1	Title: A large-scal	le prospective con	ncordance study	of plasma-	and tissue-based
2	next-generation tar	rgeted sequencing	for advanced	non-small	cell lung cancer
3	(LC-SCRUM-Liqui	d)			

Akira Sugimoto^a, Shingo Matsumoto^a, Hibiki Udagawa^a, Ryo Itotani^b, Yuko Usui^a, 5 Shigeki Umemura^a, Kazumi Nishino^c, Ichiro Nakachi^d, Shoichi Kuyama^e, Haruko Daga^f, 6 Satoshi Hara^g, Shingo Miyamoto^h, Terufumi Katoⁱ, Jun Sakakibara-Konishi^j, Eriko 7 Tabata^k, Taku Nakagawa^l, Tomoya Kawaguchi^m, Tetsuya Sakai^a, Yuji Shibata^a, Hiroki 8 Izumi^a, Kaname Nosaki^a, Yoshitaka Zenke^a, Kiyotaka Yoh^a, Koichi Goto^a 9 10 ^a Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 11 12 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan ^b Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 13 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan. 14 ^c Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 15 16 Otemae, Chuo-ku, Osaka 541-8567, Japan.

- 17 ^d Department of Internal Medicine, Saiseikai Utsunomiya Hospital, 911-1
- 18 Takebayashimachi, Utsunomiya, Tochigi 321-0974, Japan

19	^e Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical
20	Center, 1-1-1 Atagomachi, Iwakuni, Yamaguchi 740-8510, Japan
21	^f Department of Medical Oncology, Osaka City General Hospital, 2-13-22
22	Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan
23	^g Department of Respiratory Medicine, Itami City Hospital, 1-100 Koyaike, Itami,
24	Hyogo 664-8540, Japan
25	^h Department of Medical Oncology, Japanese Red Cross Medical Center, 4-1-22 Hiroo,
26	Shibuya-ku, Tokyo 150-8935, Japan
27	ⁱ Department of Thoracic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku,
28	Yokohama, Kanagawa 241-8515, Japan.
29	^j Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University,
30	Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
31	^k Department of Respiratory Medicine, Ikeda City Hospital, 3-1-18 Johnan, Ikeda,
32	Osaka 563-8510, Japan.
33	¹ Department of Thoracic Surgery, Omagari Kosei Medical Center, 8-65
34	Omagaritorimachi, Daisen, Akita 014-0027, Japan.
35	^m Department of Respiratory Medicine, Graduate School of Medicine, Osaka City
36	University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.

37	
38	
39	Running Title (limit of 60 chracteristics including space)
40	Concordance of Plasma cfDNA Analysis in Prospective Cohort
41	
42	Keywords
43	Plasma cfDNA sequencing, Next-generation sequencing (NGS), Non-small cell lung
44	cancer (NSCLC), Concordance
45	
46	Corresponding author:
47	Shingo Matsumoto or Koichi Goto
48	Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1,
49	kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
50	E-mail: <u>shmatsum@east.ncc.go.jp</u> or <u>kgoto@east.ncc.go.jp</u>
51	Telephone number: +81-4-7133-1111
52	
53	
54	Declaration of interests

55	Dr. Sugimoto reports personal fees from Chugai Pharmaceutical Co, Ltd., outside the
56	submitted work. Dr. Matsumoto reports personal fees from AstraZeneca K.K., personal
57	fees from Chugai Pharmaceutical Co, Ltd., personal fees from ThermoFisher Scientific,
58	personal fees from RIKEN Genesis, personal fees from Guardant Health Inc., outside
59	the submitted work. Dr. Udagawa reports grants from Takeda Pharmaceutical Co., Ltd.,
60	outside the submitted work. Dr. Umemura reports personal fees from Chugai
61	Pharmaceutical Co, Ltd., outside the submitted work. Dr. Nishino reports personal fees
62	and other from AstraZeneca K.K., personal fees from Chugai Pharmaceutical Co, Ltd.,
63	personal fees and other from Pfizer Japan Inc., personal fees from Merck Biophama Co.,
64	Ltd, personal fees from Boehringer Ingelheim Japan, Inc., personal fees from Eli Lilly
65	Japan K.K., personal fees from Roche Diagnostics, personal fees from Novartis Pharma
66	K.K., outside the submitted work. Dr. Kuyama reports personal fees from AstraZeneca
67	K.K., personal fees from Chugai Pharmaceutical Co, Ltd., personal fees from Pfizer
68	Japan Inc., personal fees from MSD K.K., personal fees from Bristol-Myers Squibb
69	K.K., personal fees from Eli Lilly Japan K.K., personal fees from Taiho Pharmaceutical
70	Co., Ltd., personal fees from Boehringer Ingelheim Japan, Inc., outside the submitted
71	work. Dr. Daga reports personal fees from Chugai Pharmaceutical Co, Ltd., personal
72	fees from AstraZeneca K.K., personal fees from Eli Lilly Japan K.K, personal fees from

73	Ono Pharmaceutical Co. Ltd., outside the submitted work. Dr. Kato reports grants and
74	other from Abbvie, grants and other from Amgen K.K., grants, personal fees and other
75	from AstraZeneca K.K., grants and personal fees from Bristol-Myers Squibb K.K.,
76	grants, personal fees and other from Chugai Pharmaceutical Co, Ltd., grants, personal
77	fees and other from Eli Lilly Japan K.K., grants, personal fees and other from Merck
78	Biophama Co., Ltd, grants, personal fees and other from MSD K.K., grants, personal
79	fees and other from Novartis Pharma K.K., grants, personal fees and other from Ono
80	Pharmaceutical Co., Ltd., grants, personal fees and other from Pfizer Japan Inc., grants
81	and other from Taiho Pharmaceutical Co., Ltd., grants from Regeneron, personal fees
82	from Boehringer Ingelheim Japan, Inc., personal fees and other from Daiichi Sankyo
83	Co., Ltd., personal fees from Roche Diagnostics, other from Nippon Kayaku Co., Ltd.,
84	other from Takeda Pharmaceutical Co., Ltd., outside the submitted work. Dr.
85	Sakakibara-Konishi reports grants from Eli Lilly Japan K.K., outside the submitted
86	work. Dr. Nakagawa reports personal fees from AstraZeneca K.K., personal fees from
87	Chugai Pharmaceutical Co, Ltd., personal fees from Eli Lilly Japan K.K., personal fees
88	from Ono Pharmaceutical Co., Ltd., personal fees from Pfizer Japan Inc., personal fees
89	from Taiho Pharmaceutical Co., Ltd., personal fees from Boehringer Ingelheim Japan,
90	Inc., personal fees from MSD K.K., personal fees from Pfizer Japan Inc., outside the

91	submitted work. Dr. Kawaguchi reports personal fees from AstraZeneca K.K., personal
92	fees from Bristol-Myers Squibb K.K., personal fees from Chugai Pharmaceutical Co,
93	Ltd., personal fees from Eli Lilly Japan K.K., personal fees from Ono Pharmaceutical
94	Co., Ltd., personal fees from Pfizer Japan Inc., personal fees from Taiho Pharmaceutical
95	Co., Ltd., personal fees from Boehringer Ingelheim Japan, Inc., personal fees from
96	Astellas, personal fees from Kyorin, personal fees from Kyowa Hakko, outside the
97	submitted work. Dr. Sakai reports personal fees from AstraZeneca K.K., personal fees
98	from Chugai Pharmaceutical Co, Ltd., outside the submitted work. Dr. Shibata reports
99	personal fees from AstraZeneca K.K., grants and personal fees from Ono
100	Pharmaceutical Co., Ltd., personal fees from Pfizer Japan Inc., personal fees from
101	Bristol-Myers Squibb K.K., personal fees from Eli Lilly Japan K.K., outside the
102	submitted work. Dr. Izumi reports grants from Amgen Inc., personal fees from
103	AstraZeneca K.K., grants and personal fees from Ono Pharmaceutical Co. Ltd., outside
104	the submitted work. Dr. Nosaki reports personal fees from AstraZeneca K.K., personal
105	fees from Chugai Pharmaceutical Co, Ltd., personal fees and other from Pfizer Japan
106	Inc., personal fees from MSD K.K., personal fees from Bristol-Myers Squibb K.K.,
107	other from Eli Lilly Japan K.K., personal fees from Nippon Kayaku Co., Ltd., personal
108	fees from Ono Pharmaceutical Co., Ltd., personal fees from Taiho Pharmaceutical Co.,

