Studies investigating the relationship between common genetic variants and cancer risk are being reported with rapidly increasing frequency. We have identified 46 published case-control studies that have examined the effect of common alleles of 18 different genes on breast cancer risk. Of these, 12 report statistically significant associations, none of which were reported by more than one study. However, many of the studies were small: 10 of the 46 had 80% power or greater to detect a rare allele homozygote relative risk <2.5. We therefore combined the results of individual studies to obtain more precise estimates of risk. Statistically significant differences in genotype frequencies were found in three case-control comparisons of unselected cases. These were for CYP19 (TTTA)n polymorphism [(TTTA)10 carrier odds ratio (OR) = 2.33; P = 0.002], the GSTP1 Ile105Val polymorphism (Val carrier OR = 1.60; P = 0.02), and the TP53 Arg72Pro polymorphism (Pro carrier OR = 1.27; P = 0.03). In addition, the GSTM1 gene deletion was found to be significantly associated with postmenopausal breast cancer (null homozygote OR = 1.33; P = 0.04). There was also some evidence that homozygotes for the PR PROGINS allele are protected against breast cancer, although this result was of borderline statistical significance. For polymorphisms in BRCA1, COMT, CYP17, CYP1A1, NAT1, and NAT2, the best estimate of risk either from the individual studies or the meta-analyses was sufficiently precise to exclude a relative risk of 1.5 or greater. For the polymorphisms in EDH17B2, ER, CYP2D6, CYP2E1, GSTT1, HSP70, and TNFα, the risk estimates, although nonsignificant, were insufficiently precise to exclude a moderate risk (>1.5). Precise estimation of the risks associated with these and other as yet untested genes, as well as investigation of more complex risks arising from gene-gene and gene-environment interactions, will require much larger studies.

Breast cancer is a common disease in Western societies, with a lifetime prevalence of 1 in 12 in the United Kingdom (1) and 1 in 8 in the USA (2). Although 10–15% of breast cancer cases have some family history of the disease, only 5% can be explained by rare, highly penetrant mutations in genes such as BRCA1 and BRCA2(3) First-degree relatives of breast cancer patients have a 2-fold increase in risk over the general population (4), most of which cannot be accounted for by BRCA1/2(5). Although some of the familial risk may be due to shared environment, there may be other common, low-penetrance genetic variants which alter predisposition to breast cancer.

A frequently used experimental design for identifying common low-penetrance alleles is the association study (6). In this design, polymorphic genotype frequencies are compared between groups with different phenotypes. The aim is to study polymorphisms that may either be causally related to disease risk or are in strong linkage disequilibrium with disease-causing variants. Phenotypes investigated can be either continuously variable, such as serum lipid levels, or discrete, such as disease cases versus matched controls, in which instance the study design is a classic case-control study. The simplest polymorphisms to use are biallelic, which most commonly arise from a SNP,4 and give rise to three different genotype classes: the common allele homozygote, the heterozygote, and the rare allele homozygote. Multiallelic, repeat length polymorphisms (microsatellites), such as the (TTTA)n polymorphism in CYP19, can also be used, but these usually give rise to many genotypes. Genotypes often are grouped to simplify analysis, but this is valid only if a rational grouping strategy can be applied. Furthermore, the higher mutation rate in microsatellites is likely to lead to weaker associations unless the polymorphism itself is functional (e.g., the androgen receptor polyglutamine tract and prostate cancer risk). Genetic association studies using populations are more powerful than linkage studies within pedigrees for identifying low-penetrance alleles, which by definition may not be expressed in multiple members of a single family (7). However, at present, association studies can be carried out only on candidate genes.

There are a variety of ways of presenting gene polymorphism data in relation to breast cancer risk, depending on the nature of the polymorphism. In the case of simple biallelic polymorphisms, allele frequencies in cases and controls can be compared using the χ2 test to ascertain statistical significance. However, this method does not produce an easily interpretable measure of the magnitude of breast cancer risk and also lacks statistical power compared with some alternatives. A more appropriate method is to compare genotype frequencies of the three possible genotypes among cases and controls. The relative risk of breast cancer for each genotype is then estimated by the OR. The baseline group is usually the common allele homozygote, which by definition has an OR (and relative risk) of 1. Depending on the allele frequencies, the number of rare allele homozygotes may be very small, particularly in small studies, and the associated OR will have a wide confidence interval. Under these circumstances, it is common to combine the heterozygotes and rare-allele homozygotes and calculate the rare allele carrier OR. However, this risk estimate is valid only if the genetic model is dominant, an assumption that should not be made without appropriate evidence. For multiallelic polymorphisms, it is common to group alleles together and analyze the data in the same way as for a biallelic polymorphism.

The first low-penetrance breast cancer susceptibility locus identified by the association approach was the HRAS1 minisatellite (8). This has more than 30 alleles, of which 4 are common, whereas the rest, which have a combined frequency of ≈0.06, are classified as “rare.” These rare alleles have been found to be associated with a 1.9-fold increased relative risk of breast cancer (and increased risk of other cancers) and are estimated to account for 9% of all breast cancer incidence. However, the molecular mechanism underlying this association remains unclear. The HRAS1 locus has been reviewed extensively (8, 9) and so will not be considered further here.

Association studies have also been performed on other genes with putative involvement in breast cancer susceptibility. The candidate genes studies thus far can be divided into three main groups: genes for proteins with roles in steroid hormone metabolism; genes coding for carcinogen metabolism enzymes; and common alleles of genes that have been identified through family studies such as TP53 and BRCA1. The candidate gene polymorphisms reviewed here are listed in Table 1.

Several factors alter exposure to endogenous hormones, and many of these, such as age at menarche, age at first pregnancy, number of pregnancies, and age at menopause, alter breast cancer risk (10). Hence, genes involved in the metabolism of sex hormones are strong candidates for breast cancer susceptibility genes. Those in the sex hormone biosynthesis pathway may affect production of, and thus exposure to, the most active estrogen; estradiol. Genes in this pathway include CYP17, CYP19, and the gene for 17β-hydroxysteroid dehydrogenase type 2.

The bioavailability of hormones is partially controlled by catabolism, and catechol estrogens (2 hydroxy-estrogens) are the major breakdown products of estrogens. COMT is a phase II enzyme that methylates catechol-estrogens during their conjugation and inactivation. It has two forms: one membrane-bound and the other cytosolic; both are expressed in breast tissue and share a polymorphism associated with differences in methylation activity.

The sex hormones control the activation of responsive genes by first binding to specific receptors and forming complexes that can in turn bind to sequences in the promoters of downstream, hormone-responsive genes. Thus, steroid hormone receptor genes, such as ER, PR, and AR, are candidates for breast cancer susceptibility genes.

Several enzymes have evolved for the detoxification of xenobiotic compounds, and their gene expression is induced in response to the presence of the compound (e.g., polycyclic aromatic hydrocarbons found in tobacco smoke). The actions of phase I and phase II enzymes render susceptible compounds more soluble and more readily excreted and ought to reduce cancer risk. However, the more soluble products of some compounds are even more potent carcinogens than the less soluble form. Hence, a genetic change that increases the expression of the gene or the activity of the protein produced may increase the amount of reactive carcinogen formed and, thus, increase the risk of cancer.

Two phase I enzymes, CYP1A1 and CYP2D6, are induced by, and act on, carcinogens found in tobacco smoke. Both have polymorphic differences in either inducibility or activity. CYP2E1, an enzyme that metabolizes ethanol, is also a candidate because epidemiological studies suggest that breast cancer risk is increased with alcohol consumption (11).

The GST family are phase II enzymes that detoxify carcinogens and their reactive intermediates, such as those produced by CYP1A1, by facilitating their conjugation to glutathione and subsequent excretion. For both GSTM1 and GSTT1 [reviewed by Rebbeck (12)], a high percentage of the Caucasian population are homozygous for null alleles (up to 60 and 20%, respectively) and have no detoxifying GST activity. Levels of DNA adducts, sister-chromatid-exchange, and somatic genetic mutations may be increased in carriers of GSTM1 and GSTT1 null genotypes (12).

The N-acetyl transferases, NAT1 and NAT2, are also phase II enzymes, and they participate in the detoxification of the arylamines, some of the main carcinogenic components of tobacco smoke, and also the amines produced during the cooking of meat (13, 14). However, the action of NATs on these carcinogens can produce electrophilic ions that may induce point mutations in DNA. Polymorphism in both genes results in two phenotypes: slow acetylators who are homozygous for low-activity alleles, and fast acetylators who carry one or more high-activity alleles.

Mutations in the TP53 and BRCA1 genes are associated with a high lifetime risk of breast and other cancers (15, 16). TP53 is a tumor suppressor gene whose protein is produced in response to DNA damage through radiation or genotoxic agents, resulting in cell cycle arrest in G1 and induction of pathways leading to DNA repair or apoptosis. Mutation in the TP53 gene results in decreased p53 activity, which may lead to failure of cells with DNA damage to arrest and thus to continue to replicate with damaged DNA. In the case of BRCA1, where the protein function is still uncertain, the majority of confirmed mutations generate truncated proteins that are likely to have severely reduced activity. It has been hypothesized that amino acid substitutions outside the major functional domains may confer more moderate breast cancer risks. The majority of these substitutions are rare (17), and putative functional effects remain unconfirmed. However, it has been possible to test empirically the risks associated with the common polymorphisms.

