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Abstract
Purpose:High-grade serous ovarian cancers are heterogeneous not only in terms of clinical outcome but

also at the molecular level. Our aim was to establish a novel risk classification system based on a gene

expression signature for predicting overall survival, leading to suggesting novel therapeutic strategies for

high-risk patients.

Experimental Design: In this large-scale cross-platform study of six microarray data sets consisting of

1,054 ovarian cancer patients, we developed a gene expression signature for predicting overall survival by

applying elastic net and 10-fold cross-validation to a Japanese data set A (n ¼ 260) and evaluated the

signature in five other data sets. Subsequently, we investigated differences in the biological characteristics

between high- and low-risk ovarian cancer groups.

Results:Anelastic net analysis identified a 126-gene expression signature for predicting overall survival in

patients with ovarian cancer using the Japanese data set A (multivariate analysis, P ¼ 4 � 10�20). We

validated its predictive ability with five other data sets usingmultivariate analysis (Tothill’s data set, P¼ 1�
10�5; Bonome’s data set, P¼ 0.0033; Dressman’s data set, P¼ 0.0016; TCGA data set, P¼ 0.0027; Japanese

data set B, P¼ 0.021). Through gene ontology and pathway analyses, we identified a significant reduction in

expression of immune-response–related genes, especially on the antigen presentation pathway, in high-risk

ovarian cancer patients.

Conclusions: This risk classification based on the 126-gene expression signature is an accurate predictor

of clinical outcome in patients with advanced stage high-grade serous ovarian cancer and has the potential

to develop new therapeutic strategies for high-grade serous ovarian cancer patients. Clin Cancer Res; 18(5);

1374–85. �2012 AACR.
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Introduction
High-grade serous ovarian cancer comprises approxi-

mately 40% of epithelial ovarian cancer cases and is the
most aggressive histologic type (1–4). This type of cancer
usually presents as advanced stage disease at the time of
diagnosis because there are no symptoms present at the
early stage and no reliable screening test for early detection
(1–4). Patients with advanced stage high-grade serous ovar-
ian cancer generally undergo primary debulking surgery
followed by platinum–taxane chemotherapy. However,
30% to 40% of patients recur within 12 months after the
standard treatment, and the overall 5-year survival rate
remains at approximately 30% (5, 6). Clinicopathologic
characteristics, such as the International Federation of
Gynecology and Obstetrics (FIGO) stage, histologic grade,
and debulking status after primary surgery, are clinically
considered important clinical prognostic indicators of ovar-
ian cancer but are insufficient for predicting survival time.
The development of microarray technology has provided

new insights into cancer diagnosis and treatment. Large-
scale microarray studies in breast cancer have succeeded in
clarifying 5 molecular subtypes based on gene expression
profiles and in developing genomic biomarker for predict-
ing recurrence in early breast cancer (MammaPrint; refs. 7,
8). Thus, breast cancer treatment strategies are being strat-
ified according to molecular characteristics. In contrast,
there are no gene expression signatures with high accuracy

and reproducibility for clinical diagnosis and management
in patients with ovarian cancer because there is a paucity of
ovarian cancer samples available for microarray analysis
comparedwith breast cancer. Although TP53 somaticmuta-
tion is present in almost all high-grade serous ovarian
cancer and plays an important role in the pathogenesis
(9, 10), high-grade serous ovarian cancer exhibits much
biological and molecular heterogeneity that should be
considered when developing a novel therapeutic strategy
for ovarian cancer (10, 11).

In this study, we aimed to establish a novel system for
predicting the prognosis of patients with advanced stage
high-grade serous ovarian cancer using large-scale micro-
array data sets (n ¼ 1,054; refs. 10–13), leading to an
optimal treatment based on molecular characteristics (14).

Materials and Methods
Clinical samples

Three hundred Japanese patients who were diagnosed
with advanced stage high-grade serous ovarian cancer
between July 1997 and June 2010 were included in this
study. All patients provided written informed consent for
the collection of samples and subsequent analysis. Fresh-
frozen samples were obtained from primary tumor tissues
during debulking surgery prior to chemotherapy. All
patients with advanced stage high-grade serous ovarian
cancer were treated with platinum–taxane standard chemo-
therapy after surgery. In principle, patients were seen every 1
to 3 months for the first 2 years. Thereafter, follow-up visits
had an interval of 3 to 6months in the third to fifth year, and
6 to 12months in the sixth to tenth year. At every follow-up
visit, general physical and gynecologic examinations were
carried out. CA125 serum levels were routinely determined.

Staging of the disease was assessed according to the
criteria of the FIGO (15). Optimal debulking surgery was
defined as less than 1 cm of gross residual disease, and
suboptimal debulking surgery was defined as more than 1
cm of residual disease. Progression-free survival time was
calculated as the interval from primary surgery to disease
progression or recurrence. Based on the Response Evalua-
tion Criteria in Solid Tumors (RECIST, version 1.1; 16),
disease progression was defined as at least a 20% increase in
the sum of the diameters of target lesions, as unequivocal
progression of existing nontarget lesions, or as the appear-
ance of one or more new lesions. Overall survival time was
calculated as the interval from primary surgery to the death
due to ovarian cancer.

Translational Relevance
Using large-scale microarray expression data sets (n¼

1,054) by applying an elastic net method, a novel risk
classification system for predicting overall survival of
patients with advanced stage high-grade serous ovarian
cancer based on a 126-gene expression signature was
developed and successfully validated. This study has
profound significance in clarifying the downregulation
of human leukocyte antigen class I antigen presentation
machinery that characterizes high-risk ovarian cancer.
These results from comprehensive gene expression anal-
ysis using large-scale microarray data suggest that our
risk classification system might have the potential to
optimize treatment of high-grade serous ovarian cancer
patients.
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The histologic characteristics of surgically resected speci-
mens, which were diagnosed as serous histologic type by 2
pathologists at each institute, were at first assessed on
formalin-fixed and paraffin-embedded hematoxylin and
eosin sections by 8 gynecologic pathologists who belong
to Department of Pathology in 4 institutes (Niigata Uni-
versity, National Defense Medical Collage, Tottori Univer-
sity, Kagoshima City Hospital). Next, these sections were
reviewed under central pathologic review by 2 independent
gynecologic pathologists (H.T. and T.M.) with no knowl-
edge of patients’ clinical data. Histologic subtype was diag-
nosed based onWHO classification of ovarian tumors (17).
The degree of histologic differentiation is determined
according to Silverberg classification (18).