109	Ltd., personal fees from Takeda Pharmaceutical Co., Ltd., other from Daiichi Sankyo
110	Co., Ltd., outside the submitted work. Dr. Zenke reports personal fees from
111	AstraZeneca K.K., personal fees from Ono Pharmaceutical Co., Ltd., personal fees from
112	Bristol-Myers Squibb K.K., personal fees from Eli Lilly Japan K.K., personal fees from
113	Chugai Pharmaceutical Co, Ltd., personal fees from Takeda Pharmaceutical Co., Ltd.,
114	personal fees from Boehringer Ingelheim Japan, Inc., outside the submitted work. Dr.
115	Yoh reports grants and personal fees from AstraZeneca K.K., personal fees from Chugai
116	Pharmaceutical Co, Ltd., grants from Pfizer Japan Inc., grants from MSD K.K.,
117	personal fees from Bristol-Myers Squibb K.K., grants and personal fees from Eli Lilly
118	Japan K.K., grants and personal fees from Taiho Pharmaceutical Co., Ltd., grants from
119	Takeda Pharmaceutical Co., Ltd., grants and personal fees from Daiichi Sankyo Co.,
120	Ltd., grants from Abbvie, personal fees from Janssen Pharmaceutical K.K., personal
121	fees from Novartis Pharma K.K., personal fees from Kyowa Kirin Co., Ltd., personal
122	fees from Boehringer Ingelheim Japan, Inc., outside the submitted work. Dr. Goto
123	reports grants from Merck Biophama Co., Ltd, grants from Takeda Pharmaceutical Co.,
124	Ltd., non-financial support from Guardant Health Inc., during the conduct of the study;
125	grants and personal fees from Amgen Astellas Biopharma K.K., grants and personal
126	fees from Amgen K.K., grants and personal fees from Boehringer Ingelheim Japan, Inc.,

127	grants and personal fees from Bristol-Myers Squibb K.K., grants and personal fees from
128	Bayer, grants and personal fees from Chugai Pharmaceutical Co, Ltd., grants and
129	personal fees from Daiichi Sankyo Co., Ltd., grants and personal fees from Eisai Co.,
130	Ltd., grants and personal fees from Eli Lilly Japan K.K., grants from Ignyta, Inc., grants,
131	personal fees and other from Janssen Pharmaceutical K.K., grants from KISSEI
132	PHARMACEUTICAL CO., LTD., grants and personal fees from Kyowa Kirin Co.,
133	Ltd., grants from Loxo Oncology, Inc., grants from MEDICAL & BIOLOGICAL
134	LABORATORIES CO., LTD., grants from Merck Biophama Co., Ltd, grants from
135	Merus N.V., grants and personal fees from MSD K.K., grants from NEC Corporation.,
136	grants and personal fees from Novartis Pharma K.K., grants and personal fees from Ono
137	Pharmaceutical Co., Ltd., grants and personal fees from Pfizer Japan Inc., grants from
138	Sumitomo Dainippon Pharma Co., Ltd., grants from Spectrum Pharmaceuticals, Inc.,
139	grants from Sysmex Corporation., grants from Haihe Biopharma Co., Ltd., grants and
140	personal fees from Taiho Pharmaceutical Co., Ltd., grants and personal fees from
141	Takeda Pharmaceutical Co., Ltd., grants from Turning Point Therapeutics, Inc.,
142	personal fees from Amoy Diagnosties Co., Ltd., personal fees from Guardant Health
143	Inc., personal fees from Life Technologies Japan Ltd., personal fees from Otsuka
144	Pharmaceutical Co., Ltd., outside the submitted work. The other authors declare no

147 Statement of translational relevance (150 words)

148 The extent to which extent plasma cfDNA sequencing can diagnose rare driver oncogenes has not been fully evaluated. Our large-scale study revealed the clinical 149 150 performance of plasma cfDNA sequencing, especially for the detection of a rare fraction 151 of oncogenic drivers. Plasma cfDNA sequencing in patients with advanced NSCLC had 152 a relatively high detectability for gene mutations, but a low detectability for gene 153 fusions and MET exon 14 skipping. Plasma cfDNA sequencing cannot fully 154 complement tissue assays in terms of detection of oncogenic alterations because the concordance was not high especially in fusions and MET exon 14 skipping. On the 155 156 other hand, when oncogenic alterations were detected by plasma cfDNA sequencing, they were useful for the selection of the corresponding genotype-matched therapy. 157 Plasma cfDNA sequencing may be an alternative assay only when a tissue assay is 158 159 unavailable due to insufficient DNA and RNA. 160

161 Abstract

162 Purpose: We evaluated plasma cell-free DNA (cfDNA) and tissue-based sequencing 163 concordance for comprehensive oncogenic driver detection in non-small cell lung 164 (NSCLC) using large-scale prospective screening cancer а cohort 165 (LC-SCRUM-Liquid). 166 Methods: Blood samples were prospectively collected within four weeks of

167 corresponding tumor tissue sampling from advanced NSCLC patients to investigate 168 plasma cfDNA sequencing concordance for alterations in eight oncogenes (*EGFR*, 169 *KRAS*, *BRAF*, *HER2*, *MET*, *ALK*, *RET*, and *ROSI*) compared to tissue-based 170 next-generation targeted sequencing.

171 Results: Paired blood and tissue samples were obtained in 1062/1112 enrolled NSCLC 172 patients. Oncogenic alteration was detected by plasma cfDNA sequencing and tissue 173 assay in 455 (42.8%) and 537 (50.5%) patients, respectively. The positive percent 174 agreement (PPA) of plasma cfDNA sequencing compared with tissue DNA and RNA 175 assays were 77% (EGFR, 78%; KRAS, 75%; BRAF, 85%; HER2, 72%) and 47% (ALK, 46%; RET, 57%; ROS1, 18%; MET 66%), respectively. Oncogenic drivers were positive 176 177 for plasma cfDNA and negative for tissue due to unsuccessful genomic analysis from 178 poor-quality tissue samples (70%), and were negative for plasma cfDNA and positive 179 for tissue due to low sensitivity of cfDNA analysis (61%). In patients with positive

180	oncogenic drivers by plasma cfDNA sequencing but negative by tissue assay, response
181	rate of genotype-matched therapy was 85% and median progression-free survival was
182	12.7 months.
183	Conclusions: Plasma cfDNA sequencing in advanced NSCLC patients showed
184	relatively high sensitivity for detecting gene mutations but low sensitivity for gene
185	fusions and MET exon 14 skipping. This may be an alternative only when tissue assay is
186	unavailable due to insufficient DNA and RNA.
187	
188	
189	Abbreviations
190	cfDNA: Cell-free DNA
191	NSCLC: Non-small cell lung cancer

- 192 PPA: Positive percent agreement
- 193 NGS: next-generation sequencing
- 194 CLIA: Clinical Laboratory Improvement Amendments
- 195 CAP: College of American Pathologists
- 196 OCA: Oncomine Comprehensive Assay
- 197 EDC: Electronic data capture