Some of the genes discussed above have been assessed in multiple studies, whereas attempts to replicate the findings of other studies have yet to be reported. Here we have attempted to identify all of the published reports. Because most of these are based on small sample sizes, we have combined the results where possible in meta-analyses to obtain more precise estimates of risk. We discuss the implications of these findings and highlight areas where further work could be carried out profitably.

Literature Search.

Published studies were identified using the Medline (National Library of Medicine, Washington DC) and BIDS databases for 1983–July 1998, using the search terms “breast-neoplasms” and “polymorphism(s).” We also searched for studies on each specific candidate gene: for example, for CYP17 the terms “CYP17” and “breast neoplasm” were used. In addition, the bibliographies of studies identified by the electronic searches were hand searched. Eligible studies were those that compared genotypic or allele frequencies of candidate genes in a series of breast cancer cases with a series of non-breast cancer controls using genomic DNA. Studies in which tumor DNA was used from cases with genomic DNA from controls were excluded. Studies of HRAS alleles and breast cancer risk were also excluded because these have been reviewed extensively by other authors (8, 9).

Meta-analysis.

Whenever possible, raw data from comparable studies were analyzed jointly, using likelihood methods. Analyses were based on logistic regression and were carried out using the program S Plus. Each study was treated as a separate stratum, and the (control) allele or carrier frequencies in each study were permitted to be distinct, enabling studies with very different population frequencies to be considered jointly. For those metabolic polymorphisms associated with a specific phenotype, the principal analyses combined genotypes by phenotype classes (for example, poor metabolizer, slow acetylator). For all other polymorphisms, ORs were compared for each genotype. Genotype-specific ORs were estimated assuming that the genotype frequencies in controls were consistent with Hardy-Weinberg equilibrium (18). Likelihood ratio tests (with degrees of freedom equal to number of genotypes − 1) were then used to test whether the ORs differed significantly from 1. If significant evidence of an association was found, a test for heterogeneity was performed. Ninety-five percent confidence intervals were calculated by direct examination of the likelihood surface. Joint analysis by subgroup (e.g., menopausal status) could only be performed if studies reported results for each subgroup. Specific analysis considering confounding factors such as age was not possible because raw data were not available.

We identified 46 eligible studies (19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64) , which are listed in Table 2. Although the basic study designs were all the same, a wide variety of sources of both cases and controls were used. Most reported studies were quite small: the median number of cases and controls combined was 391 (range, 58–1431).

The results of the individual studies are given in Table 3, which shows the relative risk of breast cancer associated with the different polymorphisms as estimated by the OR and 95% confidence interval. To present these data in a coherent and easily comparable manner, we have given the genotypic risks. If these were not reported by individual studies, wherever possible, we have estimated the appropriate ORs and confidence intervals from the published raw data.

Although 18 genes have been studied, few investigators have reported significant risks, and where significant results have been reported, these have often not been confirmed by other studies of the same polymorphism. The associations that have been reported as significant by at least one study are discussed below.

The COMT Val158 Met polymorphism has been investigated in three studies. Thompson et al.(60), found a significantly increased risk of premenopausal breast cancer in COMTMet carrier women, with a nonsignificantly reduced risk of postmenopausal cancer. However, an earlier study had reported the opposite (although nonsignificant) effects for the same genotype, i.e., a reduced risk of premenopausal cancer and an increased risk of postmenopausal breast cancer (39), and a third study found no effect in unselected cases (51). Conflicting results have also been reported in four studies of the 1931T→C polymorphism in the CYP17 promoter. Fiegelson et al.(30) found an increased risk of breast cancer for the CYP17C carrier in a subgroup analysis of 40 advanced cases, a finding not confirmed in three other studies (29, 35, 62). A possible role for CYP19 in breast cancer has been suggested by Haiman et al.(32) and Kristensen et al.(37) reported an increased risk for carriers of the (TTTA)12 alleles; however, another group reported a statistically significant inverse association for this allele (55), and our own unpublished data have failed to confirm a significant risk (65). Haiman et al. also found a significantly increased risk for carriers of the rare (TTTA)10 allele (32), but again this finding has not been confirmed by others (55, 65). Of two studies of the estrogen receptor gene polymorphism, CCC325CCG, one found a significantly elevated risk for the G carrier (42), but a subsequent, larger study failed to confirm this result (58).

One or more of four different polymorphisms in CYP1A1 have been assessed in four different studies, two of which have investigated the role of these polymorphisms in Caucasians and African Americans separately. The only significant result reported was in the study of Taioli et al.(59), who found an increased breast cancer risk for African-American women who were CC homozygote for the 3′UTR T→C (T6235C). In contrast, the other study of African-American women found a nonsignificantly reduced breast cancer risk associated with this genotype (23). Of five studies of the GSTM1 gene deletion, only one found that null individuals were at significantly increased risk (34), and in subgroup analysis, this effect was restricted to postmenopausal breast cancer. Charrier et al.(26) also found a significantly increased risk of breast cancer in the subgroup of patients diagnosed over the age of 50.

A significant effect of the Arg72Pro polymorphism in TP53 has been reported by Sjalander et al.(56), who found that TP53Arg/Pro heterozygotes were at increased risk, as were TP53Pro carriers. Pro homozygotes were also at increased risk, although the confidence intervals were wide and the effect was not statistically significant. Two other studies of the same polymorphism had found no significant effect (43, 61). The genes HSP-70 and TNF-α have been investigated by one group, which found significantly increased risk for rare allele carriers of both genes (see Table 3). However, this study was small, and their results have not been confirmed or refuted by other groups.

Comparable data from more than one study that could be combined were available for 25 different combinations of polymorphism and patient subgroups. The results of these analyses are given in Table 4. Statistically significant differences in genotype frequencies were found in three case-control comparisons of unselected cases. These were for CYP19 (TTTA)n polymorphism [(TTTA)10 carrier OR = 2.33; P = 0.002], the GSTP1 Ile105Val polymorphism (Val carrier OR = 1.60; P = 0.02), and the TP53 Arg72Pro (Pro carrier OR = 1.27; P = 0.03). In addition, the GSTM1 gene deletion was found to be significant in postmenopausal breast cancer (null homozygote OR = 1.33; P = 0.04). There was also some evidence that homozygotes for the PR PROGINS allele are protected against breast cancer, although this result was of borderline statistical significance.

Although there is little epidemiological evidence that cigarette smoking is associated with breast cancer, studies have assessed the possible interaction between polymorphisms in the genes that encode carcinogen-metabolizing enzymes, CYP1A1, NAT2, CYP2E1, and GSTM1, with smoking (20, 21, 40, 41, 44, 50, 54). None of these studies found an overall increase in breast cancer risk with the variant genotypes, but some reported interactions with smoking. Ambrosone et al.(20) found an increase in risk in “light” smokers who carried the Val462 allele. In contrast, Ishibe et al.(41) found no interaction with the Ile462Val polymorphism but did find an increased risk in current smokers who were C carriers of the T6235C polymorphism. For NAT2, Ambrosone et al.(21) found an association between smoking >15 cigarettes per day and risk that was limited to slow acetylators, but two subsequent larger studies found that cigarette smoking was not appreciably associated with breast cancer among either fast or slow acetylators (40, 50). CYP2E1 genotype and smoking has been investigated in one study (54), which found a risk of premenopausal breast cancer in smokers who were also carriers of the DraI cutting site in intron 6. However, this result was only statistically significant after adjustment for other risk factors, and the confidence intervals were wide. A lack of interaction between GSTM1 genotype and cigarette smoking has been reported by Kelsey et al.(44).

Lavigne et al.(39) looked for interactions between the Val158 Met polymorphism in the COMT gene and several factors including family history, menopausal status, smoking, alcohol, oral contraceptive use, and hormone replacement therapy. Helzlsouer et al.(34) also explored the possibility of interactions between GSTM1, GSTP1, and GSTT1 genotypes with family history, hormone replacement therapy, cigarette smoking, alcohol consumption, and body mass index. Although no overall effect was found in either study, both reported interactions with menopausal status and body mass index, and Helzlsouer et al.(34) additionally noted an interaction between GSTT1 and alcohol consumption. However, no studies attempting to confirm these quite complex interactions have yet been published.

The possibility of gene-gene interactions have rarely been explored. One small study carried out genotyping in three genes: CYP1A1, GSTM1, and GSTT1(23). No interaction between these genes was found. The studies of Helzlsouer et al.(34) on the GST genes and Lavigne et al.(39) on COMT were carried out on the same populations. The increased relative risk of postmenopausal breast cancer for GSTM1Null and GSTP1Ile/Val/GSTP1Val/Val women of around 2 was found to be increased to a 3–4-fold increased risk if they were also COMTMet/Met. Again, no confirmatory studies have yet been published.

We have found a substantial number of reports of studies that have investigated candidate genes for low-penetrance breast cancer susceptibility alleles. Despite this research effort, there is no clear evidence that any of these polymorphisms are strongly associated with breast cancer risk. Of the individual studies, few of the reported associations have been statistically significant, and no significant association has been reported by more than one study. In some cases, this might be due to a lack of statistical power in individual studies. Even among the significant associations, the magnitude of the effect found is rarely greater than 2.5-fold increased risk. If the rare allele frequency is 0.2, 315 cases and 315 controls would be required to detect this magnitude of risk for a rare allele homozygote with 90% power at the 5% significance level: 10 of the 46 studies reported were larger than this.

