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ABSTRACT
◥

Purpose:Malignant pleural mesothelioma (MPM) is considered
an orphan disease with few treatment options. Despite multimod-
ality therapy, the majority of MPMs recur and eventually become
refractory to any systemic treatment. One potential mechanism
underlying therapeutic resistance may be intratumor heterogeneity
(ITH), making MPM challenging to eradicate. However, the ITH
architecture of MPM and its clinical impact have not been well
studied.

Experimental Design:We delineated the immunogenomic ITH
bymultiregion whole-exome sequencing and T-cell receptor (TCR)
sequencing of 69 longitudinal MPM specimens from nine patients
with resectable MPM, who were treated with dasatinib.

Results: The median total mutation burden before dasatinib
treatment was 0.65/Mb, similar with that of post-dasatinib treat-
ment (0.62/Mb). The median proportion of mutations shared by

any given pair of two tumor regions within the same tumors was
80% prior to and 83% post-dasatinib treatment indicating a rela-
tively homogenous genomic landscape. T-cell clonality, a parameter
indicating T-cell expansion and reactivity, was significantly
increased in tumors after dasatinib treatment. Furthermore, on
average, 82% of T-cell clones were restricted to individual tumor
regions, with merely 6% of T-cell clones shared by all regions from
the same tumors indicating profound TCR heterogeneity. Interest-
ingly, patients with higher T-cell clonality and higher portion of T
cells present across all tumor regions in post-dasatinib–treated
tumors had significantly longer survival.

Conclusions: Despite the homogeneous genomic landscape,
the TCR repertoire is extremely heterogeneous in MPM. Dasatinib
may potentially induce T-cell response leading to improved
survival.

Introduction
Malignant pleural mesothelioma (MPM) is a rare and highly

aggressive malignancy characterized by unique morphology that
commonly grows as an irregular pleural rind within the affected
hemithorax (1, 2).MPM is often refractory to aggressivemultimodality
therapy, combining surgery with chemo- and/or radiotherapy. Recent
studies from patients with MPM carrying germline mutations in

tumor suppressor genes such as BAP1 or DNA repair genes have
shown improved survival results (3, 4). However, despite significant
efforts to develop novel therapeutics, the median survival of patients
with MPM still remains between 12 and 18 months with a 5-year
overall survival (OS) rate less than 5%, regardless of stage (2, 5–7).
Understanding the mechanisms underlying therapeutic resistance of
MPM remains a critical and largely unmet need.

One potential mechanism underlying the aggressiveness and ther-
apeutic resistance in malignancy is intratumor heterogeneity (ITH),
wherein different cancer cell clones with distinct molecular and
phenotypic features are present within the same tumors, leading to
differential responses to treatment (8–12). ITH has been found to
associate with therapeutic resistance and survival of patients with
different cancer types (8–12). Using a multiregion sequencing
approach, our group and others have previously delineated the geno-
mic, epigenetic, and transcriptomic ITH architecture of non–small cell
lung cancers (NSCLCs) and demonstrated that complex molecular
ITH was associated with inferior clinical outcomes (13–19). Given the
unique growth pattern of MPM (wide spreading irregular pleural rind
across pleura) compared with most other solid tumors (growing as a
solid mass), MPM may have profound ITH, which makes it challeng-
ing to eradicate by currently available therapeutic modalities.

In addition to ITH of cancer cells, ITH can also be present in the
tumor microenvironment, particularly cancer immune contexture,
which may have significant impact on cancer biology and clinical
outcome. Our recent work has revealed substantial T-cell receptor
(TCR) repertoire heterogeneity in localized NSCLC, which was asso-
ciated with inferior survival (15). Investigating the molecular and
immune ITH architecture of MPM and its evolution under therapy
may provide novel insight into themechanisms underlying therapeutic
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resistance and disease progression. In this study, we performed multi-
region whole-exome sequencing (WES) and TCR sequencing of 69
MPM specimens from nine patients with resectable MPM, who were
treated with the Src kinase inhibitor, dasatinib, for 4 weeks prior to
surgical resection in a neoadjuvant clinical trial protocol 2006-0935
(NCT00652574; refs. 6, 20). These longitudinal specimens included 24
baseline specimens before dasatinib treatment and 45 post-dasatinib
treatment.