Microarray experiments
Frozen tissues containing more than 70% tumor cells

upon histologic evaluation were used for RNA extraction.
Total RNA was extracted from tissue samples as previously
described (19). Five hundred nanograms of total RNA was
converted into labeled cRNA with nucleotides coupled to a
cyanine 3-CTP (Cy3; PerkinElmer) using the Quick Amp
Labeling Kit, one-color (Agilent Technologies). Cy3-labeled
cRNA (1.65 mg) was hybridized for 17 hours at 65�C to
an Agilent Whole Human Genome Oligo Microarray
(G4112F), which carries 60-mer probes to more than
40,000 human transcripts. The hybridized microarray was
washed and then scanned in Cy3 channel with the Agilent
DNA Microarray Scanner [model G2565CA, n ¼ 260 (Jap-
anese data set A); G2565AA, n ¼ 40 (Japanese data set B)].
Signal intensity per spot was generated from the scanned
image with Feature Extraction Software (version 10.1, Jap-
anese data set A; version 9.1, Japanese data set B; Agilent
Technologies) with default settings. Spots that did not pass
quality control procedures were flagged as "Not Detected."

Next, we obtained Affymetrix HG-U133Plus2.0 micro-
array (Affymetrix) data from 10 ovarian cancer samples that
had been already been analyzed by the Agilent Whole
Human Genome Oligo Microarray. Ten ovarian cancer
samples were randomly selected from 260 samples in the
Japanese data set A. Microarray experiments were carried
out according to the Affymetrix-recommended protocols.
Briefly, biotinylated cRNAs were synthesized by GeneChip
30IVT Express Kit (Affymetrix) from 250 ng total RNA
according to the manufacturer’s instructions. Biotinylated
cRNA yield were checked with the NanoDrop ND-1000
Spectrophotometer. Following fragmentation, 10 mg of
cRNA were hybridized for 16 hours at 45�C on GeneChip
Human Genome U133 Plus 2.0 Array. GeneChips were
washed and stained in the Affymetrix Fluidics Station
450, and scanned with GeneChip Scanner 3000 7G.

The MIAME-compliant microarray data were deposited
into the Gene Expression Omnibus data repository (acces-
sion number GSE32062 and GSE32063).

Microarray data analysis
Weprepared 2 ourmicroarray data sets [Japanese data set

A (n ¼ 260) and B (n ¼ 40)] and 4 publicly available large

sample-sized (n > 100) microarray data sets [TCGA data set
(http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp; ref. 11),
Tothill’s data set (GSE9891; ref. 12), Bonome’s data set
(GSE26712; ref. 13), and Dressman’s data set (14)] to
discover predictive biomarkers. Clinical information of
publicly available microarray data sets was obtained from
their articles andwebsites. FromTothill’s original data set (n
¼ 285), we selected 131 samples that (i) were diagnosed as
advanced stage serous adenocarcinoma, (ii) were treated by
platinum/taxane–based chemotherapy, and (iii) have clin-
ical data about onset age, stage, grade, surgery, and survival
time. Publicly available clinical information in TCGA was
downloaded from TCGA Data portal (http://tcga-data.nci.
nih.gov/tcga/tcgaHome2.jsp) at June 25, 2011. By the same
methods above, 319 samples were selected from562micro-
array data as TCGA data set (Affymetrix HT-HG-U133A).
In this study, patients who were treated by adjuvant
chemotherapy including molecular-targeted agents were
excluded.

On the Agilent platform, data normalization was carried
out in GeneSpring GX 11.5 (Agilent Technologies) as fol-
lows: (i) threshold raw signals were set to 1.0 and (ii) 75th
percentile normalization. Affymetrix microarray data were
normalized and summarized with robust multiple average
in GeneSpring GX 11.5 (Agilent Technologies). To compare
themicroarray data setsmeasuredwith 4different platforms
(Agilent Whole Human Genome Oligo Microarray, Affy-
metrixHG-U133A,HG-U133Plus2.0, andHT-HG-U133A),
we selected genes common to all platforms based on the
Entrez Gene ID and used the Median Rank Score method
(20) for cross-platform normalization (Supplementary Fig.
S1). Of 22,277 probes that were common among 3 Affy-
metrix platforms, 20,331 probes were selected to be in one
to one relation between probe and gene. Using translation
function based on Entrez Gene ID in GeneSpring GX 11.5,
the 19,704 transcripts that matched to the 20,331 probes of
the Affymetrix platform were extracted from all transcripts
on the Agilent platform. Considering differences in micro-
array platforms, coefficient of correlation (r) in each gene
between 2 microarray platforms were measured. Using 10
ovarian cancer microarray data obtained from both Agilent
Whole Human Genome Oligo Microarray and Affymetrix
HG-U133Plus2.0 (GSE32062), 9,141 genes with high cor-
relation (r > 0.8) were extracted. After Median Rank Score
analysis (20), we evaluated median value of each gene in
both platforms and selected 3,553 genes with high corre-
lation (r > 0.8) in which absolute value of subtracting
median values between 2 platforms was less than 1. Similar
analyses were conducted by 16 breast cancer microarray
data (GSE17700; ref. 21) from both Affymetrix HG-
U133Plus2.0 and HG-U133A. From the resulting 1,746
genes, we removed 60 that were not flagged as "Detected"
in more than 90% of the Japanese data set A samples (n ¼
260), considering them to have either missing or uncertain
expression signals. In addition, the data were normalized
per gene in each data set by transforming the expression of
each gene to obtain a mean of 0 and SD of 1 (Z-transfor-
mation) for the cross-platform study.
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We analyzed Japanese data set A as a "training set,"
Tothill’s data set as a "test set," and the other 4 data sets as
"validation sets." We applied elastic net analysis (22) with
the R (23) package glmnet to identify survival-related
genes for prediction of prognosis in patients with
advanced stage high-grade serous ovarian cancer. Using
10-fold cross-validation, we obtained regression coeffi-
cients with optimal penalty parameter for the penalized
Cox model, and calculated a prognostic index for each
patient as defined by

