyte lineage genes, when used as a set, might act as a powerful diagnostic marker for anaplastic oligodendroglioma.

Conversely, the classifier genes up-regulated in glioblastoma samples included a group of genes that are involved in the tumor invasion process, one of the hallmark malignant features of glioblastoma. The functional group analysis statistically endorsed the result, demonstrating that the genes associated with cell motility and adhesion, which are the main biological processes of tumor invasion, were significantly enriched among glioblastoma classifier genes. The previous microarray study investigated the genes involved in glioma cell motility (29). Of genes up-regulated with increased glioma cell motility, Tenascin-C, CD44, Fn14, PAI-1, Annexin1, and Moesin were also included in our gene set. Invasion of glioma cells into adjacent brain tissue is dependent on their interaction with the extracellular matrix. Extracellular matrix components and cell surface receptors such as Tenascin-C, CD44, and Fn14 play a major role in regulating cell migration, and have been suggested as the principle mediators of the glioma invasion process (3032). Urokinase plasminogen activator receptor and plasminogen activator inhibitor-1, a member of the urokinase plasminogen activator system, also play an important role in the tumor invasion process and are associated with either aggressive tumor characteristics or a poor prognosis in various malignancies, including gliomas (3335). In addition to these genes, Galectin-1 was also reported to be involved in the invasion process, and its expression displays a positive correlation with shorter survival among astrocytic tumors (36). Insulin-like growth factor binding protein 2 (IGFBP2) was frequently overexpressed in glioblastoma. IGFBP2 stimulates glioma cell invasion (37, 38).

Recently, several studies have shown the prognostic value of YKL-40 expression for poor outcome (21, 39, 40). It has been suggested to stimulate Ras and Akt pathways (41). Recent evidence indicates that the variation of glioma phenotype results from different kinds of alteration in signaling pathways. Phillips et al. (21) mentioned that YKL-40 expression and Akt activation were markers for poor prognosis among high-grade gliomas. As glioblastoma showed strikingly more YKL-40 expression than anaplastic oligodendroglioma by immunohistochemistry (42), YKL-40 stimulating signaling pathways may cause a highly invasive phenotype.

We note that our diagnostic model could not only discriminate between anaplastic oligodendroglioma and glioblastoma, but also disclose their distinctive molecular features. The characteristic function associated with clinical malignancy of glioblastoma is the invasion process, whereas classic anaplastic oligodendrogliomas had some extent of neuronal property. Using such representative functional features, it may be possible to refine the molecular diagnostic scheme.

It is interesting that a lower PS correlated with longer survival among the histologically diagnosed glioblastoma cases. From a pathologic point of view, Donahue et al. (43) reported that glioblastomas with some oligodendroglial characteristics showed a tendency toward better prognoses than pure glioblastomas. Our results showed the same phenomenon from a molecular point of view. Thus, glioblastomas whose gene expression signatures contained anaplastic oligodendroglioma components would show improved survival. These findings suggest the existence of molecular subclasses within glioblastomas.

Regarding the known molecular prognostic factors, we noted that the loss of 1p and 19q coexisted with MGMT promoter methylation in our anaplastic oligodendroglioma cases, as reported previously (44).

From a technical point of view, it is noteworthy that the results of our PCR array–based molecular diagnosis and those of microarray-based diagnosis were highly consistent with each other, especially for gliomas of histologically indeterminate diagnosis. Recently, the reproducibility of such large-scale gene expression analyses has come into question, particularly as pertains to the use of new methods such as the PCR array–based method we have adopted (45). Common concerns regarding these approaches arise from the statistical problems of handling such vast data sets as well as from the amount of unavoidable noise stemming from both intersample variation and from the techniques themselves. This study showed a clinically useful and reproducible ATAC-PCR–based molecular diagnostic system for malignant gliomas, which was shown to be comparable in effectiveness to systems based on microarrays.

Grant support: Grant-in-Aid for the Development of Innovative Technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

We thank Chiyuri Maruyama, Satoko Maki, Keiko Miyaoka, and Mihoko Yoshino for their valuable technical assistance. A considerable part of this work was done in the Taisho Laboratory of Functional Genomics, Nara Institute of Science and Technology.