We have attempted to reduce this lack of power by combining results in meta-analyses, but even the results of these need to be interpreted with some caution. Of the 25 associations tested in at least two studies, 4 were significant at the 5% level. One of these was significant only in a subgroup of cases (postmenopausal) and was not significant overall. Such subgroup-specific associations must always be treated with caution given that there is no clear a priori reason to suspect a subgroup effect. Moreover, only one of the associations has a significance levels of <1%. Given the number of polymorphisms being tested, a significance level of 10−4 or smaller would be required to provide strong evidence.

In any systematic review, a major cause for concern is the potential for publication bias. The most common scenario is the nonpublication of negative studies (i.e., those finding no significant association), resulting in bias of any meta-analysis away from the null. We cannot exclude this possibility for the three polymorphisms with significant results in the meta-analyses. For the polymorphisms for which we have found no evidence for an association between genotype and breast cancer risk, it is possible, but unlikely, that bias toward the null has occurred. There is an urgent need for databases into which the results of all association studies (positive and negative) with candidate genes can be entered to minimize the effects of publication bias.

Consistency of reporting added further complications to the meta-analysis; many studies do not describe the ethnicity of their study populations; therefore, we have combined samples on the assumption that any variant studied will have the same effect in all populations. This assumption may only be valid if the variant studied is truly functional with respect to breast cancer risk. If the variant is simply a neutral marker for some other functional variant, the assumption may be invalid because linkage disequilibrium relationships often differ between populations. In addition, there is no consensus nomenclature for SNPs: early reports often described the restriction enzyme site involved, but there are instances of multiple polymorphisms detected by the same restriction enzyme within a single gene (e.g., there are two polymorphisms creating MspI sites in CYP1A1). More recent studies usually identify the base substitution, but in introns and UTRs of genes, this can also be arbitrary. In Table 1, we presented the SNP and its general position (e.g., exon 3, intron 6, 3′UTR) for clarity, but workers will need to refer to the original articles for sufficient detail to replicate the DNA assays. The requirement for public databases of SNPs has recently been recognized (66), and it is hoped these will then provide a standardized description. Furthermore, methodological difficulties have been caused by genes having several different polymorphisms in linkage disequilibrium with one another. For example, CYP1A1 has two SNPs in strong linkage disequilibrium with one another; these are the exon 7 Ile462Val and the 3′UTR T→C (T6253C) SNPs. Both have been shown to be significantly associated with risk of some neoplasms (although not breast cancer), but combining them in a meta-analysis would require a somewhat more complicated analytical approach.

Several studies have reported on putative gene-gene and gene-environment interactions. The results of these analyses should, however, be treated with caution. The problem of post hoc subgroup analyses and multiple hypothesis testing renders the interpretation of positive results difficult. Negative results also should be treated with caution because few studies will have had sufficient power to detect moderate interaction effects. For example, 1500 cases and 1500 controls would be required to detect an interaction between two genotypes each with a frequency of 0.1 and a relative risk of 1.1 but with a relative risk of 2.5 when combined. These analyses should, therefore, be treated as hypothesis generating rather than hypothesis testing.

Despite these concerns, we believe some firm conclusions can be drawn. For several polymorphisms, the best estimate of risk either from the individual studies or the combined meta-analyses is sufficiently precise to exclude a relative risk of 1.5. These include the polymorphisms in BRCA1, COMT, CYP17, CYP1A1, NAT1, and NAT2. This does not necessarily imply that a negligible fraction of breast cancer incidence is attributable to such genes. For example, the upper confidence interval for the CYP17 effect (1.39) would still correspond to a population-attributable fraction of ≈20%. We have, however, concluded that these polymorphisms contribute little to the familial aggregation of breast cancer: the same effect would correspond to a relative risk to siblings of cases of ≈1.01 [for details of calculation, see Easton (67)], whereas epidemiological studies have found the relative risk to be ≈2-fold.

For other polymorphisms, the risk estimates, although nonsignificant, are insufficiently precise to exclude a moderate risk (>1.5), and larger studies are needed to obtain more precise risk estimates. These include polymorphisms in EDH17B2, ER, CYP2D6, CYP2E1, GSTT1, HSP70, PR, and TNFα. Finally, the polymorphisms in CYP19, GSTM1, GSTP1, and TP53 appear to be stronger candidates for low-penetrance breast cancer susceptibility genes, although they too need to be confirmed in larger studies. It is more likely, however, that the majority in variation in susceptibility to breast cancer is due to genes that have yet to be identified or tested. Candidate genes include those involved in DNA repair and micro- and macronutrient metabolism. In addition, gene-gene and gene-environment interactions may be important determinants of breast cancer risk. Such interactions would produce substantially increased risks in individuals with the right combination of factors, but large studies would be required to elucidate these effects. Further work is clearly needed to address these issues, but these studies will need to be substantially larger than the association studies published to date.

We thank Katie Blyth (Department of Pathology, University of Cambridge) for help in obtaining references.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

        
1

This work was supported by the Cancer Research Campaign (CRC). B. A. J. P. is a Gibb Fellow of the Cancer Research Campaign.

                        
4

The abbreviations used are: SNP, single nucleotide polymorphism; OR, odds ratio; COMT, catechol-O-methyltransferase; GST, glutathione-S-transferase; NAT, N-acetyl transferase; UTR, untranslated region.

Table 1

Genetic polymorphisms investigated in relation to breast cancer risk

GeneBase changeAmino acid changeDetection methodFunctional effect
Steroid hormone metabolism genes     
COMT Exon 4 G → A Val158Met Creates Hsp92II and NlaIII sites Reduced activity 
CYP17 Promoter T → C (T1931C) None Creates MspAI site Creates a fifth Sp1 site and might increase transcription 
CYP19 Intron 4 (TTTA)u microsatellite None PCR fragment size Unlikely 
 Intron 4 TCT insertion/deletion None PCR fragment size Unlikely 
CYP2D6 2367delA (A allele) Frameshift Creates BsiWI site Nonfunctioning enzyme 
 Intron 3 G → A (G1934A) (B allele) Premature stop at residue 544 Destroys BstNI site Nonfunctioning enzyme 
 Del Lys281 (C allele)  Allele-specific amplification Catalytically normal enzyme, but wrong cellular compartment 
 17.5-kb deletion (D allele)  Southern blot No enzyme 
EDH17B2 Exon 6 A → G Ser312Gly Creates BspUI site Unlikely 
ER CCC325CCG Pro325Pro Allele-specific oligohybridization None 
 Intron 1/exon 2 XbaI site  Southern blot Unlikely 
PR Alu repeat insertion in intron G None PCR fragment size or creates TaqI site Unlikely 
Carcinogen metabolism genes     
CYP1A1 Exon 7 A → G (A4889G) Ile462Val Creates NcoI site Uncertain, possible increase in enzyme activity 
 3′ UTR T → C (T6235C) None Creates MspI site None 
 Exon 7 C → A (C4887A) Thr461Asp Creates BsaI site Unknown 
 3′ UTR T → C (T5639C) None Creates MspI site None 
CYP2E1 Intron 6 unspecified None Creates DraI site Unlikely 
GSTM1 Gene deletion  Allele-specific PCR Null individuals have no enzyme 
GSTP1 A313G Ile105Val Creates Alu26I site Reduced enzyme activity 
GSTT1 Gene deletion  Allele-specific PCR Null individuals have no enzyme activity 
NAT1 A1088T None  Possible increase in enzyme activity 
NAT2 G191A  Creates MspI site Low activity allele 
 C481T  Destroys KpnI site Low activity allele 
 G590A  Destroys TaqI site Low activity allele 
 G857A  Destroys BamH1 site Low activity allele 
Other genes     
BRCA1 C2731T Pro871Leu Allele-specific oligohybridization Unknown 
BRCA1 G1186A Gln356Arg Creates RsaI site Unknown 
HSP70-2 1267 Silent Creates PstI site Unknown 
HSP70-hom 2437 Met493Thr Creates NcoI site Unknown 
TNF-α −308 G → A None Allele-specific PCR Increased constitutive and inducible levels TNF-α 
TP53 Exon 3 G → C Arg72Pro Allele-specific PCR Unknown 
 16-bp insertion in intron 3 None  Unlikely 
 Intron 6 G → A None Creates MspI site Unlikely 
GeneBase changeAmino acid changeDetection methodFunctional effect
Steroid hormone metabolism genes     
COMT Exon 4 G → A Val158Met Creates Hsp92II and NlaIII sites Reduced activity 
CYP17 Promoter T → C (T1931C) None Creates MspAI site Creates a fifth Sp1 site and might increase transcription 
CYP19 Intron 4 (TTTA)u microsatellite None PCR fragment size Unlikely 
 Intron 4 TCT insertion/deletion None PCR fragment size Unlikely 
CYP2D6 2367delA (A allele) Frameshift Creates BsiWI site Nonfunctioning enzyme 
 Intron 3 G → A (G1934A) (B allele) Premature stop at residue 544 Destroys BstNI site Nonfunctioning enzyme 
 Del Lys281 (C allele)  Allele-specific amplification Catalytically normal enzyme, but wrong cellular compartment 
 17.5-kb deletion (D allele)  Southern blot No enzyme 
EDH17B2 Exon 6 A → G Ser312Gly Creates BspUI site Unlikely 
ER CCC325CCG Pro325Pro Allele-specific oligohybridization None 
 Intron 1/exon 2 XbaI site  Southern blot Unlikely 
PR Alu repeat insertion in intron G None PCR fragment size or creates TaqI site Unlikely 
Carcinogen metabolism genes     
CYP1A1 Exon 7 A → G (A4889G) Ile462Val Creates NcoI site Uncertain, possible increase in enzyme activity 
 3′ UTR T → C (T6235C) None Creates MspI site None 
 Exon 7 C → A (C4887A) Thr461Asp Creates BsaI site Unknown 
 3′ UTR T → C (T5639C) None Creates MspI site None 
CYP2E1 Intron 6 unspecified None Creates DraI site Unlikely 
GSTM1 Gene deletion  Allele-specific PCR Null individuals have no enzyme 
GSTP1 A313G Ile105Val Creates Alu26I site Reduced enzyme activity 
GSTT1 Gene deletion  Allele-specific PCR Null individuals have no enzyme activity 
NAT1 A1088T None  Possible increase in enzyme activity 
NAT2 G191A  Creates MspI site Low activity allele 
 C481T  Destroys KpnI site Low activity allele 
 G590A  Destroys TaqI site Low activity allele 
 G857A  Destroys BamH1 site Low activity allele 
Other genes     
BRCA1 C2731T Pro871Leu Allele-specific oligohybridization Unknown 
BRCA1 G1186A Gln356Arg Creates RsaI site Unknown 
HSP70-2 1267 Silent Creates PstI site Unknown 
HSP70-hom 2437 Met493Thr Creates NcoI site Unknown 
TNF-α −308 G → A None Allele-specific PCR Increased constitutive and inducible levels TNF-α 
TP53 Exon 3 G → C Arg72Pro Allele-specific PCR Unknown 
 16-bp insertion in intron 3 None  Unlikely 
 Intron 6 G → A None Creates MspI site Unlikely 
Table 2