- 198 NPA: Negative percent agreement
- 199 PPV: Positive predictive value
- 200 NPV: Negative predictive value
- 201 PPV: Positive predictive value
- 202 NPV: Negative predictive value
- 203 OPA: Overall percent agreement
- 204 TAT: Turnaround time
- 205 PFS: Progression-free survival
- 206 cfRNA: cell-free RNA
- 207

209 Introduction

210 A variety of oncogenic drivers have been identified in non-small cell lung cancer 211 (NSCLC), and molecular targeted therapy has greatly improved the clinical outcomes of patients with oncogenic drivers¹. Plasma cell-free DNA (cfDNA) sequencing has been 212 213 developed as a less invasive method than conventional tissue genotyping for detecting 214 various genomic alterations. Some previous retrospective studies have examined the 215 concordance between plasma cfDNA sequencing and tissue genotyping. Previous small 216 studies (n = 72-287) reported positive percent agreement (PPA) of plasma cfDNA 217 sequencing compared with tissue genotyping as 58.8%-95.8% for EGFR mutations, 218 75.0% for KRAS G12X, 40.0%-100.0% for ALK fusions, and 33.3%-100.0% for BRAF V600E²⁻⁶. However, the concordance between plasma cfDNA sequencing and 219 220 tissue genotyping has not been evaluated in detail because these results are based on 221 smaller cohorts, and in particular, the number of patients with rare fractions of 222 oncogenic drivers was extremely low. Therefore, to evaluate the detectability of 223 oncogenic alterations in plasma cfDNA sequencing precisely, prospective comparative 224 analyses with the corresponding tumor tissue genotyping in a large-scale sample size 225 study are needed. We evaluated the concordance between plasma cfDNA sequencing 226 and tissue assays for the detection of oncogenic alterations in advanced NSCLC patients

Downloaded from http://acrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.CCR-22-1749/3212538/ccr-22-1749.pdf by guest on 23 April 2024

227 using a large-scale prospective study.

228	A large-scale lung cancer genomic screening project, LC-SCRUM-Asia, was started in
229	February 2013, and tissue genotyping was performed to identify lung cancer patients
230	with oncogenic drivers (UMIN number: 000010234 and 000036871) 7 . As of October
231	2021, more than 14,000 patients were already enrolled in this study.

232

233 Methods

234 Study design and patients

This liquid biopsy study, LC-SCRUM-Liquid, has been conducted as an additional 235 236 study in LC-SCRUM-Asia since December 2017. Blood samples were prospectively 237 collected from patients with advanced or recurrent NSCLC within four weeks of tissue 238 biopsy. Plasma cfDNA was extracted from blood samples and analyzed using 239 next-generation sequencing (NGS). The concordance of oncogenic drivers in plasma 240 cfDNA sequencing was evaluated, compared to tissue genotyping, which was 241 performed independently and blindly by plasma cfDNA sequencing. The clinical 242 outcomes of patients who received genotype-matched therapy, were also prospectively 243 investigated.

244 Patients who met the following eligibility criteria were enrolled: 1) above the age of

245	20; 2) with histologically/cytologically-confirmed NSCLC; 3) clinical stage III or, IV, or
246	recurrence; 4) diseases were unsuitable for operation or thoracic radiotherapy, but
247	suitable for chemotherapy; 5) chemonaive or one or two prior systemic treatments for
248	lung cancer, 6) already enrolled in LC-SCRUM-Asia, and 7) with blood samples taken
249	within four weeks after tissue sample biopsy.
250	LC-SCRUM-Asia and LC-SCRUM-Liquid were approved by the Institutional Review
251	Board of the National Cancer Center (approval number 2012-257 and 2017-222,
252	respectively) and by each institution participating in these studies. Written informed
253	consent was obtained from all the patients. Our studies were conducted in accordance
254	with the guidelines for medical and health research involving human subjects specified
255	in the Declaration of Helsinki.

257 Plasma-based NGS assay

Blood samples, collected using a blood collection tube, Streck Cell-Free DNA BCT
(Streck Corporate, NE), were submitted to Guardant Health, a Clinical Laboratory
Improvement Amendments (CLIA)-certified, and College of American Pathologists
(CAP)-accredited laboratory, and was subjected to plasma cfDNA sequencing, Guardant
360 panel (Guardant Health, CA), targeting 73 (until April in 2019) or 74 (afterward)

265 Tissue-based NGS assay

266 Tissue samples were mainly collected from previously untreated patients. Tissue genotyping was performed within LC-SCRUM-Asia. Tumor tissue analysis was mainly 267 268 performed using fresh frozen biopsy samples. Tissue samples were submitted to a 269 CLIA-certified clinical laboratory (SRL Incorporation, Tokyo, Japan). DNA and RNA 270 extracted from the tissue samples were subjected to a tissue-based NGS assay, 271 Oncomine Comprehensive Assay (OCA) version 1 or 3 (Thermo Fisher Scientific, MA), 272 targeting 143 (version 1) or 161 (version 3) cancer-related genes. In this assay, gene 273 mutations were analyzed by DNA assay, and fusions and MET exon 14 skipping were analyzed by RNA assay. 274

275

276 Clinical data capturing

277 Clinical data of patients were collected using an electronic data capture (EDC) system
278 of LC-SCRUM-Asia. The patients' baseline characteristics were collected when the
279 patients were enrolled in LC-SCRUM-Asia, and follow-up clinical data, including the
280 start dates of systemic anti-cancer drug therapy, therapeutic regimens, tumor responses,

281 dates of disease progression, and prognosis, were periodically collected.

282

283 Statist	ical analysis
-------------	---------------

284	Mutations in EGFR, KRAS, BRAF, HER2, NRAS, HRAS, AKT1, and MAP2K1, fusions
285	in ALK, RET, ROS1, and FGFR3, and MET exon 14 skipping, were defined as
286	targetable gene alterations. Among these targetable gene alterations, the concordance for
287	alterations of eight oncogenic drivers (mutations of EGFR [insertion, deletion and
288	missense mutation in exons 18-21]; KRAS [G12X, G13X, and Q61X]; BRAF [V600E];
289	and HER2 [insertions in exon 20]: fusions of ALK, RET, and ROS1; and MET exon 14
290	skipping) in plasma cfDNA sequencing was assessed by estimating PPA, negative
291	percent agreement (NPA), positive predictive value (PPV), negative predictive value
292	(NPV) and overall percent agreement (OPA) of plasma cfDNA sequencing compared to
293	the results of the tissue assays. These concordance analyses were performed in variants
294	of the eight oncogenic drivers, which were covered by both the two assays.
295	Turnaround time (TAT) was defined as the duration from sample submission to
296	reporting the sequencing results, and the results of plasma cfDNA sequencing and tissue
297	assay were compared using the Wilcoxon sum rank test.

298 The Kaplan-Meier method was used to estimate the progression-free survival (PFS) of

300	Center, Jichi Medical University, Japan) was used for the statistical analyses.

patients who received genotype-matched therapy. EZR software (Saitama Medical

301

299

302	Role	of the	funding	source

- 303 The funder of LC-SCRUM-Liquid and LC-SCRUM-Asia had no role in the study
- design, data collection, data analysis, data interpretation, or writing of the report.

305

306	Data	anail	lai	hii	lin.
300	Data	avan	u	ווע	шy

The data generated in this study are available upon reasonable request from the corresponding author. The request is reviewed by research group whether if it is able to approve.

