Abstract
BXQ-350, a nanovesicle formulation of saposin C, is an allosteric sphingolipid metabolism regulator that increases proapoptotic ceramide and decreases oncogenic sphingosine-1-phosphate levels. We conducted a first-in-human phase I study of BXQ-350.
Adults (≥18 years old) with advanced/recurrent, treatment-refractory solid tumors or high-grade gliomas received BXQ-350 intravenously in five dose cohorts (0.7–2.4 mg/kg) in a 3+3 dose escalation and expansion design. The primary endpoints during dose escalation were dose-limiting toxicities and maximum tolerated dose; the primary objective in expansion parts was assessment of antitumor activity (RECIST v1.1/Response Assessment in Neuro-Oncology criteria).
Eighty-six patients were enrolled. Dose-limiting toxicities were not observed during dose escalation (n = 18), and a maximum tolerated dose was not identified. An additional 68 patients received the 2.4 mg/kg dose. Nine patients (10%) discontinued due to adverse events. The most common treatment-related adverse events were nausea (24%) and fatigue (23%). Eight patients had a progression-free survival of ≥6 months. Two of these achieved a partial response, and six had stable disease, among whom three had a reduction in ≥1 target lesion. Of those with progression-free survival of ≥6 months, seven remained on study for >12 months, five for >24 months, and after 7 years, two remained on study without disease progression.
BXQ-350 was well-tolerated as monotherapy at doses up to 2.4 mg/kg. It provided some lasting clinical benefit in patients with recurrent solid malignancies across several tumor types, consistent with a decreased systemic sphingosine-1-phosphate/ceramide metabolic rheostat. BXQ-350 warrants further clinical investigation alone and combined with standard of care for advanced solid tumors.