Description of association studies of genetic polymorphisms and breast cancer risk

AuthorsCountryCasesControlsEthnic groupCommentsGenes studied
nSourceAge (years)nSourceAge (years)
Agundez et al. 1995 (19) Spain 160 NSa 26–87 132 NS 19–81 White Spanish  NAT2 
Ambrosone et al. 1995 (20) USA 177 Post-men 233 Post-men   CYP1A1 
Ambrosone et al. 1996 (21) USA 119 Pre-men 114 Pre-men NS  NAT2 
  185 Post-men 213 Post-men    
Andersen et al. 1994 (22) Norway 191 27–94 204 NS NS Various sources of male and female controls used ER 
Bailey et al. 1998 (23) USA 164 NS 162 NS NS Caucasian Controls matched on age CYP1A1, GSTM1 
  59 NS 59 NS NS African-American  GSTT1 
Buchert et al. 1993 (24) USA 167 29–80 114 25–61 Caucasian  CYP2D6 
Campbell et al. 1996 (25) UK 208 NS NS 113 NS NS NS  P53 
Charrier et al. 1999 (26) France 361 26–80 437 18–101 Caucasian  GSTM1 
Chouchane et al. 1997 (27) Tunisia 40 Mean = 43 106 Mean = 39  Controls were healthy blood donors TNF-α, HSp-70 
Dunning et al. 1997 (28) UK 212 <70 277 45–70 Caucasian East-Anglian case-control series BRCA1 
  268 <36     UK case-control study  
  321 36–45 353 36–45  UK case-control study  
Dunning et al. 1998 (29) UK 835 <55 591 45–75 >90% Caucasian  CYP17 
Feigelson et al. 1997 (30) USA 174 45–75 285 45–75 Asian, Latino, African American Nested case-control study CYP17 
Garrett et al. 1995 (31) Ireland 187 NS NS 90 NS NS NS  PR 
Haiman et al. 1999 (32) USA 464 NS 619 NS Caucasian Nested case-control study within the Nurses’ Health Study CYP19 
Harries et al. 1997 (33) Scotland 62 37–82 155 NS Caucasian  GSTP1 
Helzlsouer et al. 1998 (34) USA 110 Mean = 60 113 Mean = 60 NS Nested case-control study, controls matched for age, race, and menopausal status GSTM1, GSTP1, GSTT1 
Helzlsouer et al. 1998 (35)          COMT 
Lavigne et al. 1997 (39)          CYP17 
Hunter et al. 1997 (40) Ishibe et al. 1998 (41) USA 466 Mean = 61 466 Mean = 61 NS Nested case-control study using incident cases from the Nurses’ Health Study. Controls matched on age, menopausal status, and postmenopausal hormone use NAT2, CYP1A1 
Huober et al. 1991 (36) Germany 108 20–80 123 20–80 NS Phenotype study. Controls were patients with benign breast disease CYP2D6 
Iwase et al. 1996 (42) UK 70 NS 30 NS NS NS  ER 
Kawajiri et al. 1993 (43) Japan 93 NS 347 NS NS Japanese  p53 
Kelsey et al. 1997 (44) USA 245 NS 245 NS >95% Caucasian Prevalent cases GSTM1 
  240  240   Incident cases  
         Nested case-control study within Nurses’ Health Study. Controls matched on age and menopausal status  
Kristensen et al. 1998 (37) Norway/ Sweden 366 27–93 252 PH 1–85 NS 172 controls from Norwegian population register; 80 Swedish controls from genetic counseling clinic CYP19 
Ladero et al. 1991 (45) Spain 98 Mean = 59 446 NS Mean = 25 NS Phenotype study CYP2D6 
Ladona et al. 1996 (46) Spain 187 26–87 151 NS 18–83 White Spanish  CYP2D6 
Lancaster et al. 1998 (38) USA 68 NS 101 NS NS  PR 
AuthorsCountryCasesControlsEthnic groupCommentsGenes studied
nSourceAge (years)nSourceAge (years)
Agundez et al. 1995 (19) Spain 160 NSa 26–87 132 NS 19–81 White Spanish  NAT2 
Ambrosone et al. 1995 (20) USA 177 Post-men 233 Post-men   CYP1A1 
Ambrosone et al. 1996 (21) USA 119 Pre-men 114 Pre-men NS  NAT2 
  185 Post-men 213 Post-men    
Andersen et al. 1994 (22) Norway 191 27–94 204 NS NS Various sources of male and female controls used ER 
Bailey et al. 1998 (23) USA 164 NS 162 NS NS Caucasian Controls matched on age CYP1A1, GSTM1 
  59 NS 59 NS NS African-American  GSTT1 
Buchert et al. 1993 (24) USA 167 29–80 114 25–61 Caucasian  CYP2D6 
Campbell et al. 1996 (25) UK 208 NS NS 113 NS NS NS  P53 
Charrier et al. 1999 (26) France 361 26–80 437 18–101 Caucasian  GSTM1 
Chouchane et al. 1997 (27) Tunisia 40 Mean = 43 106 Mean = 39  Controls were healthy blood donors TNF-α, HSp-70 
Dunning et al. 1997 (28) UK 212 <70 277 45–70 Caucasian East-Anglian case-control series BRCA1 
  268 <36     UK case-control study  
  321 36–45 353 36–45  UK case-control study  
Dunning et al. 1998 (29) UK 835 <55 591 45–75 >90% Caucasian  CYP17 
Feigelson et al. 1997 (30) USA 174 45–75 285 45–75 Asian, Latino, African American Nested case-control study CYP17 
Garrett et al. 1995 (31) Ireland 187 NS NS 90 NS NS NS  PR 
Haiman et al. 1999 (32) USA 464 NS 619 NS Caucasian Nested case-control study within the Nurses’ Health Study CYP19 
Harries et al. 1997 (33) Scotland 62 37–82 155 NS Caucasian  GSTP1 
Helzlsouer et al. 1998 (34) USA 110 Mean = 60 113 Mean = 60 NS Nested case-control study, controls matched for age, race, and menopausal status GSTM1, GSTP1, GSTT1 
Helzlsouer et al. 1998 (35)          COMT 
Lavigne et al. 1997 (39)          CYP17 
Hunter et al. 1997 (40) Ishibe et al. 1998 (41) USA 466 Mean = 61 466 Mean = 61 NS Nested case-control study using incident cases from the Nurses’ Health Study. Controls matched on age, menopausal status, and postmenopausal hormone use NAT2, CYP1A1 
Huober et al. 1991 (36) Germany 108 20–80 123 20–80 NS Phenotype study. Controls were patients with benign breast disease CYP2D6 
Iwase et al. 1996 (42) UK 70 NS 30 NS NS NS  ER 
Kawajiri et al. 1993 (43) Japan 93 NS 347 NS NS Japanese  p53 
Kelsey et al. 1997 (44) USA 245 NS 245 NS >95% Caucasian Prevalent cases GSTM1 
  240  240   Incident cases  
         Nested case-control study within Nurses’ Health Study. Controls matched on age and menopausal status  
Kristensen et al. 1998 (37) Norway/ Sweden 366 27–93 252 PH 1–85 NS 172 controls from Norwegian population register; 80 Swedish controls from genetic counseling clinic CYP19 
Ladero et al. 1991 (45) Spain 98 Mean = 59 446 NS Mean = 25 NS Phenotype study CYP2D6 
Ladona et al. 1996 (46) Spain 187 26–87 151 NS 18–83 White Spanish  CYP2D6 
Lancaster et al. 1998 (38) USA 68 NS 101 NS NS  PR 
Table 2A