Prognostic index ¼
X126

i¼1

bi � Xi

where i is the estimated regression coefficient of each gene
in the Japanese data set A under elastic net (a¼ 0.05) and
Xi is the Z-transformed expression value of each gene. The
estimated regression coefficient of each survival-related
gene given by elastic net (a ¼ 0.05) in the Japanese data
set A was also applied to calculate a prognostic index for
each patient in 5 other data sets using the equation above.
We classified all patients into the 2 groups (high- and low-
risk groups) by the optimal cutoff value of the prognostic
index in the Japanese data set A. Patients were assigned
to the "high-risk" group if their prognostic index was
more than or equal to cutoff value of prognostic index,
whereas "low-risk" group was composed of cases with the
prognostic indices that were less than cutoff value.
Because risk classification divided by cutoff value
0.1517 indicated a minimum P value (P ¼ 1 � 10�30)
when log-rank test was used to compare differences in
overall survival between high- and low-risk groups in the
Japanese data set A, this value was determined as optimal
cutoff value.
Both hierarchical clustering and non-negative factoriza-

tion (NMF) algorithm (24) were used to assess the similarity
of gene expressionprofiles among126 survival-related genes.
In the 2 major data sets (Japanese data set A and TCGA data
set), we constructed a heat map with hierarchical clustering
for both samples and genes using Cluster 3.0 (http://bonsai.
hgc.jp/~mdehoon/software/cluster/software.htm). Correla-
tion (centered) and complete linkage were selected on sim-
ilarity metrics and clustering method, respectively. A heat
map was visualized with Java TreeView (http://jtreeview.
sourceforge.net/). NMF-consensus matrices averaging 50
connectivity matrices were computed at K ¼ 2–7 (as the
number of subclasses modeled) for 126 genes. With genes
appearing along both the horizontal and vertical axes of the
consensusmatrices, consistency in the gene-pair clusters was
visualized. We determined the optimal number of gene
clusters by the cophenetic correlation coefficient that pro-
vides a scalar summary of global clustering robustness across
the consensus matrix in the Japanese data set A and TCGA
data set.
We conducted a volcano plot analysis to extract differ-

entially expressed transcripts between high- and low-risk
ovarian cancer groups with the 2 major data sets
[Japanese data set A (n ¼ 260) and TCGA data set (n ¼

319)]. When the volcano plot analysis was conducted in
GeneSpring GX 11.5 (Agilent Technologies), we used
gene expression data prior to Z-transformation normal-
ization (Fig. 3).

To investigate the biological functions of gene expression
signatures, we used GO Ontology Browser, embedded in
GeneSpring GX11.5 (Agilent Technologies). The GOOntol-
ogy Browser was used to analyze which categories of gene
ontology were statistically overrepresented among the gene
list obtained. Statistical significance was determined by
Fisher exact test, followed by multiple testing corrections by
the Benjamini and Yekutieli false discovery ratemethod (25)
To avoid bias of gene extraction by volcano plot analysis in
GO analysis, Gene Set Enrichment Analysis (GSEA; ref. 26)
was conducted with genes prior to gene selection by volcano
plot analysis. Analysis settings in GSEA (software version
2.07) were as follows: (i) gene sets database: c5.all.v2.5.
symbols.gmt [gene ontology], (ii) number of permutations:
1,000, (iii) collapse data set to gene symbol: true, (iv)
permutation type: phenotype, (v) chip platform(s): Agi-
lent_HumanGenome.chip orHT_HG_U133A.chip, and (vi)
other settings: default.

Furthermore, we used the Core Analysis tool in the
Ingenuity Pathway Analysis (IPA) system to analyze net-
works and pathways for a set of genes. Q value was calcu-
lated by Fisher exact test with the Benjamini and Hochberg
correction (27). Q < 0.25 was considered as significant in
GO, GSEA, and IPA.

Single-nucleotide polymorphism array experiments
We isolated genomic DNA from tumor tissues with a

phenol-chloroform extraction method and from normal
lymphocytes using the QIAampDNA BloodMaxi Kit (QIA-
GEN). Single-nucleotide polymorphism (SNP) array
experiments with the Genome-Wide Human SNP Array
6.0 (Affymetrix) were carried out at Niigata University
(details in the Supplementary Methods). SNP array data
were analyzed by the Partek Genomic Suite 6.5 (Partek Inc.)
to investigate copy number variations in 30 genes involved
in the antigen presentation pathway.

Immunoshitochemical analysis
A monoclonal anti-human CD8 antibody (M7103;

1:100; DAKO)was used for immunohistochemical staining
of CD8 T lymphocyte in tumor tissues. Details of the
immunohistochemistry method and sample selections are
described in the Supplementary Methods.

Statistical analysis
Standard statistical tests including Pearson correlation

analysis, unpaired t tests, 1-way ANOVA, Fisher exact tests,
log-rank tests, and Cox proportional hazardmodel analysis
were used to analyze the clinical data, as appropriate.
Analyses of clinical data were conducted with JMP (version
8; SAS Institute) and GraphPad PRISM (version 4.0; Graph-
Pad Software).
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Results
The distribution of the clinical variables for each micro-

array data set is shown in Table 1. To compare the
microarray data sets measured with 4 different platforms,
1,686 genes were selected (Supplementary Fig. S1). An
elastic net analysis (22) using 10-fold cross-validation on
Japanese data set A (training set, n ¼ 260) identified a
126-gene signature for predicting overall survival in
patents with advanced stage high-grade serous ovarian
cancer (Supplementary Table S1). After calculating the
prognostic index for each sample from the 126-gene
expression signature as reported previously (19), we
divided the training set into high- and low-risk groups
based on the optimal cutoff value (0.1517) of the prog-
nostic index and verified the high predictive power of this
risk classification (log-rank P ¼ 1 � 10�30; Multivariate
Cox P ¼ 4 � 10�20; HR ¼ 6.203; 95% CI ¼ 4.239–
9.123; Fig. 1A and Table 2).