310

311 Results

```
312 Patient characteristics
```

313 From December 2017 to January 2021, 1,112 patients with advanced or recurrent

314 NSCLC were enrolled in LC-SCRUM-Liquid. Of these, 1,065 paired blood and tissue

- 315 samples were available for this study analyses. Three patients who were ineligible for
- 316 inclusion were excluded. Thus, 1,062 patients (95%) were analyzed in this study

318	The patient characteristics are shown in Table 1. The median age was 69 years (range:
319	25–91). The majority were male (61%), smokers (69%), and had stage IV disease (80%).
320	Almost all the patients were previously untreated (93%). The histology of tumors
321	comprised 77% adenocarcinoma, 14% squamous cell carcinoma and other NSCLCs.
322	Number of metastatic sites was 0 in 14%, 1 in 33%, 2 in 22%, 3 or more in 15%. There
323	were brain metastasis in 17%, pulmonary metastasis in 31%, pleural dissemination or
324	pleural effusion in 24%, liver metastasis in 6%, adrenal metastasis in 7%, and bone
325	metastasis in 24%. Tissue samples for tissue assays were mainly obtained as fresh
326	frozen (90%) and from primary lung tumor (60%), metastatic sites (29%), or pleural
327	effusion (11%).

329 Availability of genomic analysis and detection of oncogenic alterations

330 The success rates of genomic analysis by plasma cfDNA sequencing and tissue assay

331 were 91% (964/1,062) and 97% (1,025/1,062), respectively. TAT in plasma cfDNA

- sequencing was significantly shorter than that in the tissue assay (10 days [range: 6–27]
- 333 vs. 22 days [range: 12-57], p < 0.01).
- 334 In plasma cfDNA sequencing, targetable gene alterations were detected in 473 patients

335	(44.5%). Of these, the number of eight oncogenic alterations were 255 <i>EGFR</i> mutations
336	(24.0%), 129 KRAS mutations (12.1%), 10 HER2 exon 20 insertions (0.9%), 7 BRAF
337	V600E mutation (0.7%), 26 ALK fusions (2.4%), 9 RET fusions (0.8%), 3 ROS1 fusion
338	(0.3%), and 16 MET exon 14 skipping (1.5%) (Figure 1A). In contrast, eight oncogenic
339	alterations were detected by tissue assay in 549 patients (51.6%). There were 281 EGFR
340	mutations (26·4%), 145 KRAS mutations (13·6%), 11 HER2 exon 20 insertions (1·0%),
341	7 BRAF V600E mutation (0.7%), 45 ALK fusions (4.2%), 14 RET fusions (1.3%), 16
342	<i>ROS1</i> fusion (1.5%), and 18 <i>MET</i> exon 14 skipping (1.7%) in tissue assay (Figure 1B).
343	Among 147 patients with squamous cell carcinoma, targetable gene alterations were
344	detected in 19 patients (12.9%) by plasma cfDNA sequencing, and in 16 patients
345	(10.8%) by tissue assay (Supplementary Figure S2). One of the eight oncogenic
346	alterations was detected by plasma cfDNA sequencing or tissue assay in 18 patients
347	with squamous cell carcinoma; 8 EGFR mutations, 6 KRAS mutations, 1 ALK fusion, 3
348	MET exon 14 skipping (Supplementary Table S1).
349	

350 *Concordance between plasma cfDNA sequencing and tissue assay*

351 As shown in Figure 2A, the overall PPA of plasma cfDNA sequencing was 72%

352 (389/537). Other performance indexes of plasma cfDNA sequencing were as follows:

- 353 NPA, 87% (459/525); PPV, 85% (389/455), NPV, 75% (459/607); and OPA, 79%
 354 (848/1,062) (Supplementary Table S2).
- For the DNA assay, PPA of plasma cfDNA sequencing was 78% (345/444) (Figure 2A):
- 356 EGFR, 78% (221/281); KRAS, 75% (110/145); BRAF, 85% (6/7); HER2, 72% (8/11)
- 357 (Figure 2B). Other performance indexes of plasma cfDNA sequencing for DNA assay
- 358 were as follows, NPA, 90% (562/618); PPV, 86% (345/401), NPV, 85% (562/661); OPA,
- 359 85% (907/1062) (Supplementary Table S2).
- 360 For the RNA assay, PPA of plasma cfDNA sequencing was 47% (44/93) (Figure 2A):
- 361 MET exon14 skipping, 66% (12/18); ALK, 46% (21/45); ROS1, 18% (3/16); RET, 57%
- 362 (8/14) (Figure 2B). Other performance indexes of plasma cfDNA sequencing were as
- 363 follows: NPA, 98% (959/969); PPV, 81% (44/54); NPV, 95% (959/1,008); and OPA,
- 364 94% (1,003/1,062) (Supplementary Table S2).
- The breakdown of discordant results between plasma cfDNA sequencing and tissue assays is shown in Figure 3. Among the 1,062 patients, 389 showed concordant results between each assay. Among patients with oncogenic alterations detected by plasma cfDNA sequencing only, the results of tissue assay were unavailable due to unsuitable tissue samples in 70% (46/66) and no detection of oncogenic alterations in only 30% (20/66); among patients with oncogenic alterations detected by tissue assay only, the

371 results of plasma cfDNA sequencing showed no detection of oncogenic alterations in
372 61% (90/148).

373

374 Patient characteristics and concordance between plasma cfDNA sequencing and tissue
375 assay

376 To investigate whether if there were any subpopulations in which plasma cfDNA 377 sequencing was more sensitive, we evaluated PPA of plasma cfDNA sequencing 378 according to patient characteristics. PPA of plasma cfDNA sequencing was similar 379 regardless of smoking status (p = 0.84), stage (p = 0.47) or histology (p = 1.00), and 380 higher in patients with 3 or more metastatic sites than in those with 2 or less metastatic 381 sites (0, 69%; 1, 63%, 2, 71%; 3 or more, 87%) (p < 0.01) (Supplementary Figure S3). 382 383 Metastatic sites and concordance between plasma cfDNA sequencing and tissue assay We also evaluated metastatic site and PPA of plasma cfDNA sequencing to identify 384 385 subpopulations in which plasma cfDNA sequencing was more preferable. PPA was 386 higher in patients who had brain metastasis (Brain +, 80%; Brain -, 68%) (p = 0.01), 387 liver metastasis (Liver +, 88%; Liver -, 69%) (p = 0.01), adrenal metastasis (Adrenal +, 388 90%; Adrenal -; 69%) (p = 0.01), and bone metastasis (Bone +, 85%; Bone-, 63%) (p < 0.01) 389 0.01), and was not different between patients with and without lung metastasis (p =

- 0.59), or pleural dissemination and effusion (p = 0.05) (Supplementary Figure S4).
- There were 54 patients whose distant metastasis was present only in brain. In the 54 patients, PPA of plasma cfDNA sequencing was not different between mutation detection and fusion/exon skipping detection (60% [12/20] vs. 62% [5/8]) (p = 1.00)
- 394 (Supplementary Table S3).
- 395

396 Clinical outcomes of patients treated with genotype-matched therapy based on plasma

397 *cfDNA sequencing and tissue assay*

398 To clarify whether oncogenic alterations detected by plasma cfDNA sequencing are correctly diagnosed and accurately reflect the efficacy of genotype-matched therapy, we 399 400 analyzed the clinical outcomes of patients treated with genotype-matched therapy based on plasma cfDNA sequencing and tissue assays. Clinical outcome data of 115 patients 401 402 treated with genotype-matched therapy were available. Among these patients, the 403 oncogenic alterations were detected only by tissue assay in 31 patients (T group), by 404 both tissue assay and plasma cfDNA sequencing in 71 patients (TP group), and only by 405 plasma cfDNA sequencing in 13 patients (P group). The median PFS of T, TP, P groups were 23.0 months (95% confidence interval [CI]: 12.4 - not reached [NR]); 12.4 406

