To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL).

Patients and Methods:

In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients.


In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4–mediated inside–out activation. Transcriptomes of CD49d+ and CD49d cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK–STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d were estimated progression-free at 8 years (P = 0.0004).


CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression.

See related commentary by Tissino et al., p. 3560

You do not currently have access to this content.