Paclitaxel is a widely used anticancer therapeutic. Peripheral neuropathy is the dose-limiting toxicity and negatively impacts quality of life. Rare germline gene markers were evaluated for predicting severe taxane-induced peripheral neuropathy (TIPN) in the patients of European ancestry. In addition, the impact of Cytochrome P450 (CYP) 2C8, CYP3A4, and CYP3A5 metabolizer status on likelihood of severe TIPN was also assessed.

Experimental Design:

Whole-exome sequencing analyses were performed in 340 patients of European ancestry who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Patients who experienced grade 3–4 (n = 168) TIPN were compared to controls (n = 172) who did not experience TIPN. For the analyses, rare variants with a minor allele frequency ≤ 3% and predicted to be deleterious by protein prediction programs were retained. A gene-based, case–control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of severe TIPN. CYP star alleles for CYP2C8, CYP3A4, and CYP3A5 were called. An additive logistic regression model was performed to test the association of CYP2C8, CYP3A4, and CYP3A5 metabolizer status with severe TIPN.


Cytochrome P450 oxidoreductase (POR) was significantly associated with severe TIPN (P value = 1.8 ×10−6). Six variants were predicted to be deleterious in POR. There were no associations between CYP2C8, CYP3A4, or CYP3A5 metabolizer status with severe TIPN.


Rare variants in POR predict an increased risk of severe TIPN in patients of European ancestry who receive paclitaxel.

You do not currently have access to this content.