407	months (95% CI: $9 \cdot 1 - 16 \cdot 3$); and $12 \cdot 7$ months (95% CI: $5 \cdot 0 - 13 \cdot 5$), respectively (Figure
408	4A). Therefore, the median PFS for each group was > 12 months. The median PFS of
409	the T and P groups was not inferior to that of the TP group. In 13 patients in the P group,
410	in which tissue samples were unsuitable for genomic analysis due to insufficient
411	quantity or quality of the DNA, RNA or both, the response rate of genotype-matched
412	therapy was 85% (11/13) (Supplementary Table S4).
413	As for patients with EGFR mutations, there were 19, 63, 11 patients in the T, TP, P
414	groups, respectively. In the treatment with EGFR-TKIs, the median PFS of the T, TP, P
415	groups was 23.0 months (95% CI: $4.7 - NR$); 10.4 months (95% CI: $7.8-15.0$); and
416	12.7 months (95% CI: 5.0–13.5), respectively (Figure 4B). The median PFS of the T
417	and P groups was not inferior to that of the TP group.
418	
419	Discussion
420	To our knowledge, this is the largest prospective concordance study for plasma cfDNA
421	sequencing, in which tissue- and plasma-based NGS assays were simultaneously
422	performed in advanced NSCLC patients. The within four-week interval for the tissue
423	and plasma sample collections for all patients made the accurate evaluation of the
424	concordance possible. Moreover, this study included 74 patients with rare fractions of

425	oncogenic drivers, such as BRAF V600E (n = 8), HER2 exon 20 insertions (n = 13),
426	MET exon 14 skipping (n = 22), and fusions of ROS1 (n = 16) and RET (n = 15). For
427	concordance analysis, previous studies included only a few patients with rare fractions
428	of oncogenic drivers, such as <i>BRAF</i> V600E mutation, <i>ROS1</i> fusions, and <i>RET</i> fusions ²⁻⁶ .
429	This large-scale study enabled us to evaluate the clinical performance of plasma cfDNA
430	sequencing, especially for detecting a rare fraction of oncogenic drivers, which had not
431	been previously proven precisely.
432	Previous reports have shown that the PPA of plasma cfDNA sequencing compared to
433	tissue assay was 58.8% – 95.8% for EGFR mutations, and 40% – 100% for ALK fusions
434	²⁻⁶ . However, these reports were not sufficient to evaluate the PPA of plasma cfDNA
435	sequencing accurately because the studies were mostly conducted retrospectively, and
436	they excluded tissue or plasma samples that were unavailable due to insufficient DNA
437	or RNA. In this study, the PPA of plasma cfDNA sequencing was 72%-85% for
438	mutations in EGFR, KRAS, HER2, or BRAF, and 18%-57% for fusions in ALK, RET, or
439	ROS1 compared to those of tissue assays. We reveal that the detection of oncogenic
440	alterations by plasma cfDNA sequencing was not as sensitive as previously reported but
441	was inferior to that by tissue assay. In particular, the PPA of plasma cfDNA sequencing
442	for gene fusions against tissue RNA assay was extremely low (less than 60%) compared

443	to that for mutations against tissue DNA assay in our study. In a prospective report, the
444	PPA of plasma cfDNA sequencing compared to tissue assay was 81.8% –90% for EGFR
445	mutations, and 62.5% for ALK fusions ³ . PPA of plasma cfDNA sequencing in gene
446	fusions was reported to be lower than that in gene mutations, because gene fusions
447	include various variants and the capture of fusion DNA fragments is technically difficult
448	due to the low capturing efficiency and shortness of cfDNA fragments, as indicated in a
449	previous report ⁸ . ROS1 fusion is known to have many partner genes compared with
450	ALK and RET fusions; therefore, the poor detectability of ROS1 fusion in plasma
451	cfDNA sequencing (PPA, 18%) might also be caused by the existence of various variant
452	types. In addition, bioinformatic technologies could also influence the detectability of
453	gene fusions. A previous study demonstrated that PPA of plasma cfDNA sequencing for
454	ALK fusions was improved by updating bioinformatic systems for fusion detection 3,9 .
455	Plasma cell-free RNA (cfRNA) analysis also showed a higher sensitivity for detecting
456	fusion genes than plasma cfDNA sequencing (cfRNA, 78%; cfDNA, 33%) ¹⁰ . Thus,
457	detection sensitivity for fusions in plasma cfDNA sequencing could be improved by
458	further advances in technology, including DNA capturing methods, bioinformatics and
459	plasma cfRNA analysis.

460 There were some discordant results between plasma cfDNA sequencing and tissue

461	assays. The main discordant reasons, in which oncogenic alterations were positive by
462	plasma cfDNA sequencing and negative by tissue assay, were due to the unavailability
463	of tissue samples because of the insufficient quality or quantity of DNA or RNA. When
464	the quality and quantity of tissue samples are acceptable for genomic analysis and the
465	results of tissue assays are negative, plasma cfDNA sequencing does not provide
466	additional information because oncogenic alterations are rarely detected by plasma
467	cfDNA sequencing. Therefore, plasma cfDNA sequencing could be useful for detecting
468	oncogenic alterations only when tissue assay is unavailable.
469	The utility of biomarker-matched precision medicine based on plasma cfDNA

sequencing has not been well investigated. In particular, the efficacy of 470 471 genotype-matched therapy in patients whose oncogenic drivers are detected only by plasma cfDNA sequencing is not fully understood, although one previous study reported 472 the responses to plasma genotype-matched therapy ¹¹. Our study also demonstrated that, 473 in 13 patients with oncogenic alterations identified only by plasma cfDNA sequencing, 474 475 the corresponding genotype-matched therapy showed robust clinical activities. Moreover, the median PFS of patients with oncogenic alterations detected only by 476 plasma cfDNA sequencing was over 12 months. These data were comparable to the 477 median PFS of patients treated with tissue genotype-matched therapy ¹²⁻¹⁵. However, the 478

479	median PFS of patients with oncogenic alterations detected only by plasma cfDNA
480	sequencing tended to be shorter than that of patients with oncogenic alterations detected
481	only by tissue assay. This is because patients with oncogenic alterations detected by
482	plasma cfDNA sequencing often have more advanced cancers and a higher tumor
483	burden ^{11, 16} . Indeed, higher positivity by cfDNA sequencing was demonstrated in
484	patients with 3 or more metastatic sites, and in patients with brain, liver, adrenal or bone
485	metastasis in the present study. Our results suggest that oncogenic alterations detected
486	by plasma cfDNA sequencing are genuine for selecting the corresponding
487	genotype-matched therapy. Therefore, treatments selected using plasma cfDNA
488	sequencing could be suitable for advanced NSCLC patients, especially when tissue
489	assays are unavailable. To further validate the clinical utility of plasma cfDNA
490	sequencing, we are presently conducting prospective umbrella trials of
491	genotype-matched therapy stratified based on this liquid biopsy study (JapicCTI
492	number: JapicCTI-205154 and JapicCTI-205155).
493	This study has some limitations. First, although our study was large-scaled, patients
494	with oncogenic alterations in HER2, BRAF, MET, RET, or ROS1 were only 74 in total.
495	Accurate evaluation of concordance in rare fractions of oncogenic alterations was

496 limited even in this large-scale analysis, and it requires larger-scale concordance studies

497 with over 10,000 patients. Second, the efficacy of genotype-matched therapy in each498 patient was evaluated by investigators in clinical practice.