Continued

Mannermaa et al. 1994 (47)Finland149HNS161NSNSCaucasianSporadic breast cancerEDH17B2
UK4129NSNSCaucasianFamilial breast cancer (3 case families)
Manolitsas et al. 1997 (48) UK 292 NS NS 220 NS NS NS  PR 
Mavridou et al. 1998 (49) UK 224 NS NS 254 NS NS NS  TP53 
Millikan et al. 1998 (51) USA 654 20–70+ 642 20–70+ Caucasian, African-American  COMT 
Millikan et al. 1998 (50) USA 498 20–70+ 473 20–70+ Caucasian, African-American  NAT1, NAT2 
Peller et al. 1995 (52) Israel 20 NS 38 NS NS NS  TP53 
Pontin et al. 1998 (53) UK 129 Mean = 56 79 Mean = 42 NS Phenotype study CYP2D6 
Siegelmann-Danieli et al. 1999 (55) USA 348 27–79 145 27–79 Caucasian  CYP19 
Shields et al. 1996 (54) USA 106 Pre-men 113 Pre-men Caucasian  CYP2E1 
  166 Post-men 221 Post-men    
Sjalander et al. 1996 (56) Sweden 212 HP NS 689 NS White Swedish Nested case-control study with additional 35 cases from hospital series TP53 
Smith et al. 1992 (57) UK 437 NS NS 720 Various NS Caucasian  CYP2D6 
Southey et al. 1998 (58) Australia 388 <40 294 <40 NS Age-matched controls ER 
Taioli et al. 1995 (59) USA 51 20–69 269 29–70 Caucasian, African-American Cases identified from a cohort of women attending screening clinic CYP1A1 
Thompson et al. 1998 (60) USA 141 Pre-men 134 Pre-men NS  COMT 
  140  Post-men 155  Post-men    
Wang-Gohrke et al. 1998 (61) Germany 107 Mean = 55 305 Mean = 36   TP53 
Weston et al. 1998 (62) USA 123 NS 240 NS Caucasian, Hispanic, African-American  CYP17 
Zheng et al. 1999 (63) USA 154 55–69 330 55–69 Caucasian Nested case-control study in Iowa Womens Health Study NAT1 
Zhong et al. 1993 (64) UK 197 NS 225 PH NS NS  GSTM1 
Mannermaa et al. 1994 (47)Finland149HNS161NSNSCaucasianSporadic breast cancerEDH17B2
UK4129NSNSCaucasianFamilial breast cancer (3 case families)
Manolitsas et al. 1997 (48) UK 292 NS NS 220 NS NS NS  PR 
Mavridou et al. 1998 (49) UK 224 NS NS 254 NS NS NS  TP53 
Millikan et al. 1998 (51) USA 654 20–70+ 642 20–70+ Caucasian, African-American  COMT 
Millikan et al. 1998 (50) USA 498 20–70+ 473 20–70+ Caucasian, African-American  NAT1, NAT2 
Peller et al. 1995 (52) Israel 20 NS 38 NS NS NS  TP53 
Pontin et al. 1998 (53) UK 129 Mean = 56 79 Mean = 42 NS Phenotype study CYP2D6 
Siegelmann-Danieli et al. 1999 (55) USA 348 27–79 145 27–79 Caucasian  CYP19 
Shields et al. 1996 (54) USA 106 Pre-men 113 Pre-men Caucasian  CYP2E1 
  166 Post-men 221 Post-men    
Sjalander et al. 1996 (56) Sweden 212 HP NS 689 NS White Swedish Nested case-control study with additional 35 cases from hospital series TP53 
Smith et al. 1992 (57) UK 437 NS NS 720 Various NS Caucasian  CYP2D6 
Southey et al. 1998 (58) Australia 388 <40 294 <40 NS Age-matched controls ER 
Taioli et al. 1995 (59) USA 51 20–69 269 29–70 Caucasian, African-American Cases identified from a cohort of women attending screening clinic CYP1A1 
Thompson et al. 1998 (60) USA 141 Pre-men 134 Pre-men NS  COMT 
  140  Post-men 155  Post-men    
Wang-Gohrke et al. 1998 (61) Germany 107 Mean = 55 305 Mean = 36   TP53 
Weston et al. 1998 (62) USA 123 NS 240 NS Caucasian, Hispanic, African-American  CYP17 
Zheng et al. 1999 (63) USA 154 55–69 330 55–69 Caucasian Nested case-control study in Iowa Womens Health Study NAT1 
Zhong et al. 1993 (64) UK 197 NS 225 PH NS NS  GSTM1 
a

NS, not stated; P, population; Post-men, postmenopausal; H, hospital; Pre-men, premenopausal; PH, population and hospital.

Table 3

Genetic risks of breast cancer by gene and study

Gene/polymorphismCase details“Rare” allele frequency in controlsaRisk groupOR95% CIbComments
Steroid hormone metabolism genes       
COMT Val158Met       
  Lavigne et al. 1997 (39) All cases 0.52 Val/Methet 1.30 0.69–3.07 ORs adjusted for age 
   Met/Met hom 1.45 0.66–2.58  
 Pre-men cases  Val/Met het 0.57 0.14–2.40  
   Met/Met hom 0.24 0.04–1.51  
 Post-men cases  Val/Met het 1.70 0.77–3.75  
   Met/Met hom 2.18 0.93–5.1  
  Thompson et al. 1998 (60) Pre-men cases 0.43 Val/Met het 2.5 1.4–4.6                  c ORs adjusted for age and education 
   Met/Met hom 1.7 0.8–3.4  
   Met carrier 2.2 1.3–3.7  
 Post-men cases 0.54 Val/Met het 0.7 0.4–1.2  
   Met/Met hom 0.4 0.2–0.8  
   Met carrier 0.6 0.3–1.0  
  Millikan et al. 1998 (51) All cases 0.35 Val/Met het 0.8 0.5–1.2 ORs adjusted for age and reproductive factors 
   Met/Met hom 0.8 0.4–1.5  
CYP17 promoter T → C       
  Feigelson et al. 1997 (30) All cases 0.41 C carrier 1.32 0.87–2.00  
 Advanced cases  C carrier 2.52 1.07–5.94  
  Dunning et al. 1998 (29) All cases 0.38 CC hom 1.17 0.92–1.49  
   C carrier 1.10 0.89–1.37  
 Advanced cases  C carrier 0.88 0.38–2.01  
  Helzlsouer et al. 1998 (35) All cases 0.42 CC hom 0.89 0.41–1.95  
   C carrier 0.81 0.45–1.46  
 Advanced cases  CC hom 1.39 0.26–7.28  
   C carrier 1.06 0.32–3.58  
  Weston et al. 1998 (62) All cases 0.38 CC hom 1.16 0.58–2.32  
   C carrier 1.08 0.69–1.69  
 Aggressive disease  C carrier 0.9 0.4–2.0  
CYP19 (TTTA)n       
  Healey et al. 1999 (65)  0.021 (TTTA)12 carrier 1.19 0.68–2.08  
  Kristensen et al. 1998 (37)  0.016 (TTTA)12 carrier 2.42 1.03–5.90  
  Siegelmann-Danieli et al. 1999 (55)  0.016 (TTTA)12 carrier 0.29 0.12–0.69  
  Haiman et al. 1999 (32)  0.020 (TTTA)12 carrier 1.76 0.99–3.14 Carrier frequency estimated from published allele frequency 
  Healey et al. 1999 (65)  0.008 (TTTA)10 carrier 1.56 0.59–4.57  
  Siegelmann-Danieli et al. 1999 (55)  0.018 (TTTA)10 carrier 1.07 0.35–3.91  
  Haiman et al. 1999 (32)  0.005 (TTTA)10 carrier 4.84 1.87–14.8 Carrier frequency estimated from published allele frequency 
EDH17B2 Ser312Gly       
  Mannermaa et al. 1994 (47) Sporadic cases 0.47 Ser/Gly 0.62 0.36–1.07  
   Gly/Gly 0.85 0.43–1.70  
   Gly carrier 0.68 0.40–1.14  
 Familial cases  Ser/Gly 0.44 0.11–1.62  
   Gly/Gly 1.02 0.19–5.49  
   Gly carrier 0.56 0.15–1.91  
ER Xba I RFLP       
  Andersen et al. 1994 (22)  0.68 Hom 2.02 0.96–4.31  
   Het 2.00 0.92–4.37  
   Xba I carrier 2.01 0.98–4.17  
ER CCC325CCG       
  Iwase et al. 1996 (42)  0.133 G allele carriers 2.91 1.05–8.28 No G homozygotes in controls 
  Southey et al. 1998 (58)  0.209 CG het 1.09 0.79–1.50  
   GG hom 1.59 0.70–3.63  
   G allele carrier 1.13 0.77–1.50  
PR PROGINS       
  Garrett et al. 1995 (31)  0.18 T1/T2 1.55 0.86–2.82  
   T2/T2 0.40 0.06–2.49  
   T2 carrier 1.39 0.79–2.45  
  Manolitsas et al. 1997 (48)  0.14 T2 carrier OR 0.77 0.50–1.18  
  Lancaster et al. 1998 (38)  0.13 T2 carrier OR 0.90 0.38–2.09  
Carcinogen metabolism genes       
CYP1A1 Ile462Val       
  Ambrosone et al. 1995 (20) Post-men cases 0.077 Ile/Val het 1.53 0.88–2.66  
   Val/Val hom 2.85 0.49–16.56  
Gene/polymorphismCase details“Rare” allele frequency in controlsaRisk groupOR95% CIbComments
Steroid hormone metabolism genes       
COMT Val158Met       
  Lavigne et al. 1997 (39) All cases 0.52 Val/Methet 1.30 0.69–3.07 ORs adjusted for age 
   Met/Met hom 1.45 0.66–2.58  
 Pre-men cases  Val/Met het 0.57 0.14–2.40  
   Met/Met hom 0.24 0.04–1.51  
 Post-men cases  Val/Met het 1.70 0.77–3.75  
   Met/Met hom 2.18 0.93–5.1  
  Thompson et al. 1998 (60) Pre-men cases 0.43 Val/Met het 2.5 1.4–4.6                  c ORs adjusted for age and education 
   Met/Met hom 1.7 0.8–3.4  
   Met carrier 2.2 1.3–3.7  
 Post-men cases 0.54 Val/Met het 0.7 0.4–1.2  
   Met/Met hom 0.4 0.2–0.8  
   Met carrier 0.6 0.3–1.0  
  Millikan et al. 1998 (51) All cases 0.35 Val/Met het 0.8 0.5–1.2 ORs adjusted for age and reproductive factors 
   Met/Met hom 0.8 0.4–1.5  
CYP17 promoter T → C       
  Feigelson et al. 1997 (30) All cases 0.41 C carrier 1.32 0.87–2.00  
 Advanced cases  C carrier 2.52 1.07–5.94  
  Dunning et al. 1998 (29) All cases 0.38 CC hom 1.17 0.92–1.49  
   C carrier 1.10 0.89–1.37  
 Advanced cases  C carrier 0.88 0.38–2.01  
  Helzlsouer et al. 1998 (35) All cases 0.42 CC hom 0.89 0.41–1.95  
   C carrier 0.81 0.45–1.46  
 Advanced cases  CC hom 1.39 0.26–7.28  
   C carrier 1.06 0.32–3.58  
  Weston et al. 1998 (62) All cases 0.38 CC hom 1.16 0.58–2.32  
   C carrier 1.08 0.69–1.69  
 Aggressive disease  C carrier 0.9 0.4–2.0  
CYP19 (TTTA)n       
  Healey et al. 1999 (65)  0.021 (TTTA)12 carrier 1.19 0.68–2.08  
  Kristensen et al. 1998 (37)  0.016 (TTTA)12 carrier 2.42 1.03–5.90  
  Siegelmann-Danieli et al. 1999 (55)  0.016 (TTTA)12 carrier 0.29 0.12–0.69  
  Haiman et al. 1999 (32)  0.020 (TTTA)12 carrier 1.76 0.99–3.14 Carrier frequency estimated from published allele frequency 
  Healey et al. 1999 (65)  0.008 (TTTA)10 carrier 1.56 0.59–4.57  
  Siegelmann-Danieli et al. 1999 (55)  0.018 (TTTA)10 carrier 1.07 0.35–3.91  
  Haiman et al. 1999 (32)  0.005 (TTTA)10 carrier 4.84 1.87–14.8 Carrier frequency estimated from published allele frequency 
EDH17B2 Ser312Gly       
  Mannermaa et al. 1994 (47) Sporadic cases 0.47 Ser/Gly 0.62 0.36–1.07  
   Gly/Gly 0.85 0.43–1.70  
   Gly carrier 0.68 0.40–1.14  
 Familial cases  Ser/Gly 0.44 0.11–1.62  
   Gly/Gly 1.02 0.19–5.49  
   Gly carrier 0.56 0.15–1.91  
ER Xba I RFLP       
  Andersen et al. 1994 (22)  0.68 Hom 2.02 0.96–4.31  
   Het 2.00 0.92–4.37  
   Xba I carrier 2.01 0.98–4.17  
ER CCC325CCG       
  Iwase et al. 1996 (42)  0.133 G allele carriers 2.91 1.05–8.28 No G homozygotes in controls 
  Southey et al. 1998 (58)  0.209 CG het 1.09 0.79–1.50  
   GG hom 1.59 0.70–3.63  
   G allele carrier 1.13 0.77–1.50  
PR PROGINS       
  Garrett et al. 1995 (31)  0.18 T1/T2 1.55 0.86–2.82  
   T2/T2 0.40 0.06–2.49  
   T2 carrier 1.39 0.79–2.45  
  Manolitsas et al. 1997 (48)  0.14 T2 carrier OR 0.77 0.50–1.18  
  Lancaster et al. 1998 (38)  0.13 T2 carrier OR 0.90 0.38–2.09  
Carcinogen metabolism genes       
CYP1A1 Ile462Val       
  Ambrosone et al. 1995 (20) Post-men cases 0.077 Ile/Val het 1.53 0.88–2.66  
   Val/Val hom 2.85 0.49–16.56  
Table 3A