The predictive power of the 126-gene signature was tested
with Tothill’s data set (n¼ 131; ref. 12). Both Kaplan–Meier
survival and multivariate analysis showed that this risk
classification was significantly associated with overall sur-
vival time in Tothill’s data set (log-rank P ¼ 3 � 10�6;
Multivariate Cox P ¼ 1 � 10�5; HR ¼ 3.728; 95% CI ¼
2.110–6.532; Fig. 1B and Table 2). Next, we assessed the
predictive power of the 126-gene expression signature on
the 3 data sets inwhichmicroarray data were obtained from
Affymetrix platforms and confirmed that this risk classifi-
cation indicated similar results in the 3 data sets (Fig. 1C–E
and Table 2). Furthermore, to exclude the influence of
differences in microarray platforms, we prepared Japanese
data set B from the sameplatformas the training set.Despite
the small sample size, our risk classification showed a
significant association with overall survival time in the
Japanese data set B (Fig. 1F and Table 2). This risk classi-
fication showed high predictive accuracy even though

Table 1. Clinicopathologic characteristics in 6 microarray data sets

Data set
Japanese
data set A

Tothill's
data seta

Bonome's
data seta

Dressman's
data seta

TCGA
data setc

Japanese
data set B

Number 260 131 185 119 319 40
Age 58.2 � 10.8 58.4 � 9.8 62 � 12 N/Ab 59.5 � 11.3 56.2 � 9.6
Histology
Serous 260 131 166 119 319 40
Others 0 0 19 0 0 0

Stage
III 204 123 144 99 267 31
IV 56 8 41 20 52 9

Grade Silverberg Silverberg N/Ab N/Ab N/Ab Silverberg
1 0 0 0 3 0 0
2 131 51 40 57 29 23
3 129 80 144 59 289 17
4 — — 3 — 1 —

Surgery status
Optimal 103 78 92 63 236 19
Suboptimal 157 45 93 56 83 21

Chemotherapy
Platinum 260 131 185 119 319 40
Taxane 260 131 N/A 82 319 40

Follow-up period (mo)
Median 42 29 38 34 31 39
Range 1–128 6–79 1–164 1–185 1–154 7–111

Number of deaths 121 60 129 69 187 22
Median survival (mo) 60 44 46 69 42 54
Microarray platform Agilent Whole

Human Genome
Oligo Microarray

Affymetrix
HG-U133
Plus2.0

Affymetrix
HG-U133A

Affymetrix
HG-U133A

Affymetix
HT-HG-U133A

Agilent Whole
Human Genome
Oligo Microarray

aClinical information in these 3 data sets were obtained from their articles and website.
bNo available information was described as N/A.
cPublicly available clinical information in TCGA was downloaded from TCGA Data portal (http://tcga-data.nci.nih.gov/tcga/tcga-
Home2.jsp) at June 25, 2011.
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overall survival was capped at 60 months (Supplementary
Fig. S2; ref. 10). Moreover, the high-risk groups had shorter
progression-free survival times compared with the low-risk
groups in 4microarray data sets with available progression-
free survival times (Supplementary Fig. S3). In addition, we
applied 193 overall survival related gene signature that have
been recently reported by TCGA research networks (10) to
our large data set (Japanese data set A), and 191of 193 genes
were available in our data set. High-risk ovarian cancer
patients based on 191-gene signature model had signifi-
cantly poor prognosis compared with low-risk patients
(Supplementary Methods and Supplementary Fig. S4).
We next investigated the molecular characteristics of the

126-gene signature with both hierarchical clustering and
NMF (24) analyses using the 2 major data sets (Japanese
data set A and TCGA data set). Hierarchical clustering of the
expression of 126 genes in the Japanese data set A (n¼ 260)
resulted in 2 gene clusters (cluster 1 and2; Fig. 2A).Cluster 1
(outlined in yellow in Fig. 2A) comprised 23 genes, 22 of

which were common genes in a small cluster of NMF class
assignment for K ¼ 2 (Supplementary Fig. S5). Similarly,
this gene clusterwas seen both in hierarchical clustering and
NMF analyses of TCGA data set, and the 20 genes in TCGA’s
cluster were consistent with these 23 genes in cluster 1 (Fig.
2B and Supplementary Fig. S5). GO analysis of these 23
genes revealed 132 significantly overrepresented GO cate-
gories; the top 20 GO categories are shown in the Supple-
mentary Table S2. Specifically, immunity-related categories
were enriched in these 23 genes and were downregulated in
the high-risk groups comparedwith the low-risk groups.On
the contrary, only 1 category [cytoplasm (GO0005737)]
belonging to "cellular component" was significantly over-
represented in 103 genes of cluster 2.

To clarify the biological significance of our risk classifi-
cation based on the 126-gene signature in advanced stage
high-grade serous ovarian cancer, we examined differences
in molecular biological characteristics between high- and
low-risk groups. For subsequent analyses, all transcripts on

Figure 1. Kaplan–Meier survival
analysis in 6 microarray data sets (A,
Japanese data set A; B, Tothill's data
set; C, Bonome's data set; D,
Dressman's data set; E, TCGA data
set; F, Japanese data set B). Based
on 126-gene signature, ovarian
cancer patients were divided into 2
risk groups (red, high risk; blue, low
risk). P values correspond to the log-
rank test comparing the survival
curves.
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each platformwere used to avoid the previous gene number
limitations, which were for the cross-platform study. We
extracted the genes differentially expressed between the 2
groups by carrying out a volcano plot analysis with the 2
major data sets (Japanese data set A and TCGA data set;
Supplementary Table S3). Figure 3A shows that 1,109 and
1,381 transcripts were differentially expressed between the
high- and low-risk groups in the Japanese data set A and
TCGA data set, respectively. GO analysis of these transcripts
indicated that 9 out of 20 top-ranked GO categories were
common between both data sets and involved in the
immune system (Table 3 and 4).