Materials and Methods
Patients and sample collection

A total of 69 tumor regions consisting of 24 pretreatment samples
(two to four regions per tumor) and 45 post-dasatinib samples (three to
six regions per tumor) and their matched peripheral blood samples
were collected from nine patients withMPM. All patients were treated
at theUniversity ofTexasMDAndersonCancerCenter (Houston, TX)
from 2008 to 2012 on protocol 2006-0935 (NCT00652574; Supple-
mentary Table S1). Prior to dasatinib treatment, patients with MPM
underwent extended surgical staging with multiple biopsies of the
primary pleural tumor to account for tumor heterogeneity. Each tumor
biopsy removed from the patient was cut in half with one part flash
frozen and the second part formalin fixed for paraffin (6). Surgical
specimens were snap frozen in liquid nitrogen immediately after
surgical resection and stored at �80�C. All surgical specimens were
identified and collected by surgeons per protocol 2006-0935 and
submitted to pathologists for multiregional sampling. All the selected
samples for this analysis were subjected to pathologic examination to
confirm the diagnosis and ensure the sample quality before DNA
extraction. Peripheral blood mononuclear cells were immediately
isolated from 10-mL whole blood and stored at �80�C. Written
informed consent was obtained from all patients included in the
study. The study was approved by the Institutional Review Board at
University of Texas MDAnderson Cancer Center (Houston, TX). The
study was conducted in accordance with U.S. Common Rule.

WES
Genomic DNA was extracted and subjected to library preparation

for sequencing with Agilent SureSelect Human All Exon V4 Kit

according to the manufacturer’s instructions. The 76-bp paired-end
WES was performed on Illumina HiSeq 2000 Platform with mean
target coverages of 200� and 100� for tumor and normal samples,
respectively, as described previously (14).

Somatic mutation calling
Somatic single-nucleotide variants (SNVs) and somatic small inser-

tions and deletions (INDELs) were called using MuTect (21) and
Pindel (22), respectively. Mutations previously reported in public
database (dbSNP138, 1000Genomes, ESP6500, and EXAC) with
>1% allele frequency were removed. Next, we applied the following
mutation-filtering criteria: (i) sequencing depth ≥ 50 for tumor and
≥30 for normal, (ii) tumor allele frequency ≥ 5% for SNVs and ≥10%
for INDELs, and (iii) normal allele frequency < 1%.

Mutational signature analysis
Mutation signatures were determined by deconstructSigs (23) with

30 Catalogue of Somatic Mutations in Cancer (COSMIC) signatures
provided by the package.

Somatic copy-number aberration analysis
Somatic copy-number aberration (SCNA) analysis was done using

our in-house SCNA caller, “exomecn” as described previously (14).
The “exomecn” is a modified version of HMMcopy (24). Briefly, it
calculates read counts of each exon and then calculates log2ratios
between tumor andmatched normal reference samples by considering
the total number of reads as a normalization factor. The resulting
normalized log2ratios were segmented using circular binary segmen-
tation algorithm implemented in the DNAcopy package of Biocon-
ductor. The copy ratios of segments were then assigned to the over-
lapping genes by CNTools (25). We defined copy-number gains and
losses in all tumor samples using þlog21.5 for gain and �log21.5 for
loss, respectively. Because the signal to noise ratio of SCNA could be
reduced in the samples with lower tumor purity, we obtained purity-
adjusted log2 ratios by log2 ((original copy ratio� 1)/purityþ 1) (26), if
any of the paired samples from the same patients passed the original
log2 thresholds ofþlog21.5 and�log21.5. Tumor purity was estimated
by Sequenza (27). Copy-number gain and loss burden were defined as
the number of copy-number gains and losses in a given sample, and the
total copy-number burden was a sum of gains and losses.

Phylogeny inference
To infer phylogenetic trees, mutation data were converted to the

binary data with mutations being 1 and wild-type being 0 and fed into
Phangorn R package. Tree topologies were estimated by pratchet and
branch lengths were inferred by acctran.

Neoantigen prediction
Neoantigens were predicted byNeoPredPipe (28) that uses ANNO-

VAR and netMHCpan. The SNVs and INDELs were fed into the
program with patient-specific HLA types genotyped by HLA-
VBSeq (29). Both strong and weak binders were considered predicted
neoantigen peptides. The SNVs or INDELs that generated multiple
neoantigen peptides with different k-mer settings were only counted
once. Trunk neoantigens were defined as predicted neoantigens shared
by all the regions per tumor.