Continued

  Taioli et al. 1995 (59)All cases0.091Ile/Val het1.10.3–4.0No Val/Val homozygous cases
  Ishibe et al. 1998 (41) All cases NS Val carrier 0.88 0.58–1.33 Multivariate-adjusted OR 
  Bailey et al. 1998 (23) All Caucasian 0.037 Ile/Val het 1.26 0.57–2.78 No Val/Val homozygotes 
CYP1A1 3′ UTR T6235C       
  Taioli et al. 1995 (59) Caucasian 0.115 TC het 1.7 0.6–4.9  
 African-American 0.218 TC het 2.4 0.7–7.7  
   CC hom 9.7 2.0–47.9  
  Ishibe et al. 1998 (41) All cases NS C carrier 1.05 0.74–1.50 Multivariate-adjusted OR 
  Bailey et al. 1998 (23) Caucasian 0.096 TC het 1.49 0.81–2.74  
   CC hom 0.84 0.22–3.19  
 African-American 0.247 TC het 0.51 0.23–1.13  
   CC hom 0.52 0.08–3.32  
CYP1A1 3′ UTR T5639C       
  Taioli et al. 1995 (59) African American 0.081 TC het 1.2 0.3–5.3 No CC homozygotes 
  Bailey et al. 1998 (23) African-American 0.119 TC het 0.75 0.31–1.83 No CC homozygotes 
CYP1A1 Thr461Asp       
  Bailey et al. 1998 (23) Caucasian 0.043 Thr/Asp het 0.81 0.34–1.94  
   Asp/Asp hom 0.97 0.06–15.71  
CYP2D6 poor metabolizer       
  Buchert et al. 1993 (24) All cases 0.061 Poor metabolizer 1.18 0.42–3.45 Tested for A, B, and D alleles 
 Pre-men 0.12  1.54 0.35–7.66 Poor metabolizer = low-activity allele homozygote or compound heterozygote 
 Post-men   0.61 0.12–4.11  
  Smith et al. 1992 (57) All cases 0.043 Poor metabolizer 0.90 0.47–1.71 Tested for A, B, and D alleles 
  Huober et al. 1991 (36) All cases 0.073d Poor metabolizer 1.73 0.66–4.63 Phenotype study 
  Ladona et al. 1996 (46) All cases 0.040d Poor metabolizer 0.66 0.16–2.69 Tested for A, B, and C alleles 
  Pontin et al. 1998 (53) All cases 0.062d Poor metabolizer 1.70 0.63–4.67 Phenotype study 
  Ladero et al. 1991 (45) All cases 0.052d Poor metabolizer 2.09 0.97–4.48 Phenotype study 
CYP2E1       
  Shields et al. 1996 (54) Pre-men 0.09 C carrier 1.04 0.48–2.24  
 Post-men 0.07 C carrier 1.01 0.55–1.84  
GSTM1 deletion       
  Zhong et al. 1993 (64) All cases 0.418e Null 1.27 0.87–1.87  
  Ambrosone et al. 1995 (20) Post-men cases 0.502e Null 1.10 0.73–1.64 Adjusted for age, age at menarche/first pregnancy/menopause, BMI, and family history 
  Kelsey et al. 1997 (44) Prevalent cases 0.51 Null 1.30 0.91–1.86 Null cases associated with improved survival 
 Incident cases 0.48 Null 1.08 0.74–1.57  
  Bailey et al. 1998 (23) Caucasian 0.383e Null 0.77 0.50–1.20  
 African-American 0.407e  0.75 0.35–1.58  
  Helzlsouer et al. 1998 (34) All cases 0.464e Null 2.10 1.22–3.64 Adjusted for age and menopausal status 
 Pre-men cases   1.0 0.28–3.45  
 Post-men cases   2.50 1.34–4.65  
  Charrier et al. 1999 (26) All cases 0.51 Null 1.19 0.90–1.59  
 <50 years   0.97 0.69–1.35  
 ≥50 years   1.99 1.19–3.32  
GSTT1 deletion       
  Helzlsouer et al. 1998 (34) All 0.214e Null 1.50 0.76–2.95 Adjusted for age and menopausal status 
 Pre-men   1.50 0.42–5.32  
 Post-men   1.50 0.67–3.34  
  Bailey et al. 1998 (23) Caucasian 0.272e Null 1.08 0.66–1.75  
 African-American 0.288e  0.63 0.27–1.47  
GSTP1 Ile105Val       
  Helzlsouer et al. 1998 (34) All 0.29 Ile/Val het 1.48 0.81–2.73 Adjusted for age and menopausal status 
 Pre-men   1.98 0.44–8.81  
 Post-men   1.33 0.68–2.61  
 All  Val/Val hom 1.97 0.77–5.02  
 Pre-men   0.54 0.04–6.67  
 Post-men   2.71 0.91–8.03  
  Harries et al. 1997 (33) All 0.28 Ile/Val het 1.53 0.83–2.84  
   Val/Val hom 1.58 0.49–5.06  
NAT1 A1088T       
  Millikan et al. 1998 (50) Pre-men cases 0.47 T carrier 1.2 0.8–1.8  
 Post-men cases 0.46 T carrier 1.0 0.7–1.5  
  Zheng et al. 1999 (63)  0.17 T carrier 1.18 0.77–1.81  
  Taioli et al. 1995 (59)All cases0.091Ile/Val het1.10.3–4.0No Val/Val homozygous cases
  Ishibe et al. 1998 (41) All cases NS Val carrier 0.88 0.58–1.33 Multivariate-adjusted OR 
  Bailey et al. 1998 (23) All Caucasian 0.037 Ile/Val het 1.26 0.57–2.78 No Val/Val homozygotes 
CYP1A1 3′ UTR T6235C       
  Taioli et al. 1995 (59) Caucasian 0.115 TC het 1.7 0.6–4.9  
 African-American 0.218 TC het 2.4 0.7–7.7  
   CC hom 9.7 2.0–47.9  
  Ishibe et al. 1998 (41) All cases NS C carrier 1.05 0.74–1.50 Multivariate-adjusted OR 
  Bailey et al. 1998 (23) Caucasian 0.096 TC het 1.49 0.81–2.74  
   CC hom 0.84 0.22–3.19  
 African-American 0.247 TC het 0.51 0.23–1.13  
   CC hom 0.52 0.08–3.32  
CYP1A1 3′ UTR T5639C       
  Taioli et al. 1995 (59) African American 0.081 TC het 1.2 0.3–5.3 No CC homozygotes 
  Bailey et al. 1998 (23) African-American 0.119 TC het 0.75 0.31–1.83 No CC homozygotes 
CYP1A1 Thr461Asp       
  Bailey et al. 1998 (23) Caucasian 0.043 Thr/Asp het 0.81 0.34–1.94  
   Asp/Asp hom 0.97 0.06–15.71  
CYP2D6 poor metabolizer       
  Buchert et al. 1993 (24) All cases 0.061 Poor metabolizer 1.18 0.42–3.45 Tested for A, B, and D alleles 
 Pre-men 0.12  1.54 0.35–7.66 Poor metabolizer = low-activity allele homozygote or compound heterozygote 
 Post-men   0.61 0.12–4.11  
  Smith et al. 1992 (57) All cases 0.043 Poor metabolizer 0.90 0.47–1.71 Tested for A, B, and D alleles 
  Huober et al. 1991 (36) All cases 0.073d Poor metabolizer 1.73 0.66–4.63 Phenotype study 
  Ladona et al. 1996 (46) All cases 0.040d Poor metabolizer 0.66 0.16–2.69 Tested for A, B, and C alleles 
  Pontin et al. 1998 (53) All cases 0.062d Poor metabolizer 1.70 0.63–4.67 Phenotype study 
  Ladero et al. 1991 (45) All cases 0.052d Poor metabolizer 2.09 0.97–4.48 Phenotype study 
CYP2E1       
  Shields et al. 1996 (54) Pre-men 0.09 C carrier 1.04 0.48–2.24  
 Post-men 0.07 C carrier 1.01 0.55–1.84  
GSTM1 deletion       
  Zhong et al. 1993 (64) All cases 0.418e Null 1.27 0.87–1.87  
  Ambrosone et al. 1995 (20) Post-men cases 0.502e Null 1.10 0.73–1.64 Adjusted for age, age at menarche/first pregnancy/menopause, BMI, and family history 
  Kelsey et al. 1997 (44) Prevalent cases 0.51 Null 1.30 0.91–1.86 Null cases associated with improved survival 
 Incident cases 0.48 Null 1.08 0.74–1.57  
  Bailey et al. 1998 (23) Caucasian 0.383e Null 0.77 0.50–1.20  
 African-American 0.407e  0.75 0.35–1.58  