To exclude the influence of cutoff in fold change or P
value in volcano plot analysis, we reevaluated differences in
the biological characteristics between high- and low-risk
groups using GSEA (26). Four immunity-related GO cate-
gories (immune system response, immune response,
defense response, and inflammatory response) were also
included in the list of 20 top-ranked GO categories when
GSEAwas carried out with 21,785 (Japanese data set A) and
14,023 (TCGA data set) transcripts prior to gene extraction
(Supplementary Table S4).

Furthermore, possible functional relations among differ-
entially expressed genes betweenhigh- and low-groupswere

investigated with pathway analysis. Of 20 top-ranked path-
ways notably enriched in 1,109 transcripts of the Japanese
data set A and 1,381 transcripts of the TCGA data set, 14
pathways were common between both data sets (Supple-
mentary Table S5). In particular, the antigen presentation
pathway (Fig. 3B) was the most significantly overrepresent-
ed pathway in the 2 data sets (Japanese data set A,Q¼ 2.0�
10�29; TCGA data set, Q ¼ 5.0 � 10�14). In the antigen
presentation pathway, 30 transcripts in this pathway were
significantly downregulated in the high-risk group (Fig. 3B
and Supplementary Table S6).We further examined wheth-
er molecular defects of human leukocyte antigen (HLA)
class I antigen presentation machinery components were
caused by structural alterations using SNP array data. Our
SNP array data showed that genes of HLA class I antigen
presentation machinery were not deleted (Supplementary
Table S6). In the TCGA data set, only 10% of cases (24 of
242) had deletions in HLA class I genes. On the other hand,
89% of high-risk cases (55 of 62) without deletion in HLA
class I genes showed significantly lower expressions in HLA
class I genes compared with those in low-risk groups (Sup-
plementary Fig. S6).

On thebasis of this result,we assessed the status of tumor-
infiltrating lymphocyte reflecting an immune response

Table 2. Univariate and multivariate Cox's proportional hazard model analysis of prognostic factors for
overall survival

Univariate analysis

P

Multivariate analysis

PHR (95% CI) HR (95% CI)

Japanese data set A
Age 1.011 (0.993–1.029) 0.21 1.006 (0.988–1.024) 0.52
Stage IV (vs. stage III) 1.465 (0.968–2.165) 0.07 1.340 (0.884–1.984) 0.16
Optimal surgery (vs. suboptimal) 0.499 (0.334–0.730) 0.0003 0.643 (0.428–0.949) 0.026
High (vs. low) 6.823 (4.692–9.972) 2 � 10�22 6.203 (4.239–9.123) 4 � 10�20

Tothill's data set
Age 1.005 (0.977–1.035) 0.73 1.006 (0.978–1.035) 0.67
Stage IV (vs. stage III) 2.264 (0.785–5.176) 0.12 2.951 (0.983–7.235) 0.053
Optimal surgery (vs. suboptimal) 0.887 (0.525–1.517) 0.66 0.910 (0.528–1.592) 0.74
High (vs. low) 3.443 (1.967–5.962) 3 � 10�5 3.728 (2.110–6.532) 1 � 10�5

Bonome's data set
Optimal surgery (vs. suboptimal) 0.592 (0.414–0.840) 0.0032 0.628 (0.438–0.894) 0.0097
High (vs. low) 2.034 (1.341–3.012) 0.0011 1.897 (1.247–2.818) 0.0033

Dressman's data set
Optimal surgery (vs. suboptimal) 0.685 (0.425–1.102) 0.12 0.602 (0.370–0.977) 0.04
High (vs. low) 2.397 (1.335–4.140) 0.0042 2.687 (1.480–4.705) 0.0016

TCGA data set
Age 1.014 (1.001–1.028) 0.038 1.011 (0.997–1.025) 0.13
Stage IV (vs. stage III) 1.018 (0.683–1.469) 0.93 1.034 (0.692–1.499) 0.86
Optimal surgery (vs. suboptimal) 0.909 (0.668–1.254) 0.56 0.903 (0.654–1.261) 0.54
High (vs. low) 1.712 (1.234–2.345) 0.0015 1.680 (1.202–2.321) 0.0027

Japanese data set B
Age 1.059 (1.007–1.118) 0.024 1.058 (0.999–1.131) 0.057
Stage IV (vs. stage III) 1.696 (0.542–4.501) 0.34 2.998 (0.808–10.60) 0.098
Optimal surgery (vs. suboptimal) 0.582 (0.231–1.364) 0.22 0.510 (0.175–1.413) 0.20
High (vs. low) 4.100 (1.376–11.25) 0.013 4.468 (1.265–15.49) 0.021
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against ovarian cancer. By immunohistochemically staining
for CD8-positive T lymphocytes in a subset of the Japanese
data set (n ¼ 30), we revealed that the number of CD8 T
lymphocytes infiltrating into tumor tissues was significantly

decreased in the high-risk group (n ¼ 10) compared with
the low-risk group (n¼ 20) and was clearly correlated with
the expression level of HLA class I genes (Supplementary
Fig. S7).

Figure 2. Molecular characteristics
of 126 survival-related genes. A, heat
map with a hierarchical classification
of 260 patient samples with the
expression profile of 126 survival-
related genes in the Japanese data
set A. B, heat map with a hierarchical
classification of 319 patient samples
with the expression profile of 126
survival-related genes in TCGA data
set.