TCRb sequencing and comparison parameters
Sequencing of the CDR3 regions of human TCRb chains was

performed using the protocol of ImmunoSeq (Adaptive Biotechnol-
ogies, hsTCRbKit) as described previously (15, 30). T-cell density was

Translational Relevance

Malignant pleural mesothelioma (MPM) is a rare and highly
aggressive malignancy. MPM was believed to have profound
intratumor heterogeneity (ITH), which makes it challenging to
eradicate. In this study, we delineated the genomic and T-cell
repertoire ITH landscape bymultiregion whole-exome sequencing
and T-cell receptor (TCR) sequencing of 69 MPM specimens from
nine patients with resectable MPM, who were treated with pre-
operative dasatinib on a neoadjuvant trial. Our results demon-
strated a relatively homogenous genomic landscape and extremely
heterogeneous TCR repertoire of MPM tumors. T-cell clonality
significantly increased after treatment with dasatinib, and patients
with higher T-cell clonality and more homogeneous T-cell reper-
toire in post-dasatinib–treated MPM tumors had significantly
longer survival. These findings suggest that dasatinib may induce
expansion and reactivation of T cells, therefore, could potentially
serve as an immunomodulator to enhance the efficacy of immu-
notherapy in patients with MPM.
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calculated by normalizing TCRb template counts to the total amount
of DNA usable for TCR sequencing, where the amount of usable DNA
was determined by PCR amplification and sequencing of housekeep-
ing genes expected to be present in all nucleated cells. T-cell richness is
a metric of T-cell diversity, and it was calculated by the T-cell unique
rearrangements. T-cell clonality is a metric of T-cell proliferation and
reactivity, and it was defined as 1� Pielou evenness andwas calculated
on productive rearrangements by:

1þ
PN

i
pilog2ðpiÞ
log2ðNÞ

where pi is the proportional abundance of rearrangement i, andN is the
total number of rearrangements. Clonality ranges from 0 to 1:
values approaching 0 indicate a very even distribution of frequency
of different clones (polyclonal), whereas values approaching 1
indicate a distinct asymmetric distribution, in which a few activated
clones are present at high frequencies (monoclonal). Statistical
analysis was performed in R version 3.2. Morisita index (MOI) is
a measure of the similarity in the T-cell repertoire between samples
ranging from 0 to 1, taking into account the specific rearrangements
and their respective frequencies, with an MOI of 1 being an identical
T-cell repertoire.

Statistical Analysis
Graphs were generated with GraphPad Prism 8.0. Spearman rank

correlations were calculated to assess association between two con-
tinuous variables. Wilcoxon signed-rank test was applied to test the
mutational burden, mutation concordance, SCNA burden, SCNA
concordance, predicted neoantigens, neoantigen concordance, and
TCR metrics over time, respectively. Mann–Whitney test was used to
compare TCR metrics of MPM and NSCLC. Linear regression was
used to model the relationship between TCR metrics and survival.
Two-sided P values less than 0.05 were considered to be statistically
significant.

Results
Homogenous mutational profiles between different tumor
regions from the same MPM

A total of 5,021 nonsynonymous mutations (Supplementary Data)
were detected in 69 tumor regions with a median total mutational
burden (TMB) of 0.65/Mb, consistent with that from The Cancer
Genome Atlas MPM cohort (ref. 31; 0.65/Mb; P ¼ 0.35). The average
TMB in tumors before dasatinib treatment was 0.65/Mb, similar with
that of post-dasatinib treatment tumors (0.62/Mb; P ¼ 0.5; Supple-
mentary Fig. S1A). The median proportion of shared mutations
between any pair of tumor regions was 80% (43%–90%) prior to and
83% (71%–88%) post-dasatinib treatment (Fig. 1). The average pair-
wise mutational concordance between any two regions of the same
tumors in these nine patients with MPM was no different pre- and
post-dasatinib treatment (P ¼ 0.3; Supplementary Fig. S1B), suggest-
ing that dasatinib treatment did not significantly change the muta-
tional ITH complexity. We further predicted neoantigens from these
somatic mutations, but did not observe significant changes in total
predicted neoantigen burden or proportion of neoantigens shared by
different regions within the same tumors before and after dasatinib
treatment (Supplementary Figs. S2A and S2B and S3).