499 In conclusion, plasma cfDNA sequencing in advanced NSCLC patients had a relatively 500 high detectability for gene mutations but a lower detectability for gene fusions and MET 501 exon 14 skipping. Our data indicated that plasma cfDNA sequencing could not fully 502 replace tissue assays for oncogenic alterations detection. However, when positive results 503 are obtained, plasma cfDNA sequencing has a diagnostic value equivalent to that of the 504 tissue assay in predicting the efficacy of genotype-matched therapy for plasma 505 oncogenic-driver-positive patients. Therefore, plasma cfDNA sequencing can be a 506 promising alternative to tissue genotyping when the tissue is unavailable because of 507 insufficient DNA/RNA. Further, new technologies for plasma cfDNA sequencing could 508 improve its clinical utility for NSCLC. 509

510 Acknowledgements

511

512 Murata, Ms. Akiko Iizuka, and PREMIA Inc. for administrative assistance in managing 513 clinical molecular and clinico-genomic samples, screening database in 514 LC-SCRUM-Liquid and LC-SCRUM-Asia. 515 LC-SCRUM-Liquid was funded by Guardant Health, Inc., Merck Biopharma Co., 516 Limited. and Takeda Pharmaceutical Company., Limited. This work was supported by the National Cancer Center Research and Development Fund 28-A-6 (K.G.), and 517 518 31-A-5 (Atsushi Ohtsu), AMED Grant Number JP21ck0106289 (K.G.), JP21ck0106568 519 (K.G.), JP17Ack0106148 (K.G.), JP21ck0106294 (K.Y.), JP21ck0106483 (K.No.), 520 JP20ck0106411 (S.Ma.), JP20ck0106449 (Isamu Okamoto), JP20ck0106450 521 (Seiji.Niho.), JP20ak0101050 (Katsuya Tsuchihara), JP18Ik0201056 (A.O.), 522 JP18kk0205004 (Hitoshi Nakagama), and JP17Ack0106147 (Seiji Yano). Tissue NGS 523 analysis in LC-SCRUM-Asia was supported by Amgen, Astellas, AstraZeneca, 524 Boehringer Ingelheim, Bristol-Myers Squibb, Chugai, Daiichi Sankyo, Eisai, Janssen, 525 Kyowa Kirin, Lilly, Merck, MEDICAL & BIOLOGICAL LABORATORIES, MSD, 526 Novartis, Ono, Pfizer, Sumitomo Dainippon, Taiho, and Takeda. 527

We are grateful to participating patients and their families. We also thank Ms. Yuri

- 529 Akira Sugimoto: Data curation, Formal analysis, Investigation, Resources, Visualization, Writing -
- 530 Original Draft.
- 531 Shingo Matsumoto: Conceptualization, Funding acquisition, Investigation, Methodology, Project
- administration, Resources, Supervision, Writing Review & Editing.
- 533 Hibiki Udagawa, Kazumi Nishino, Ichiro Nakachi, Shoichi Kuyama, Haruko Daga, Satoshi Hara, Shingo
- 534 Miyamoto, Terufumi Kato, Jun Sakakibara-Konishi, Eriko Tabata, Taku Nakagawa, Tetsuya Sakai, Yuji
- 535 Shibata, Hiroki Izumi, Yoshitaka Zenke: Investigation, Resources, Writing Review & Editing.
- 536 Ryo Itotani, Yuko Usui, Shigeki Umemura: Conceptualization, Investigation, Methodology, Resources,
- 537 Writing Review & Editing.
- 538 Tomoya Kawaguchi: Writing Review & Editing.
- 539 Kaname Nosaki, Kiyotaka Yoh: Funding acquisition, Investigation, Resources, Writing Review &
- 540 Editing.
- 541 Koichi Goto: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration,
- 542 Resources, Supervision, Writing Review & Editing.
- 543 AS and SMa have directly accessed and verified the underlying data.
- 544

546 **Reference**

Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers
 in lung cancers to select targeted drugs. *Jama* 2014;311:1998-2006.

549 2. Liu L, Liu H, Shao D, et al. Development and clinical validation of a circulating
550 tumor DNA test for the identification of clinically actionable mutations in nonsmall cell
551 lung cancer. *Genes Chromosomes Cancer* 2018;57:211-220.

Leighl NB, Page RD, Raymond VM, et al. Clinical Utility of Comprehensive Cell-free
 DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic
 Non-small Cell Lung Cancer. *Clin Cancer Res* 2019;25:4691-4700.

Palmero R, Taus A, Viteri S, et al. Biomarker Discovery and Outcomes for
 Comprehensive Cell-Free Circulating Tumor DNA Versus Standard-of-Care Tissue Testing in
 Advanced Non-Small-Cell Lung Cancer. JCO Precision Oncology 2021:93-102.

Tran HT, Lam VK, Elamin YY, et al. Clinical Outcomes in Non-Small-Cell Lung Cancer
 Patients Treated With EGFR-Tyrosine Kinase Inhibitors and Other Targeted Therapies Based
 on Tumor Versus Plasma Genomic Profiling. *JCO Precis Oncol* 2021;5.

561 6. Park S, Olsen S, Ku BM, et al. High concordance of actionable genomic alterations
562 identified between circulating tumor DNA-based and tissue-based next-generation
563 sequencing testing in advanced non-small cell lung cancer: The Korean Lung Liquid Versus
564 Invasive Biopsy Program. *Cancer* 2021;127:3019-3028.

7. Yokoyama T, Matsumoto S, Yoh K, et al. Development of nationwide genomic screening
project (LC-SCRUM-Japan) contributing to the establishment of precision medicine in Japan. *Journal of Clinical Oncology* 2016;34:9089-9089.

Wang Y, Tian PW, Wang WY, et al. Noninvasive genotyping and monitoring of
 anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer by capture-based
 next-generation sequencing. *Oncotarget* 2016;7:65208-65217.

Supplee JG, Milan MSD, Lim LP, et al. Sensitivity of next-generation sequencing
 assays detecting oncogenic fusions in plasma cell-free DNA. *Lung Cancer* 2019;134:96-99.
 Hasegawa N, Kohsaka S, Kurokawa K, et al. Highly sensitive fusion detection using

plasma cell-free RNA in non-small-cell lung cancers. *Cancer Sci* 2021;112:4393-4403.

Aggarwal C, Thompson JC, Black TA, et al. Clinical Implications of Plasma-Based
Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung
Cancer. JAMA Oncol 2019;5:173-180.

578 12. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment 579 for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL,

580 CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol

581 2011;12:735-742.

Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line
therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR
mutations (J025567): an open-label, randomised, multicentre, phase 2 study. *Lancet Oncol*2014;15:1236-1244.

586 14. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in Untreated EGFR-Mutated
587 Advanced Non-Small-Cell Lung Cancer. *N Engl J Med* 2018;378:113-125.

588 15. Nakagawa K, Hida T, Nokihara H, et al. Final progression-free survival results
589 from the J-ALEX study of alectinib versus crizotinib in ALK-positive non-small-cell lung
590 cancer. Lung Cancer 2020;139:195-199.

59116.Gray JE, Okamoto I, Sriuranpong V, et al. Tissue and Plasma EGFR Mutation Analysis592in the FLAURA Trial: Osimertinib versus Comparator EGFR Tyrosine Kinase Inhibitor as

593 First-Line Treatment in Patients with EGFR-Mutated Advanced Non-Small Cell Lung Cancer.

594 *Clin Cancer Res* 2019;25:6644–6652.