Table 3. EnrichedGOcategories among the transcripts significantly differentially expressedbetween high-
and low-risk groups: top-ranked 20 of 534 significantly overrepresented categories (Q < 0.25) among 1,109
transcripts in Japanese data set A

Genes within GO category

GO categorya Number Percentage �Log10 Q
b

Immune system process (GO:0002376) 206 29.0 45.0
Immune response (GO:0006955) 172 24.2 45.0
Defense response (GO:0006952, 0002217, 0042829) 110 15.5 40.3
Response to stimulus (GO:0050896, 0051869) 251 35.4 29.2
Inflammatory response (GO:0006954) 68 9.6 26.2
Positive regulation of immune system process (GO:0002684) 40 5.6 25.2
Regulation of immune system process (GO:0002682) 52 7.3 24.5
Antigen processing and presentation (GO:0019882,0030333) 31 4.4 22.7
Signal transducer activity (GO:0004871, 0005062, 0009369, 0009370) 169 23.8 22.1
Molecular transducer activity (GO:0060089) 169 23.8 22.1
Signal transduction (GO:0007165) 224 31.5 20.8
Leukocyte activation (GO:0045321) 47 6.6 20.1
Cell activation (GO:0001775) 48 6.8 19.7
Regulation of immune response (GO:0050776) 32 4.5 18.9
Response to wounding (GO:0009611, 0002245) 70 9.9 18.7
Signal transmission (GO:0023060) 224 31.5 18.2
Signaling process (GO:0023046) 224 31.5 18.2
Regulation of cell activation (GO:0050865) 30 4.2 17.2
Positive regulation of cell activation (GO:0050867) 24 3.4 17.0
Regulation of lymphocyte activation (GO:0051249) 29 4.1 17.0

aBold font denotes common categories included in top 20 lists both Japanese data set A and TCGA data set.
bQ value was determined by Fisher's exact test with Benjamini–Yekutieli correction.
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Discussion
In this study, we established a novel risk classification

system based on the 126-gene expression signature for
predicting overall survival time in patients with advanced
stage high-grade serous ovarian cancer. The significant
association between our risk classification and overall
survival time was indicated among the 6 microarray data
sets.

In expression microarray analyses, there is a well-known
"curse of dimensionality" problem that the number of
genes is much larger than the number of samples. The curse
of dimensionality leads to a concern about the reliability of
the selected genes or an overfitting phenomenon, and using
a large-scale microarray data is a simple and effective meth-
od to overcome this problem. From this theory, we planned
a large-scale cross-platform study using 4 publicly available

Table 4. EnrichedGOcategories among the transcripts significantly differentially expressedbetween high-
and low-risk groups: top-ranked 20 of 83 significantly overrepresented GO categories (Q < 0.25) among
1,381 transcripts in TCGA data set

Genes within GO category

GO categorya Number Percentage �Log10 Q
b

Immune system process (GO:0002376) 129 20.5 20.9
Immune response (GO:0006955) 115 18.3 20.8
Defense response (GO:0006952,
0002217, 0042829)

78 12.4 10.3

Antigen processing and presentation
(GO:0019882, 0030333)

25 4.0 8.4

Inflammatory response (GO:0006954) 50 7.9 8.2
Antigen processing and presentation
of peptide antigen (GO:0048002)

13 2.1 6.9

Antigen processing and presentation
of exogenous peptide antigen
(GO:0002478)

6 1.0 5.2

MHC class I peptide loading complex
(GO:0042824)

9 1.4 5.2

MHC protein complex (GO:0042611) 18 2.9 5.2
TAP complex (GO:00042825) 8 1.3 5.2
MHC protein binding (GO:0042287) 12 1.9 5.2
Antigen processing and presentation
of exogenous antigen (GO:0019884)

7 1.1 5.0

Response to stimulus
(GO:0050896, 0051869)

183 29.1 4.4

Antigen processing and presentation
of peptide antigen via MHC class I
(GO:0002474)

7 1.1 3.9

Antigen processing and presentation
of peptide or polysaccharide antigen
via MHC class II (GO:0002504)

12 1.9 3.9

Regulation of immune response
(GO:0050776)

6 1.0 3.8

MHC class I protein binding
(GO:0042288)

10 1.6 3.8

Response to wounding
(GO:0009611, 0002245)

50 7.9 3.8

Positive regulation of immune
response (GO:0050778)

6 1.0 3.8

Positive regulation of immune
system process (GO:0002684)

6 1.0 3.8

aBold font denotes common categories included in top 20 lists both Japanese data set A and TCGA data set.
bQ value was determined by Fisher's exact test with Benjamini–Yekutieli correction.
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microarray data sets consisting of more than 100 samples.
To carry out a cross-platform study, we took considerable
care to reduce the influence of differences in microarray
platforms with the Median Rank Score method and match-
ing probes based on highly correlated expression (r > 0.8)
between the 2 platforms. As a result, this risk classification
system showed a high predictive ability in the 4 microarray
data sets from different platforms. Our risk classification
was suitably fitting to Japanese data set B despite the small
sample size. This might reflect the same platform in the
microarray experiments and similarity in clinical back-
grounds between Japanese data set A and B. Intriguingly,
193 survival-related gene signature that has been reported
by TCGA research networks (10) was also significantly
associated with overall survival in our large data set (Sup-
plementary Fig. S4), and 5 genes (B4GALT5, CXCL9, ID4,
MTRF1, and SLC7A11) were common between their and
our gene signatures despite different analytic processes
(Supplementary Table 2). These genes might contribute

strongly to developing risk classification system for high-
grade serous ovarian cancer patients.

We ascertained that alterations to the immune system in
cancer cells are one of the most important factors affecting
survival of patients with advanced stage, high-grade serous
ovarian cancer and that high-risk ovarian cancer was well
characterized by the downregulation of the antigen presen-
tation pathway at the molecular level.

The 2 large-scale subclassification studies (10, 11) based
on gene expression analyses have indicated that there are at
least 4 subclasses (immunoreactive, differentiated, prolif-
erative, and mesenchymal) in high-grade serous ovarian
cancer. Although there was no statistically significant dif-
ference in clinical outcome among 4 subclasses, this finding
that immunity-related genes are identified in large-scale
gene expression profiles despite different analytic
approaches suggests that alteration of immune activity
might play an important role in the molecular characteri-
zation of ovarian cancer.