We next looked into a set of significantly mutated genes (SMG)
identified from two large mesothelioma cohorts (31, 32) and found
eight mutations in five SMGs (BAP1, NF2, TP53, DDX3X, and RYR2).

All eight mutations were detected in both pretreatment and posttreat-
ment tumors and six of the eight mutations were present in all regions
within the same tumors (Fig. 1), suggesting these mutations may
have been early genomic events during clonal evolution of these
MPM tumors. However, two NF2 mutations were heterogeneous
mutations. A NF2 stop-gain mutation was detected in both pre-
treatment specimens, but was missing in one of the posttreatment
tumor specimens from patient M4, and a NF2 nonsynonymous
mutation (p.G123X) was identified in one of the three pretreatment
tumor specimens and one of six posttreatment specimens from
patient M11 suggesting these two NF2 mutations may be later
subclonal mutations in patients M4 and M11.

Mutations are predominantly driven by deficient DNA repair
pathways

Understanding how mutational processes shape MPM evolution
may inform mechanisms underlying tumor adaptation. We next
calculated the contribution of different mutational signatures to
investigate the mutational processes operative in this cohort of MPM.
In 58 of 69 (84%) tumor specimens, COSMIC Signature 3 (associated
with failure of DNA double-strand break repair by homologous
recombination) or Signature 15 (associated with defective DNA
mismatch repair) was most predominant (Fig. 2), suggesting that
DNA repair deficiencies played a major role in mutagenesis in this
cohort of MPM. The only exception was the tumor from patient M14,
in which COSMIC Signature 4 (associatedwith cigarette smoking) and
Signature 24 (with known exposures to aflatoxin) were the predom-
inant signatures accounting for a median of 35% (2%–44%) and 25%
(14%–33%), respectively.

Homogeneous SCNA profiles in MPM
SCNA is another key feature of human malignancies that could

potentially impact expression of large groups of genes and SCNA ITH
may have a profound impact on cancer biology and clinical out-
come (16). Therefore, we next delineated the SCNAprofiles and SCNA
ITH architecture of this cohort of MPM. First, we calculated SCNA
burden defined as the average number of genes with SCNA for each
MPM specimen. As shown in Supplementary Fig. S4, although the
SCNA burden varied substantially between different patients, it
was very similar between different regions within the same tumors
suggesting substantial interpatient heterogeneity, but limited ITH.
Furthermore, no significant difference was observed in SCNA burden
between tumors prior to versus post-dasatinib treatment (Supplemen-
tary Fig. S5A). We next measured concordance for SCNAs across
multiple regions from the same tumors (either prior to or post-
dasatinib treatment) as the surrogate for SCNA ITH. The average
pairwise SCNA concordance between different regions of the same
tumors was 0.83 (0.52–0.99) indicating homogenous SCNA ITH
architecture in this cohort of MPM overall. In addition, dasatinib
did not significantly change the SCNA concordance (Supplemen-
tary Fig. S5B). Furthermore, we investigated a list of cancer genes
reported to be altered by SCNA in two large mesothelioma
cohorts (31, 32). As shown in Supplementary Fig. S6, different
regions within the same tumors showed a high level of homogeneity
of SCNAs in cancer genes including deletions of BAP1, CDKN2A
and an amplification of NTRK3.

Substantial T-cell repertoire heterogeneity in MPM
We previously demonstrated that a heterogeneous T-cell repertoire

is associated with inferior clinical outcome in localizedNSCLC (15). In
this study, we performed multiregion TCR sequencing of 63 tumor

Immunogenomic ITH Evolution of MPM

AACRJournals.org Clin Cancer Res; 26(20) October 15, 2020 5479

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/26/20/5477/2063774/5477.pdf by guest on 23 April 2024



Pre

M3

90% 76%

1 2 1

2
3

4

Post Pre

M4

85% 38% 

NF2
RYR2

RYR2

NF2

1
2

1

2
3

4

5

6

Post

M7

80% 66% 

1 2

TP53
DDX3X

TP53
DDX3X

2

34

6

5 1

Pre Post

M8

BAP1

77% 72% 

BAP1

1 2

4
1

2 3

Pre Post Pre

M10

57% 71% 

BAP1 BAP1

1

4
2

3
1

2

3

Post

M11

65% 75% 

1

2
3

NF2

4

1

2

3

6

5 NF2

Pre Post

M14

43% 49% 

1

2 1

2

3

4

5

6

Pre Post

M21

78% 73% 

1
1

BAP1 BAP1

2

34

3
6 4

5

2

Pre Post

M23

72% 72% 

2
1

34

1

2
3

Pre Post

Figure 1.