595

596

597

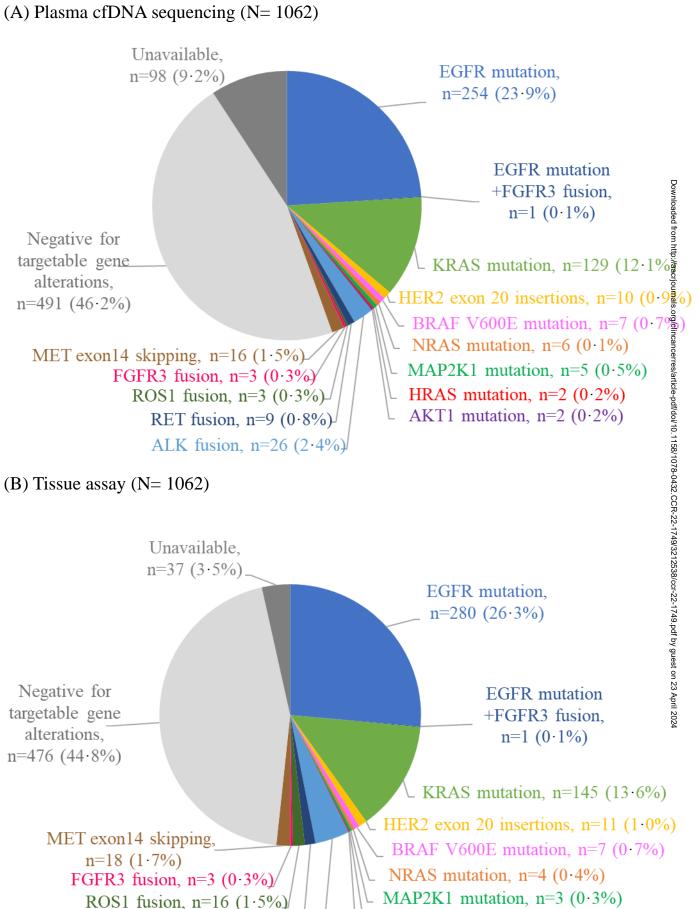
598

599

600

603 and tissue assay (B).

604 (A) Plasma cfDNA sequencing (N= 1062)

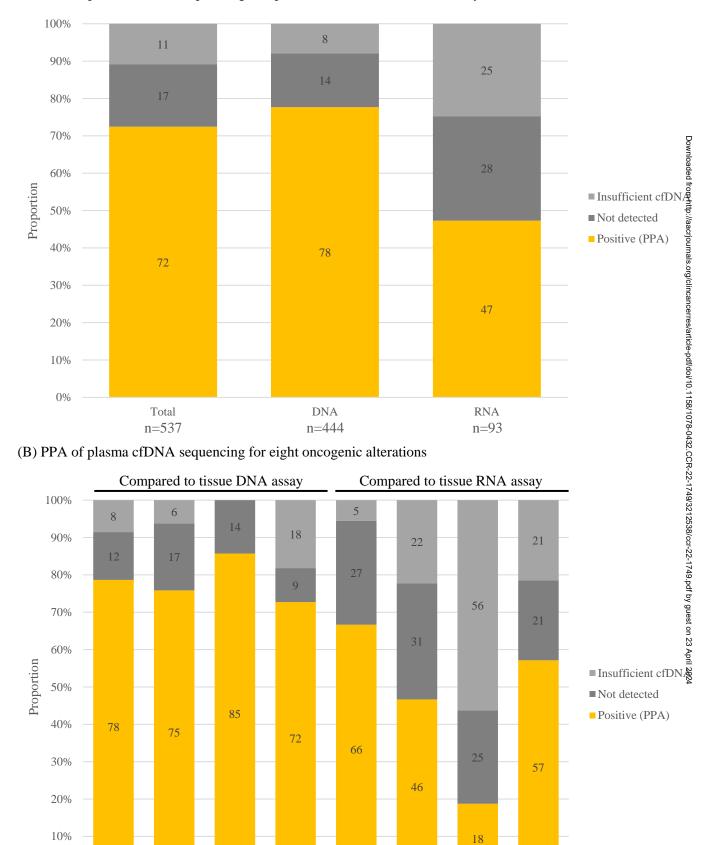

605 (B) Tissue assay (N=1062)

⁶⁰¹ Figure captions

⁶⁰² Figure 1. Frequency of the targetable gene alterations detected by plasma cfDNA sequencing (A)

607	Figure 2. Positive percent agreement of plasma cfDNA sequencing compared to tissue assay.
608	PPA, positive percent agreement.
609	
610	(A) PPA of plasma cfDNA sequencing compared to tissue DNA or RNA assays
611	(B) PPA of plasma cfDNA sequencing for eight oncogenic alterations
612	
613	Figure 3. Discordant cases between plasma cfDNA sequencing and tissue assay
614	
615	Figure 4. Progression-free survival of patients treated with genotype-matched therapy (A), and
616	EGFR-TKI(B) according to the results of plasma cfDNA sequencing and tissue assay.
617	(A) Genotype-matched therapy

618 (B) EGFR-TKI



S1 fusion, n=16 (1 · 5%) RET fusion, n=14 (1 · 3%) ALK fusion, n=45 (4 · 2%)

L HRAS mutation, n=1 (0.1%)

AKT1 mutation, n=1(0.1%)

Figure 2. Positive percent agreement of plasma cfDNA sequencing compared to tissue assay. PPA, positive percent agreement.

HER2

n=11

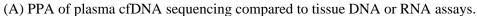
MET

n=18

ROS1

n=16

ALK

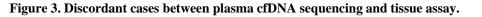

n=45

RET

n=14

BRAF

n=7

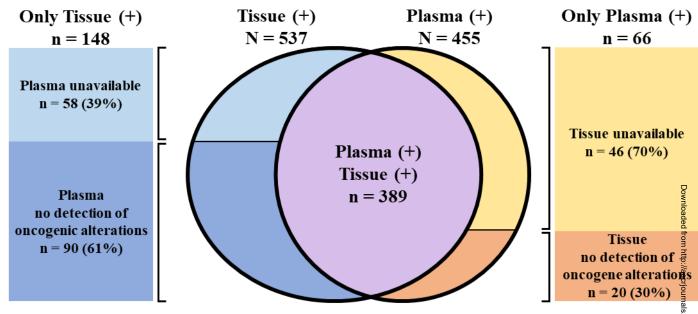
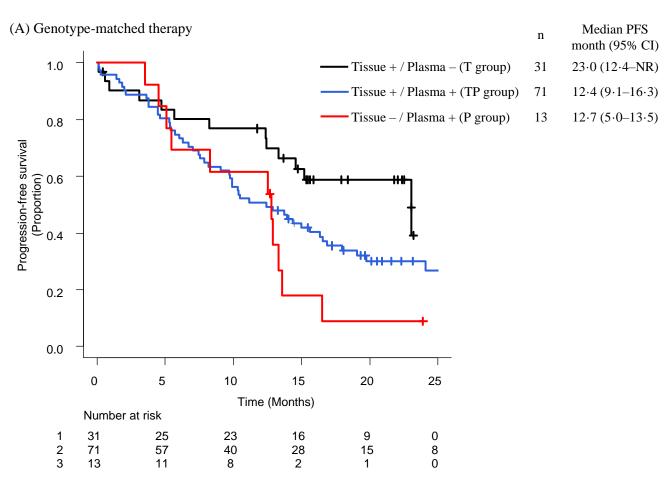

0%

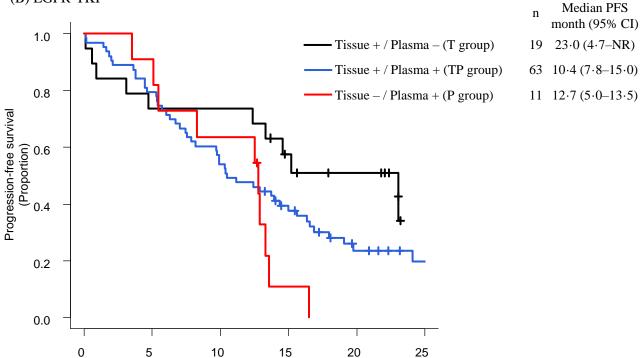
EGFR

n=281

KRAS

n=145


Figure 4. Progression-free survival of patients treated with genotype-matched therapy (A), and EGFR-TKI(B) according to the results of plasma cfDNA sequencing and tissue assay.