  Helzlsouer et al. 1998 (34) All cases 0.464e Null 2.10 1.22–3.64 Adjusted for age and menopausal status 
 Pre-men cases   1.0 0.28–3.45  
 Post-men cases   2.50 1.34–4.65  
  Charrier et al. 1999 (26) All cases 0.51 Null 1.19 0.90–1.59  
 <50 years   0.97 0.69–1.35  
 ≥50 years   1.99 1.19–3.32  
GSTT1 deletion       
  Helzlsouer et al. 1998 (34) All 0.214e Null 1.50 0.76–2.95 Adjusted for age and menopausal status 
 Pre-men   1.50 0.42–5.32  
 Post-men   1.50 0.67–3.34  
  Bailey et al. 1998 (23) Caucasian 0.272e Null 1.08 0.66–1.75  
 African-American 0.288e  0.63 0.27–1.47  
GSTP1 Ile105Val       
  Helzlsouer et al. 1998 (34) All 0.29 Ile/Val het 1.48 0.81–2.73 Adjusted for age and menopausal status 
 Pre-men   1.98 0.44–8.81  
 Post-men   1.33 0.68–2.61  
 All  Val/Val hom 1.97 0.77–5.02  
 Pre-men   0.54 0.04–6.67  
 Post-men   2.71 0.91–8.03  
  Harries et al. 1997 (33) All 0.28 Ile/Val het 1.53 0.83–2.84  
   Val/Val hom 1.58 0.49–5.06  
NAT1 A1088T       
  Millikan et al. 1998 (50) Pre-men cases 0.47 T carrier 1.2 0.8–1.8  
 Post-men cases 0.46 T carrier 1.0 0.7–1.5  
  Zheng et al. 1999 (63)  0.17 T carrier 1.18 0.77–1.81  
Table 3B

Continued

NAT2
  Agundez et al. 1995 (19)  0.51f Rapid acetylator 2.23 0.96–5.16 Baseline group = very rapid acetylator 
   Slow acetylator 2.08 0.92–4.69 (wt/wt) 
      Rapid acetylator (wt/variant) 
      Slow acetylator (variant/variant) 
  Ambrosone et al. 1996 (21) Pre-men cases 0.57f Slow acetylator 0.9 0.7–2.0 Baseline group = rapid acetylator 
 Post-men cases 0.53f Slow acetylator 1.3 0.8–1.9  
  Hunter et al. 1997 (40) All cases 0.62f Slow acetylator 0.9 0.7–1.2 Multivariate OR, baseline group = rapid acetylator 
  Millikan et al. 1998 (50) Pre-men cases 0.51f Slow acetylator 1.1 0.7–1.6 Baseline group = rapid acetylator 
  Other genes Post-men cases 0.52f Slow acetylator 0.7 0.5–1.0  
BRCA1 Pro871Leu       
  Dunning et al. 1997 (28)  0.316 Pro/Leu 1.15 0.92–1.44  
   Leu/Leu 1.24 0.85–1.79  
BRCA1 Gln356Arg       
  Dunning et al. 1997 (28)  0.070 Glu/Arg 0.88 0.63–1.23 No Arg/Arg cases 
TP53 intron 3 16-bp insertion       
  Campbell et al. 1996 (25) All cases 0.16 A1/A2 het 0.80 0.45–1.43 A2 allele defined as presence of duplication 
   A2/A2 hom 0.51 0.07–3.90  
  Sjalander et al. 1996 (56) All cases 0.132 A1/A2 het 1.07 0.73–1.58 A2 allele defined as presence of duplication 
   A2/A2 hom 0.54 0.10–1.90  
  Wang-Gohrke et al. 1998 (61)  0.12 A1/A2 het 1.38 0.81–2.34 A2 allele defined as presence of duplication 
   A2/A2 hom 2.08 0.24–15.6  
TP53 intron 6 G → A       
  Peller et al. 1995 (52)  0.558 GA het 2.17 0.62–7.66  
  Sjalander et al. 1996 (56)  0.129 GA het 1.06 0.71–1.57  
   AA hom 0.73 0.18–2.25  
  Mavridou et al. 1998 (49)  0.098 GA het 1.05 0.63–1.74  
   AA hom 0.28 0.01–2.90  
  Wang-Gohrke et al. 1998 (61)  0.11 GA het 1.67 0.97–2.85  
   AA hom 1.08 0.02–13.6  
TP53 Arg72Pro       
  Kawajiri et al. 1993 (43)  0.35 Arg/Pro 1.20 0.73–2.00  
   Pro/Pro 0.51 0.15–1.44  
   Pro carrier 1.07 0.66–1.76  
  Sjalander et al. 1996 (56)  0.272 Arg/Pro 1.45 1.03–2.04  
   Pro/Pro 1.55 0.92–2.62  
   Pro carrier 1.47 1.08–2.00  
  Wang-Gohrke et al. 1998 (61)  0.26 Arg/Pro 1.17 0.72–1.90  
   Pro/Pro 0.71 0.20–2.06  
   Pro carrier 1.10 0.69–1.75  
HSP70-hom       
  Chouchane et al. 1997 (27)  0.41 N1/N2 3.56 1.13–11.3 No N2/N2 controls 
HSP70-2       
  Chouchane et al. 1997 (27)  0.04 P1/P2 1.74 0.52–7.57  
   P2/P2 27.5 3.47–308  
   P2 carrier 2.36 0.72–10.0  
TNF-α 308T → A       
  Chouchane et al. 1997 (27) BrCa 0.17 TA het 3.49 1.52–8.80  
   AA hom 4.80 0.06–382  
   A carrier 3.53 1.55–8.11  
NAT2
  Agundez et al. 1995 (19)  0.51f Rapid acetylator 2.23 0.96–5.16 Baseline group = very rapid acetylator 
   Slow acetylator 2.08 0.92–4.69 (wt/wt) 
      Rapid acetylator (wt/variant) 
      Slow acetylator (variant/variant) 
  Ambrosone et al. 1996 (21) Pre-men cases 0.57f Slow acetylator 0.9 0.7–2.0 Baseline group = rapid acetylator 
 Post-men cases 0.53f Slow acetylator 1.3 0.8–1.9  
  Hunter et al. 1997 (40) All cases 0.62f Slow acetylator 0.9 0.7–1.2 Multivariate OR, baseline group = rapid acetylator 
  Millikan et al. 1998 (50) Pre-men cases 0.51f Slow acetylator 1.1 0.7–1.6 Baseline group = rapid acetylator 
  Other genes Post-men cases 0.52f Slow acetylator 0.7 0.5–1.0  
BRCA1 Pro871Leu       
  Dunning et al. 1997 (28)  0.316 Pro/Leu 1.15 0.92–1.44  
   Leu/Leu 1.24 0.85–1.79  
BRCA1 Gln356Arg       
  Dunning et al. 1997 (28)  0.070 Glu/Arg 0.88 0.63–1.23 No Arg/Arg cases 
TP53 intron 3 16-bp insertion       
  Campbell et al. 1996 (25) All cases 0.16 A1/A2 het 0.80 0.45–1.43 A2 allele defined as presence of duplication 
   A2/A2 hom 0.51 0.07–3.90  
  Sjalander et al. 1996 (56) All cases 0.132 A1/A2 het 1.07 0.73–1.58 A2 allele defined as presence of duplication 
   A2/A2 hom 0.54 0.10–1.90  
  Wang-Gohrke et al. 1998 (61)  0.12 A1/A2 het 1.38 0.81–2.34 A2 allele defined as presence of duplication 
   A2/A2 hom 2.08 0.24–15.6  
TP53 intron 6 G → A       
  Peller et al. 1995 (52)  0.558 GA het 2.17 0.62–7.66  
  Sjalander et al. 1996 (56)  0.129 GA het 1.06 0.71–1.57  
   AA hom 0.73 0.18–2.25  
  Mavridou et al. 1998 (49)  0.098 GA het 1.05 0.63–1.74  
   AA hom 0.28 0.01–2.90  
  Wang-Gohrke et al. 1998 (61)  0.11 GA het 1.67 0.97–2.85  
   AA hom 1.08 0.02–13.6  
TP53 Arg72Pro       
  Kawajiri et al. 1993 (43)  0.35 Arg/Pro 1.20 0.73–2.00  
   Pro/Pro 0.51 0.15–1.44  
   Pro carrier 1.07 0.66–1.76  
  Sjalander et al. 1996 (56)  0.272 Arg/Pro 1.45 1.03–2.04  
   Pro/Pro 1.55 0.92–2.62  
   Pro carrier 1.47 1.08–2.00  
  Wang-Gohrke et al. 1998 (61)  0.26 Arg/Pro 1.17 0.72–1.90  
   Pro/Pro 0.71 0.20–2.06  
   Pro carrier 1.10 0.69–1.75  
HSP70-hom       
  Chouchane et al. 1997 (27)  0.41 N1/N2 3.56 1.13–11.3 No N2/N2 controls 
HSP70-2       
  Chouchane et al. 1997 (27)  0.04 P1/P2 1.74 0.52–7.57  
   P2/P2 27.5 3.47–308  
   P2 carrier 2.36 0.72–10.0  
TNF-α 308T → A       
  Chouchane et al. 1997 (27) BrCa 0.17 TA het 3.49 1.52–8.80  
   AA hom 4.80 0.06–382  
   A carrier 3.53 1.55–8.11  
a