Genomic ITH of nine MPM tumors before and after dasatinib treatment. Phylogenetic trees were generated from all mutations by Wagner parsimony method. The
length of trunk (blue), branch (red), and private branches (green) is proportional to the number ofmutations identified in all regionswithin the same tumor, some but
not all regions, and only one single-tumor region, respectively. Pre: prior to dasatinib treatment; post: post-dasatinib treatment.
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regions (two to six regions per tumor) from these nine patients with
MPM with available DNA to depict the TCR repertoire and TCR ITH
of this cohort of MPM, including 19 specimens from seven patients
prior to dasatinib treatment and 44 posttreatment specimens from
nine patients. In pretreatment tumors, T-cell density, an estimate
of the proportion of T cells in a sample, ranged from 0.07 to 0.43
(average ¼ 0.22) and richness, a measure of T-cell diversity, ranged
from 2,189 to 11,568 (average¼ 5,946 unique rearrangements), which
were comparable with localized NSCLC (ref. 30; Supplementary
Fig. S7A and S7B). On the other hand, T-cell clonality, a parameter
indicating T-cell expansion and reactivity, ranged from 0.04 to 0.14
(average¼ 0.08), was significantly lower than in localizedNSCLC (P¼
0.0005; ref. 30; Supplementary Fig. S7C). Interestingly, compared with
pretreatment tumors, posttreatment MPM tumors exhibited similar
T-cell density (average 0.22 vs. 0.22; P > 0.99) and richness (average
5,946 vs. 6,576; P ¼ 0.84), but significantly increased T-cell clonality
(average 0.08 vs. 0.13; P ¼ 0.047 Supplementary Fig. S8A–S8C)
suggesting expansion and activation of T cells post-dasatinib
treatment.

To gain insights into spatial heterogeneity of T-cell response in
MPM, we next investigated the overlap in T-cell clones across different
regions from the same tumors. As shown in Fig. 3A, the vast majority
(average, 82%; from 73% to 95%) of T-cell clones were restricted to
individual tumor regions, while only an average of 6% (0.6%–19%) of
T-cell clones were trunk TCR detectable across all tumor regions from
the same tumors suggesting profound heterogeneity in T-cell response
in this cohort of MPM. To comprehensively quantify the TCR ITH,
we then utilized MOI, a metric taking into consideration not only
the composition of T-cell clones but also the abundance of individual
T-cell clones. MOI ranges from 0 to 1, with 1 indicating identical TCR
repertoires and 0 indicating completely distinct TCR repertoires. The
average MOI was 0.63 (ranging from 0.40 to 0.93) for this cohort of
MPM (Fig. 3B), significantly lower than 0.82 (ranging from 0.61 to
0.93) in NSCLC (P ¼ 0.0097; ref. 15; Supplementary Fig. S9).

Evolution of TCR repertoire after dasatinib treatment was
associated with improved prognosis

Next, we attempted to assess whether the TCR ITH would impact
clinical outcomes of these patients with MPM, although the sample
size was small. With a median of 23.1 months of follow-up after
surgical resection, all nine patients recurred and expired. Importantly,
patients with higher T-cell clonality in post-dasatinib–treated MPM

tumors had significantly longer OS (Fig. 4A) and a trend of longer
progression-free survival (PFS; Supplementary Fig. S10A). In addition,
the change of clonality after dasatinib treatment (posttreatment
clonality – pretreatment clonality) was also associated with longer
OS (Fig. 4B) and a trend of longer PFS (Supplementary Fig. S10B).
Furthermore, patients with more homogenous TCR repertoire, indi-
cated by higher proportion of trunk TCR detected in all tumor regions
within the same tumors or higher MOI, in post-dasatinib–treated
tumors demonstrated a trend of longer OS (Fig. 4C and D) and PFS
(Supplementary Fig. S10C and S10D). Of note, neither PFS norOSwas
associated with TCR parameters in pre-dasatinib treatment tumors.
Taken together, these findings suggest that TCR expansion and
activation, as well as homogeneous T-cell response after dasatinib
treatment may impact patient outcome.