1
WHO Classification of Tumours of the Nervous System. In: Kleihues P and Cavenee WK (Eds) Pathology and Genetics Tumours of the Nervous System. Lyon: International Agency for Research on Cancer (IARC) Press, 2000.
2
Coons SW, Johnson PC, Scheithauer BW, et al. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas.
Cancer
1997
;
79
:
1381
–93.
3
Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reappraisal.
Am J Pathol
2001
;
159
:
779
–86.
4
Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas.
J Natl Cancer Inst
1998
;
90
:
1473
–9.
5
Muro S, Takemasa I, Oba S, et al. Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data.
Genome Biol
2003
;
4
:
R21
. Epub 2003 Feb 27.
6
Kurokawa Y, Matoba R, Nagano H, et al. Molecular prediction of response to 5-fluorouracil and interferon-α combination chemotherapy in advanced hepatocellular carcinoma.
Clin Cancer Res
2004
;
10
:
6029
–38.
7
Iwao-Koizumi K, Matoba R, Ueno N, et al. Prediction of docetaxel response in human breast cancer by gene expression profiling.
J Clin Oncol
2005
;
23
:
422
–31.
8
Kato K, Yamashita R, Matoba R, et al. Cancer gene expression database (CGED): a database for gene expression profiling with accompanying clinical information of human cancer tissues.
Nucleic Acids Res
2005
;
33
:
D533
–6.
9
Matoba R, Kato K, Saito S, et al. Gene expression in mouse cerebellum during its development.
Gene
2000
;
241
:
125
–31.
10
Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma.
N Engl J Med
2005
;
352
:
997
–1003.
11
Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.
Proc Natl Acad Sci U S A
1996
;
93
:
9821
–6.
12
Smith JS, Alderete B, Minn Y, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype.
Oncogene
1999
;
18
:
4144
–52.
13
Mariani L, Deiana G, Vassella E, et al. Loss of heterozygosity 1p36 and 19q13 is a prognostic factor for overall survival in patients with diffuse WHO grade 2 gliomas treated without chemotherapy.
J Clin Oncol
2006
;
24
:
4758
–63. Epub 2006 Sep 11.
14
Paunu N, Syrjakoski K, Sankila R, et al. Analysis of p53 tumor suppressor gene in families with multiple glioma patients.
J Neurooncol
2001
;
55
:
159
–65.
15
Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.
N Engl J Med
2005
;
353
:
2012
–24.
16
Storey JD, Tibshirani R. Statistical significance for genomewide studies.
Proc Natl Acad Sci U S A
2003
;
100
:
9440
–5. Epub 2003 Jul 25.
17
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Science
1999
;
286
:
531
–7.
18
Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.
Lancet
2005
;
365
:
671
–9.
19
Aoki T, Takahashi JA, Ueba T, et al. Phase II study of nimustine, carboplatin, vincristine, and interferon-β with radiotherapy for glioblastoma multiforme: experience of the Kyoto Neuro-Oncology Group.
J Neurosurg
2006
;
105
:
385
–91.
20
Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification.
Cancer Res
2003
;
63
:
1602
–7.
21
Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.
Cancer Cell
2006
;
9
:
157
–73.
22
Mukasa A, Ueki K, Ge X, et al. Selective expression of a subset of neuronal genes in oligodendroglioma with chromosome 1p loss.
Brain Pathol
2004
;
14
:
34
–42.
23
Mukasa A, Ueki K, Matsumoto S, et al. Distinction in gene expression profiles of oligodendrogliomas with and without allelic loss of 1p.
Oncogene
2002
;
21
:
3961
–8.
24
Lu QR, Park JK, Noll E, et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors.
Proc Natl Acad Sci U S A
2001
;
98
:
10851
–6. Epub 2001 Aug 28.
25
Ohnishi A, Sawa H, Tsuda M, et al. Expression of the oligodendroglial lineage-associated markers Olig1 and Olig2 in different types of human gliomas.
J Neuropathol Exp Neurol
2003
;
62
:
1052
–9.
26
Ligon KL, Alberta JA, Kho AT, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas.
J Neuropathol Exp Neurol
2004
;
63
:
499
–509.
27
Wegner M. Expression of transcription factors during oligodendroglial development [review].
Microsc Res Tech
2001
;
52
:
746
–52.
28
Stolt CC, Schmitt S, Lommes P, Sock E, Wegner M. Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord.
Dev Biol
2005
;
281
:
309
–17.
29
Mariani L, Beaudry C, McDonough WS, et al. Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis.
J Neurooncol
2001
;
53
:
161
–76.
30
Leins A, Riva P, Lindstedt R, et al. Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma.
Cancer
2003
;
98
:
2430
–9.
31
Goldbrunner RH, Bernstein JJ, Tonn JC. ECM-mediated glioma cell invasion [review].
Microsc Res Tech
1998
;
43
:
250
–7.
32
Tran NL, McDonough WS, Donohue PJ, et al. The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors.
Am J Pathol
2003
;
162
:
1313
–21.
33
Duffy MJ, Maguire TM, McDermott EW, O'Higgins N. Urokinase plasminogen activator: a prognostic marker in multiple types of cancer [review].
J Surg Oncol
1999
;
71
:
130
–5.
34
Gondi CS, Lakka SS, Yanamandra N, et al. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis.
Oncogene
2003
;
22
:
5967
–75.
35
Muracciole X, Romain S, Dufour H, et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification.
Int J Radiat Oncol Biol Phys
2002
;
52
:
592
–8.
36
Rorive S, Belot N, Decaestecker C, et al. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma.
Glia
2001
;
33
:
241
–55. Erratum in: Glia 2001;35:166.
37
Wang H, Wang H, Shen W, et al. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes.
Cancer Res
2003
;
63
:
4315
–21.
38
Song SW, Fuller GN, Khan A, et al. IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion.
Proc Natl Acad Sci U S A
2003
;
100
:
13970
–5.
39
Pelloski CE, Mahajan A, Maor M, et al. YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma.
Clin Cancer Res
2005
;
11
:
3326
–34.
40
Pelloski CE, Ballman KV, Furth AF, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma.
J Clin Oncol
2007
;
25
:
2288
–94.
41
Pelloski CE, Lin E, Zhang L, et al. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma.
Clin Cancer Res
2006
;
12
:
3935
–41.
42
Nutt CL, Betensky RA, Brower MA, et al. YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas.
Clin Cancer Res
2005
;
11
:
2258
–64.
43
Donahue B, Scott CB, Nelson JS, et al. Influence of an oligodendroglial component on the survival of patients with anaplastic astrocytomas: a report of Radiation Therapy Oncology Group 83-02.
Int J Radiat Oncol Biol Phys
1997
;
38
:
911
–4.
44
Brandes AA, Tosoni A, Cavallo G, et al. Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study.
J Clin Oncol
2006
;
24
:
4746
–53. Epub 2006 Sep 5.
45
Hollingshead D, Lewis DA, Mirnics K. Platform influence on DNA microarray data in postmortem brain research.
Neurobiol Dis
2005
;
18
:
649
–55.

Supplementary data