Abstract
PD-1 blockade plus chemotherapy has become the new standard of care in patients with untreated advanced non–small cell lung cancer (NSCLC), whereas predictive biomarkers remain undetermined.
We integrated clinical, genomic, and survival data of 427 NSCLC patients treated with first-line PD-1 blockade plus chemotherapy or chemotherapy from two phase III trials (CameL and CameL-sq) and investigated the predictive and prognostic value of HLA class I evolutionary divergence (HED).
High HED could predict significantly improved objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) in those who received PD-1 blockade plus chemotherapy [in the CameL trial, ORR: 81.8% vs. 53.2%; P = 0.032; PFS: hazard ratio (HR), 0.47; P = 0.012; OS: HR, 0.40; P = 0.014; in the CameL-sq trial, ORR: 89.2% vs. 62.3%; P = 0.007; PFS: HR, 0.49; P = 0.005; OS: HR, 0.38; P = 0.002], but not chemotherapy. In multivariate analysis adjusted for PD-L1 expression and tumor mutation burden, high HED was independently associated with markedly better ORR, PFS, and OS in both trials. Moreover, the joint utility of HED and PD-L1 expression showed better performance than either alone in predicting treatment benefit from PD-1 blockade plus chemotherapy. Single-cell RNA sequencing of 58,977 cells collected from 11 patients revealed that tumors with high HED had improved antigen presentation and T cell–mediated antitumor immunity, indicating an inflamed tumor microenvironment phenotype.
These findings suggest that high HED could portend survival benefit in advanced NSCLC treated with first-line PD-1 blockade plus chemotherapy.