Discussion
ITH is increasingly recognized as a critical component of cancer

biology that may have profound impact on outcome of patients with
cancer (8, 13, 33). ITH could provide diverse genetic elements to foster
tumor evolution along with tumor progression and/or during treat-
ment leading to the selection of therapeutic-resistant cancer cell
clones (34). By multiregion WES, we revealed relatively homogenous
genomic ITH pattern in this cohort of MPM with the majority of
mutations and SCNAs, including canonical cancer genes alterations,
present across all the regions of the sameMPM tumors. These findings
were surprising for the following reasons. First, MPM grows in a
unique pattern, wide spreading as an irregular pleural rind, which
provides adequate space for different cancer clones to evolve in
parallel, particularly without effective immune surveillance applying
selection pressure, leading to more heterogeneous cancer cell popula-
tions. Second, the relatively low response rate to chemotherapy and
high incidence of recurrence of MPM are attributed, in part, to a very
high degree ofmolecular diversitywithin the tumor (35).One plausible
explanation for the homogenous genomic landscape in MPM is that
the majority of these mutations are very early molecular events during
MPM evolution, which have had occurred before these tumors have
spread locally. Our recent data in NSCLC have shown that nearly 70%
mutations were shared even between primary tumors and distant
metastases that developed several years later (36), suggesting that
the majority of mutations have had occurred prior to distant metas-
tases. Nevertheless, these data indicate that a single biopsy analysis
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Figure 2.

The top five mutational signatures in MPM tumors. Pre: prior to dasatinib treatment; post: post-dasatinib treatment.
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might be sufficient to identify the majority of known cancer gene
mutations in MPM.

The tumor immune microenvironment, particularly, T-cell reper-
toire plays critical roles in determining cancer biology and clinical
behaviors. Our study revealed for the first time the TCR repertoire
features of MPM. Of particular interest, when compared with NSCLC,
MPM has similar T-cell density and richness, but a significantly lower
T-cell clonality, implying less T-cell expansion and activation inMPM.
Furthermore, distinct T-cell repertoire in different tumor regions
could also hamper effective antitumor immune response (15). Our
multiregion TCR sequencing data have provided a unique opportunity
to investigate T-cell repertoire ITH architecture within this cohort of
MPM. The results have revealed profound TCR ITHwith 73%–95% of
all T-cell clones restricted to individual tumor regions. Importantly,
the averageMOI, a surrogate for comprehensive quantification of TCR
ITH, was only 0.63, even significantly lower than NSCLC indicating a
higher degree of TCR ITH in MPM.

The molecular mechanisms underlying the high TCR ITH in the
background of homogeneous genomic landscape in MPM are beyond
the scope of this study. There are several plausible reasons. For
example, chromothripsis, a mutational process generating aberrant
complex chromosomal rearrangements, is a criticalmechanismunder-
lying the evolution of malignant cell clones (37, 38). A recent study by
Mansfield and colleagues (39) demonstrated that inter- or intrachro-
mosomal rearrangements in a pattern of chromothripsis generated the
junctions of genes and noncoding DNAwith neoantigenic potential in
MPM. Chromothripsis-like genome alterations could be heteroge-
neous and lead to vastly heterogenous neoantigen profiles in different
regions of MPM and subsequent heterogeneous T-cell response.
However, reliable detection of chromothripsis-like genome alterations
requires whole-genome level data, while the limited exome-sequencing

data in this study were not sufficient for this analysis. Moreover, other
“heterogeneous” molecular changes (e.g., DNA methylation; ref. 18,
acetylation, gene expression; ref. 17, and posttranslationmodification)
may exist contributing to the “heterogeneous” immune response.
Furthermore, in addition to the tumors' intrinsic characteristics,
immune landscape can also be altered by diverse extrinsic factors
such as “bystander” T cells within tumors associated with local
inflammation and viral infection (30). Future multi-omics studies
incorporating comprehensive tumor features as well as relevant
extrinsic factors are needed to better understand themolecular features
underlying the extremely high TCR heterogeneity in MPM.

