Purpose: Patients with advanced soft-tissue sarcomas (STSs) exhibit a poor prognosis and have few therapeutic options. DNA-dependent protein kinase catalytic subunit (DNA-PK) is a multifunctional serine—threonine protein kinase that plays a crucial role in DNA double-strand damage repair via nonhomologous end joining (NHEJ). Experimental design: To investigate the therapeutic potential of DNA-PK targeting in STS, we first evaluated the prognostic value of DNA-PK expression in two large cohorts of patients with STS. We then used the potent and selective DNA-PK inhibitor AZD7648 compound to investigate the antitumor effect of the pharmacological inhibition of DNA-PK in vitro via MTT, apoptosis, cell cycle, and proliferation assays. In vivo studies were performed with patient-derived xenograft models to evaluate the effects of AZD7648 in combination with chemotherapy or ionizing radiation on tumor growth. The mechanisms of sensitivity and resistance to DNA-PK inhibition were investigated by using a genome-wide CRISPR-Cas9 positive screen. Results: DNA-PK overexpression is significantly associated with poor prognosis in patients with sarcomas. Selective pharmacological inhibition of DNA-PK strongly synergizes with radiation- and doxorubicin-based regimen in sarcoma models. By using a genome-wide CRISPR-Cas9 positive screen, we identified genes involved in sensitivity to DNA-PK inhibition. Conclusion: DNA-PK inhibition deserves clinical investigation to improve response to current therapies in patients with sarcoma.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.