Figure 3. Molecular characteristics of differentially expressedgenesbetweenhigh- and low-risk groups in the2major data sets (Japanesedata set AandTCGA
data set). A, using a volcano plot analysis, 1,109 and 1,381 transcripts were extracted as differentially expressed genes between high- and low-risk groups in
the Japanese data set A and TCGA data set, respectively. B, IPA showed that the antigen presentation pathway was significantly overrepresented in
1,109 Japanese data set A and 1,381 TCGA transcripts. Green indicates that gene expression was downregulated in high-risk group compared with low-risk
group.
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Previous findings (28–30) that the presence of tumor-
infiltrating T lymphocytes is associatedwith long survival in
ovarian cancer patients are consistent with the results from
our comprehensive gene expression analysis using large-
scalemicroarray data, suggests that the presence of immune
responses to cancer cells would influence the biological
phenotype of ovarian cancer. Although several antigen-
specific active immunotherapy studies have been con-
ducted, the clinical benefit of this approach has not yet
been shown in large randomized-controlled trials (31, 32).
Previous reports (28, 33, 34) and our data indicated that
defects in HLA class I antigen presentation machinery
would decrease recruitment of tumor-infiltrating lympho-
cytes, leading to poor prognosis in cancer patients because
of a reduction in antitumor immune activity. Therefore,
upregulation of HLA class I antigen presentation pathway
might be one of efficient therapeutic approach for patients
with high-risk serous ovarian cancer, especially when anti-
gen-specific active immunotherapy is selected as a thera-
peutic strategy (35).

Defects of HLA class I gene expression occurs at the
genetic, epigenetic, transcriptional, and posttranscriptional
levels, and are classified into the 2 main groups: reversible
and irreversible defects (36). Our data show that the fre-
quency of deletion leading to irreversible defect ofHLA class
I gene expression was low in high-grade serous ovarian
cancer. Only a few HLA class I gene mutations have been
described thus far (36). Downregulation of antigen presen-
tation machinery components such as TAP1/2 or B2M also
result in reversible defects in HLA class I molecules (37).
Interestingly, the expression levels of genes in the antigen
presentation pathway were positively correlated in the
Japanese data set A (Supplementary Fig. S8). IFN-g or other

cytokines stimulation induces the expression of genes in the
antigen presentation pathway (38). Moreover, histone dea-
cetylase (HDAC) inhibitors increase the expression of genes
in the antigenpresentationpathway such asTAP1/2 (39, 40)
and B2M (41) in several cancer cells leading to upregulating
the antigen presentation pathway. In addition, HDAC inhi-
bitors that are promising anticancer drugs showa synergistic
effect with taxane or platinum drugs, which were used as
standard adjuvant chemotherapy for ovarian cancer, both in
vitro and in vivo (42, 43). These genetic and epigenetic
activations of the antigen presentation pathway might
induce immune recognition of ovarian cancer cells and
enhance antitumor immune responses.

In summary, our data suggest that this predictive bio-
marker based on the 126-gene signature could identify
patients who should not expect long-term survival by stan-
dard treatment and that activation of the antigen presen-
tation pathway in tumor cells is an important key in new
therapeutic strategies for ovarian cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors thank Prof. Y. Nakamura for his help, the tissue donors and

supporting medical staff for making this study possible, C. Seki and A.
Yukawa for their technical assistance, T. Mizuochi for discussion, Prof. S. G.
Silverberg for his enthusiastic help with the pathologic review, and K.
Boroevich for helpful comments on the manuscript.

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

ReceivedOctober 24, 2011; revisedDecember 9, 2011; acceptedDecember
23, 2011; published OnlineFirst January 12, 2012.

References
1. Cannistra SA. Cancer of the ovary. N Engl J Med 2004;351:2519–29.
2. KurmanRJ, Visvanathan K, RodenR,Wu TC, Shih IeM. Early detection

and treatment of ovarian cancer: shifting from early stage to minimal
volume of disease based on a new model of carcinogenesis. Am J
Obstet Gynecol 2008;198:351–6.

3. Levanon K, Crum C, Drapkin R. New insights into the pathogenesis of
serous ovarian cancer and its clinical impact. J Clin Oncol 2008;26:
5284–93.

4. Bowtell DD. The genesis and evolution of high-grade serous ovarian
cancer. Nat Rev Cancer 2010;10:803–8.

5. Winter WE 3rd, Maxwell GL, Tian C, Carlson JW, Ozols RF, Rose PG,
et al. Prognostic factors for stage III epithelial ovarian cancer: a
Gynecologic Oncology Group Study. J Clin Oncol 2007;25:3621–7.

6. du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I,
Pfisterer J. Role of surgical outcome as prognostic factor in advanced
epithelial ovarian cancer: a combined exploratory analysis of 3 pro-
spectively randomized phase 3 multicenter trials: by the Arbeitsge-
meinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzi-
nom (AGO-OVAR) and theGroupe d'Investigateurs Nationaux Pour les
Etudes desCancers de l'Ovaire (GINECO). Cancer 2009;115:1234–44.

7. DowsettM, Dunbier AK. Emerging biomarkers and new understanding
of traditional markers in personalized therapy for breast cancer. Clin
Cancer Res 2008;14:8019–26.

8. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene
expression profiling to breast cancer classification, prognostication

and prediction: a retrospective of the last decade. J Pathol 2010;220:
263–80.

9. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M,
Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade
serous carcinoma of the ovary. J Pathol 2010;221:49–56.

10. The Cancer Genome Atlas Research Network. Integrated genomic
analyses of ovarian carcinoma. Nature 2011;474:609–15.

11. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel
molecular subtypes of serous and endometrioid ovarian cancer linked
to clinical outcome. Clin Cancer Res 2008;14:5198–208.

12. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA,
Bogomolniy F, et al. A gene signature predicting for survival in sub-
optimally debulked patients with ovarian cancer. Cancer Res 2008;68:
5478–86.

13. Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, et al. An
integrated genomic-based approach to individualized treatment of
patients with advanced-stage ovarian cancer. J Clin Oncol 2007;25:
517–25.

14. Majewski IJ, Bernards R. Taming the dragon: genomic biomarkers to
individualize the treatment of cancer. Nat Med 2011;17:304–12.