Nevertheless, the impaired T-cell expansion (low clonality) and
profound TCR ITH (lowMOI)may lead to an ineffective antitumor T-
cell response, which could be one potential mechanism underlying the
frequent recurrence ofMPM.Moreover, although immune checkpoint
blockade (ICB)-targeting T cells have revolutionized the therapeutic
landscape across many different cancer types (40–46), the response
rates to single-agent ICB treatment were only 9%–30% in patients with
MPM (47–51). The suppressed and heterogeneous T-cell response in
MPMmay be one attributing factor for such suboptimal responses. As
such, novel therapeutic strategies with or without ICB are warranted to
improve the clinical outcome of patients with MPM.

We have previously conducted a neoadjuvant clinical trial using
dasatinib in patients with resectable MPM (6, 20). Unfortunately,
the clinical trial did not meet the primary endpoint (6). However,
patients who had improved PFS with decreased p-SrcTyr419 post-
dasatinib treatment, suggest dasatinib may benefit some patients
with MPM. As a broad-spectrum tyrosine kinase inhibitor, dasatinib
has been shown to modulate T-cell repertoire by reducing regulatory
T-cell (Treg) populations while enhancing CD8þ antitumor
T response (52, 53). In this study, we observed a significant increase
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Figure 4.

TCR repertoire and TCR ITH in post-dasatinib–
treated tumors were associated with OS. Correlation
between OS and T-cell clonality (A), change of
clonality post-dasatinib treatment (B), proportion
of trunk TCR clonotypes detected in all tumor
regions with the same tumors (C), and TCR MOI (D).
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in T-cell clonality post-dasatinib treatment suggesting dasatinib may
have induced T-cell expansion and activation. More importantly,
regardless of small sample size, higher T-cell clonality in the post-
treatment MPM specimens (not pretreatment specimens) and higher
level of T-cell clonality increase after dasatinib treatment were asso-
ciated with superior survival. Similarly, higher proportion of trunk
TCR in post-dasatinib–treated specimens (but not pretreatment speci-
mens), indicatingmore homogenous T-cell distribution after dasatinib
treatment, was associated with superior survival. These results are in-
line with previous findings that those molecular alterations from on-
treatment biopsies were superior than pretreatment biopsies regarding
the association with benefit from receiving ICB treatment in patients
with melanoma (54). Because of the complexity of cancer biology and
substantial interpatient heterogeneity, it is challenging to identify
molecular features associated with therapeutic benefits in the pre-
treatment biopsies. However, molecular changes reflecting the actual
biological response to therapies from on-treatment biopsies may be a
better predictor for clinical response. Although these on-treatment
biopsy–based molecular changes are not desirable compared with
pretreatment biopsy–based molecular features as potential biomar-
kers, they can be of value to discontinue ineffective treatment early
during the disease course, particularly if these features are predictive of
long-term benefit.

Our study has several important limitations. First, the sample
size was small, which precluded us to make robust conclusions.
Second, we did not have transcriptomic data to further dissect the
ITH architecture, for example, distinct molecular subtypes (sarco-
matoid, epithelioid, biphasic-epithelioid, and biphasic-sarcomatoid
components; refs. 12, 32). Third, we did not have enough materials
to depict the detailed immunologic features of these tumor-
infiltrating T lymphocytes. However, our previous study on NSCLC
has demonstrated that T-cell clonality was mainly driven by
cytotoxic T lymphocytes and negatively regulated by Tregs (30),
while MPM is known to be enrich for immunosuppressive and
anergic immune cells, such as Tregs, monocytic myeloid-derived
suppressor cells (Gr-MDSC/Mo-MDSC), and M2-polarized tumor-
associated macrophages (55–59), in-line with suppressed T-cell
repertoire observed in this study.

With all the above limitations fully acknowledged, the multire-
gional, paired longitudinal specimens before and posttreatment
from a rare and aggressive malignancy made the data invaluable.
In summary, we demonstrated that despite the homogeneous
genomic landscape, MPM has a suppressed and extremely hetero-
geneous TCR repertoire. This may lead to ineffective host antitumor
immune surveillance, which could be one potential molecular
mechanism underlying high recurrence rate and suboptimal
response to immunotherapy in MPM. Future studies are warranted
to combine ICB with novel agents that have the potential to induce
T-cell activation, such as dasatinib, to improve the clinical outcome
of patients with MPM.
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