Downloaded from http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.CCR-22-1749/3212538/ccr-22-1749.pdf by guest on 23 April 2024

(B) EGFR-TKI

Number at risk

Time (Months)

Table1 Patient characteristics

Age, median (range), years 69 (25-91) Sex, n (%) Male 644 (61) Female 418 (39) Smoking history, n (%) Never 324 (31) Current or former 733 (69) Unknown ECOG-PS, n (%) 0 419 (39) 1 643 (61) Stage, n (%) 0 419 (39) 1 1 643 (61) Stage, n (%) 0 419 (39) 1 1 643 (61) Stage, n (%) 0 419 (39) 1 III 152 (14) IV Recurrence 59 (6) ELine of therapy, n (%) 0 922 (93) 1-2 1 20 922 (93) 1-2 70 (7) Histology, n (%) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) 0 149 (14) 0 151 (14) 1 1 348 (33) 2 2 35 (22) 3 3 or mo	Characteristics	Total (N	=1062)
Male 644 (61) Female 418 (39) Smoking history, n (%)	Age, median (range), years	69	(25-91)
Female 418 (39) Smoking history, n (%) 324 (31) Never 324 (31) Current or former 733 (69) Unknown 5 (0.4) ECOG-PS, n (%)	Sex, n (%)		
Smoking history, n (%) 324 (31) Never 324 (31) Current or former 733 (69) Unknown 5 (0-4) ECOG-PS, n (%) 419 (39) 0 419 (39) 1 63 (61) Stage, n (%) 1 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 92 (93) 0 92 (93) 1-2 70 (7) Histology, n (%) 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 9 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 9 Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand <td>Male</td> <td>644</td> <td>(61)</td>	Male	644	(61)
Never 324 (31) Current or former 733 (69) Unknown 5 (0-4) ECOG-PS, n (%) 419 (39) 1 63 1 61 Stage, n (%) 11 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 92 (93) 1-2 70 (7) Histology, n (%) 418 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 1 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stie of Metastasis, n (%) 174 (16) Stie of Metastasis, n (%) 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24)	Female	418	(39)
Current or former 733 (69) Unknown 5 (04) ECOG-PS, n (%) 419 (39) 1 643 (61) Stage, n (%) 11 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 0 Q 922 (93) 1-2 70 (7) Histology, n (%) 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 Q 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stite of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Liver of tissue biopsy, n (%) 25	Smoking history, n (%)		
Unknown 5 (0.4) ECOG-PS, n (%) 419 (39) 0 419 (39) 1 643 (61) Stage, n (%) 1 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 0 0 992 (93) 1-2 70 (7) Histology, n (%) 419 (14) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stie of Metastasis, n (%) 174 (16) Stie of Metastasis, n (%) 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone	Never	324	(31)
ECOG-PS, n (%) 419 (39) 1 643 (61) Stage, n (%) 1 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 1-2 70 (7) Histology, n (%) 449 (14) Adenocarcinoma 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 1 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90) <td>Current or former</td> <td>733</td> <td>(69)</td>	Current or former	733	(69)
0 419 (39) 1 643 (61) Stage, n (%) 1 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 1-2 70 (7) Histology, n (%) 70 (7) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 95 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stite of Metastasis, n (%) 95 Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 71 (7) Fresh frozen 956 (90)	Unknown	5	(0.4)
1 643 (61) Stage, n (%) 1 III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 1-2 70 (7) Histology, n (%) 70 (7) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 90 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 91 Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 71 (7) Fresh frozen 956 (90)	ECOG-PS, n (%)		
Stage, n (%) 152 (14) III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 0 992 (93) 1-2 70 (7) Histology, n (%) 70 (7) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stite of Metastasis, n (%) 174 (16) Stite of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 171 (7) Fresh frozen 95 (90)	0	419	(39)
III 152 (14) IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 0 992 (93) 1-2 70 (7) Histology, n (%) 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 59 Fresh frozen 95 (90)	1	643	(61)
IV 851 (80) Recurrence 59 (6) Line of therapy, n (%) 992 (93) 0 992 (93) 1-2 70 (7) Histology, n (%) 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 55 (90)	Stage, n (%)		
Recurrence 59 (6) Line of therapy, n (%) 992 (93) 0 992 (93) 1-2 70 (7) Histology, n (%) 818 (77) Squamous cell carcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Stite of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 55 (90)	III	152	(14)
Line of therapy, n (%) 992 (93) 0 992 (93) 1-2 70 (7) Histology, n (%) 818 (77) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 258 (24) Fresh frozen 956 (90)	IV	851	(80)
0 992 (93) 1-2 70 (7) Histology, n (%) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) Fresh frozen 956 (90)	Recurrence	59	(6)
1-2 70 (7) Histology, n (%) 818 (77) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 556 (90)	Line of therapy, n (%)		
Histology, n (%) Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 95 (9) 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 556 (90)	0	992	(93)
Adenocarcinoma 818 (77) Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 0 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 556 (90)	1-2	70	(7)
Squamous cell carcinoma 149 (14) Others 95 (9) Number of metastatic sites, n (%) 9 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90)	Histology, n (%)		
Others 95 (9) Number of metastatic sites, n (%) 1 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 1 Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 556 (90)	Adenocarcinoma	818	(77)
Number of metastatic sites, n (%) 1 0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 1 Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 556 (90)	Squamous cell carcinoma	149	(14)
0 151 (14) 1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 258 (24) Fresh frozen 956 (90)	Others	95	(9)
1 348 (33) 2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 558 (24) Fresh frozen 956 (90)	Number of metastatic sites, n (%)		
2 235 (22) 3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90)	0	151	(14)
3 or more 154 (15) Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 956 (90)	1	348	(33)
Unknown 174 (16) Site of Metastasis, n (%) 181 (17) Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90)	2	235	(22)
Site of Metastasis, n (%) Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90)	3 or more	154	(15)
Brain 181 (17) Lung 324 (31) Pleural dissemination or pleural effusion 258 (24) Liver 66 (6) Adrenal grand 71 (7) Bone 258 (24) Type of tissue biopsy, n (%) 56 (90)	Unknown	174	(16)
Lung324 (31)Pleural dissemination or pleural effusion258 (24)Liver66 (6)Adrenal grand71 (7)Bone258 (24)Type of tissue biopsy, n (%)56 (90)	Site of Metastasis, n (%)		
Pleural dissemination or pleural effusion258 (24)Liver66 (6)Adrenal grand71 (7)Bone258 (24)Type of tissue biopsy, n (%)56 (90)	Brain	181	(17)
Liver66 (6)Adrenal grand71 (7)Bone258 (24)Type of tissue biopsy, n (%)Fresh frozen956 (90)	Lung	324	(31)
Adrenal grand71 (7)Bone258 (24)Type of tissue biopsy, n (%)	Pleural dissemination or pleural effusion	258	(24)
Bone258 (24)Type of tissue biopsy, n (%)956 (90)	Liver	66	(6)
Type of tissue biopsy, n (%)Fresh frozen956 (90)	Adrenal grand	71	(7)
Fresh frozen 956 (90)	Bone	258	(24)
	Type of tissue biopsy, n (%)		
FFPE 20 (2)	Fresh frozen	956	(90)
	FFPE	20	(2)

Cytology specimen	86	(8)
Tissue biopsy site, n (%)		
Lung	640	(60)
Lymph node	225	(21)
Pleural effusion	113	(11)
Pleura	26	(2)
Brain	17	(2)
Skin and soft tissue	12	(1)
Bone	14	(1)
Others	15	(1)

ECOG-PS, Eastern Cooperative Oncology Group performance status

FFPE, formalin fixed paraffin embedded