15. Heintz AP,Odicino F,Maisonneuve P, Beller U, Benedet JL, Creasman
WT, et al. Carcinoma of the ovary. J Epidemiol Biostat 2001;6:107–38.

16. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford
R, et al.: New response evaluation criteria in solid tumours: Revised
RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47.

Yoshihara et al.

Clin Cancer Res; 18(5) March 1, 2012 Clinical Cancer Research1384

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/18/5/1374/2009244/1374.pdf by guest on 23 April 2024



17. Tavassoli FA, Devilee P. World Health Organization Classification of
Tumors. Pathology & Genetics. Tumors of the breast and female
genital organs. Lyon (France): IARC Press; 2003. p. 117–45.

18. Silverberg SG. Histopathologic grading of ovarian carcinoma: a review
and proposal. Int J Gynecol Pathol 2000;19:7–15.

19. Yoshihara K, Tajima A, Yahata T, Kodama S, Fujiwara H, Suzuki M,
et al. Gene expression profile for predicting survival in advanced-stage
serous ovarian cancer across two independent datasets. PLoS One
2010;5:e9615.

20. Glaab E, Garibaldi J, Krasnogor N. ArrayMining: a modular web-
application for microarray analysis combining ensemble and consen-
sus methods with cross-study normalization. BMC Bioinformatics
2009;10:358.

21. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P,
et al. Genomic index of sensitivity to endocrine therapy for breast
cancer. J Clin Oncol 2010;28:4111–9.

22. Simon N, Friedman J, Hastie T. Regularization paths for Cox's pro-
portional hazardsmodel via coordinate descent. J Stat Softw 2010;39:
1–22.

23. R Development Core Team. R: A language and environment for
statistical computing. 2011

24. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molec-
ular pattern discovery using matrix factorization. Proc Natl Acad Sci
U S A 2004;101:4164–9.

25. Benjamini Y, Yekutieli D. The control of the false discovery rate in
multiple testing under dependency. Ann Stat 2001;29:1165–88.

26. SubramanianA, TamayoP,Mootha VK,Mukherjee S, Ebert BL,Gillette
MA, et al. Gene set enrichment analysis: A knowledge-basedapproach
for interpreting genome-wide expression profiles. Proc Natl Acad Sci
U S A 2005;102:15545–50.

27. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Statist Soc
B 1995;57:289–300.

28. Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN, Kamat AA,
et al. HLAclass I antigenprocessingmachinery component expression
and intratumoral T-Cell infiltrate as independent prognostic markers in
ovarian carcinoma. Clin Cancer Res 2008;14:3372–9.

29. Leffers N, Fehrmann RS, Gooden MJ, Schulze UR, Ten Hoor KA,
Hollema H, et al. Identification of genes and pathways associated with
cytotoxic T lymphocyte infiltration of serous ovarian cancer. Br J
Cancer 2010;103:685–92.

30. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The
prognostic influence of tumour-infiltrating lymphocytes in cancer: a
systematic review with meta-analysis. Br J Cancer 2011;105:93–103.

31. Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief K,
et al. Antigen-specific active immunotherapy for ovarian cancer.
Cochrane Database Syst Rev 2010;1:CD007287.

32. Kandalaft LE, Powell DJ Jr, Singh N, Coukos G. Immunotherapy for
ovarian cancer: what's next? J Clin Oncol 2011;29:925–33.

33. Rolland P, Deen S, Scott I, Durrant L, Spendlove I. Human leukocyte
antigen class I antigen expression is an independent prognostic factor
in ovarian cancer. Clin Cancer Res 2007;13:3591–6.

34. Shehata M, Mukherjee A, Deen S, Al-Attar A, Durrant LG, Chan S.
Human leukocyte antigen class I expression is an independent prog-
nostic factor in advanced ovarian cancer resistant to first-line platinum
chemotherapy. Br J Cancer 2009;101:1321–8.

35. TanakaK,Hayashi H,HamadaC,KhouryG, JayG. Expressionofmajor
histocompatibility complex class I antigens as a strategy for the
potentiation of immune recognition of tumor cells. Proc Natl Acad Sci
U S A 1986;83:8723–7.

36. Garrido F, Cabrera T, Aptsiauri N. "Hard" and "soft" lesions underlying
the HLA class I alterations in cancer cells: implications for immuno-
therapy. Int J Cancer 2010;127:249–56.

37. Khong HT, Restifo NP. Natural selection of tumor variants in the
generation of "tumor escape" phenotypes. Nat Immunol 2002;3:
999–1005.

38. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer
immunoediting. Nat Rev Immunol 2006;6:836–48.

39. Khan AN, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors
induce TAP, LMP, Tapasin genes and MHC class I antigen presenta-
tion by melanoma cells. Cancer Immunol Immunother 2008;57:
647–54.

40. Setiadi AF, Omilusik K, David MD, Seipp RP, Hartikainen J, Gopaul
R, et al. Epigenetic enhancement of antigen processing and pre-
sentation promotes immune recognition of tumors. Cancer Res
2008;68:9601–7.

41. Kitamura H, Torigoe T, Asanuma H, Honma I, Sato N, Tsukamoto T.
Down-regulation of HLAclass I antigens in prostate cancer tissues and
up-regulation by histone deacetylase inhibition. J Urol 2007;178:
692–6.

42. ChobanianNH,Greenberg VL, Gass JM, DesimoneCP, VanNagell JR,
Zimmer SG. Histone deacetylase inhibitors enhance paclitaxel-
induced cell death in ovarian cancer cell lines independent of p53
status. Anticancer Res 2004;24:539–45.

43. Qian X, LaRochelle WJ, Ara G, Wu F, Petersen KD, Thougaard A,
et al. Activity of PXD101, a histone deacetylase inhibitor, in
preclinical ovarian cancer studies. Mol Cancer Ther 2006;5:
2086–95.

Novel Risk Classification in Ovarian Cancer

www.aacrjournals.org Clin Cancer Res; 18(5) March 1, 2012 1385

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/18/5/1374/2009244/1374.pdf by guest on 23 April 2024


