Combination of chemotherapy with programmed cell death 1 (PD-1) blockade is a front-line treatment for lung cancer. However, it remains unknown whether and how chemotherapy affects the response of exhausted CD8 T cells to PD-1 blockade.

Experimental Design:

We used the well-established mouse model of T-cell exhaustion with chronic lymphocytic choriomeningitis virus (LCMV) infection to assess the effect of chemotherapy (cisplatin+pemetrexed) on T-cell response to PD-1 blockade, in the absence of the impact of chemotherapy on antigen release and presentation observed in tumor models.


When concomitantly administered with PD-1 blockade, chemotherapy affected the differentiation path of LCMV-specific CD8 T cells from stem-like to transitory effector cells, thereby reducing their expansion and production of IFNγ. After combination treatment, these restrained effector responses resulted in impaired viral control, compared with PD-1 blockade alone. The sequential combination strategy, where PD-1 blockade followed chemotherapy, proved to be superior to the concomitant combination, preserving the proliferative response of exhausted CD8 T cells to PD-1 blockade. Our findings suggest that the stem-like CD8 T cells themselves are relatively unaffected by chemotherapy partly because they are quiescent and maintained by slow self-renewal at the steady state. However, upon the proliferative burst mediated by PD-1 blockade, the accelerated differentiation and self-renewal of stem-like cells may be curbed by concomitant chemotherapy, ultimately resulting in impaired overall CD8 T-cell effector functions.


In a translational context, we provide a proof-of-concept to consider optimizing the timing of chemo-immunotherapy strategies for improved CD8 T-cell functions.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

Supplementary data