For genes, frequency of each allele is close to 0.5, frequency of putative risk allele is given.

b

CI, confidence interval; het, heterozygote; hom, homozygote; Pre-men, premenopausal; Post-men, postmenopausal; NS, not stated; BMI, body mass index.

c

ORs in bold indicate statistically significant results.

d

Low-activity allele carrier/poor metabolizer phenotype frequency.

e

Null genotype frequency.

f

Slow acetylator phenotype frequency.

Table 4

Results of joint analysis

Gene/polymorphismCasesStudies combinedRisk groupH1 vs H0OR95% CIa
χ2 (df)P
COMT Val158Met All cases  (39, 51, 60)  Val/Met 2.14 (2) 0.34 0.88 0.75–1.05  
   Met/Met   0.86 0.67–1.09  
COMT Val158Met Pre-men  (39, 60)  Val/Met 0.25 (2) 0.88 0.96 0.76–1.23  
   Met/Met   0.91 0.63–1.31  
COMT Val158Met Post-men  (39, 60)  Val/Met 2.69 (2) 0.26 0.83 0.66–1.04  
   Val/Val   0.82 0.59–1.13  
CYP17 promoter T → C All cases  (29, 30, 35, 62)  C carrier 1.28 (1) 0.26 1.10 0.93–1.30  
CYP17 promoter T → C Advanced cases  (29, 30, 35, 62)  C carrier 1.48 (1) 0.22 1.28 0.86–1.91  
CYP19 (TTTA)n All cases  (32, 37, 55, 65)  (TTTA)12 carrier 1.98 (1) 0.16 1.26 0.91–1.74  
CYP19 (TTTA)n All cases  (32, 55, 65)  (TTTA)10 carrier 9.62 (1) 0.002 2.33 1.36–4.17 Evidence for heterogeneity (χ2 = 5.34; P = 0.069) 
ER CCC325CCG All cases  (42, 58)  CG 4.74 (2) 0.09 1.34 1.02–1.76  
   GG   1.25 0.68–2.23  
   G carriers 2.29 (1)  1.25 0.94–1.68  
PR PROGINS All cases  (31, 38, 48)  T1/T2 4.97 (2) 0.08 0.97 0.73–1.28  
   T2/T2   0.41 0.15–0.95  
CYP1A1 Ile462Val All cases  (23, 41, 59)  Val carrier 0.14 (1) 0.71 0.94 0.68–1.30 Val/Val homozygotes rare 
CYP1A1 3′ UTR T6235C All Caucasian  (23, 41, 59)  C carrier 1.71 (1) 0.19 1.20 0.91–1.58 CC homozygotes rare 
CYP1A1 3′ UTR T6235C All African-American  (23, 59)  TC het 1.30 (2) 0.52 0.97 0.54–1.73  
   CC hom   1.72 0.56–4.69  
CYP2D6 All cases  (24, 36, 45, 46, 53, 57)  Poor metabolizer  0.08 1.36 0.96–1.91  
GSTM1 deletion All cases  (23, 34, 44, 64)  Null 2.66 (1) 0.10 1.14 0.97–1.35  
GSTM1 deletion Pre-men  (26, 34)  Null 0.05 (1) 0.83 0.96 0.70–1.34  
GSTM1 deletion Post-men  (20, 26, 34)  Null 4.11 (1) 0.04 1.33 1.01–1.76 Evidence for heterogeneity (χ2 = 6.21, 2 df; P = 0.045) 
GST1 deletion All Caucasian  (23, 34)  Null 0.75 (1) 0.39 1.18 0.81–1.73  
GSTP1 Ile105Val All cases  (33, 34)  Ile/Val 6.52 (2) 0.04 1.61 1.10–2.34 No evidence for heterogeneity 
   Val/Val   1.83 0.95–4.48  (χ2 = 0.16; P = 0.69) 
   Val carrier 5.42 (1) 0.02 1.60 1.08–2.39 No evidence for heterogeneity (χ2 = 0.03; P = 0.86) 
NAT1 All cases  (50, 63)  T carrier 0.24 (1) 0.63 1.07 0.82–1.39  
NAT2 All cases  (19, 21, 40, 50)  Slow acetylator 0.15 (1) 0.70 0.97 0.84–1.13  
NAT2 Pre-men case  (21, 50)  Slow acetylator 0.085 (1) 0.77 1.05 0.78–1.40  
NAT2 Post-men cases  (21, 50)  Slow acetylator 0.61 (1) 0.44 0.90 0.69–1.17  
TP53 Arg72Pro All cases  (43, 56, 61)  Arg/Pro 4.64 (2) 0.10 1.23 1.02–1.58  
   Pro/Pro   1.12 0.74–1.65  
   Pro carrier 4.52 (1) 0.03 1.27 1.02–1.59  
TP53 intron 6 A → G   (49, 52, 56, 61)  AG 1.95 (2) 0.38 1.16 0.91–1.47  
   AA   0.84 0.32–1.79  
TP53 intron 16-bp insertion   (43, 56, 61)  A1/A2 0.16 (2) 0.92 1.02 0.79–1.31  
   A2/A2   0.89 0.39–1.79  
Gene/polymorphismCasesStudies combinedRisk groupH1 vs H0OR95% CIa
χ2 (df)P
COMT Val158Met All cases  (39, 51, 60)  Val/Met 2.14 (2) 0.34 0.88 0.75–1.05  
   Met/Met   0.86 0.67–1.09  
COMT Val158Met Pre-men  (39, 60)  Val/Met 0.25 (2) 0.88 0.96 0.76–1.23  
   Met/Met   0.91 0.63–1.31  
COMT Val158Met Post-men  (39, 60)  Val/Met 2.69 (2) 0.26 0.83 0.66–1.04  
   Val/Val   0.82 0.59–1.13  
CYP17 promoter T → C All cases  (29, 30, 35, 62)  C carrier 1.28 (1) 0.26 1.10 0.93–1.30  
CYP17 promoter T → C Advanced cases  (29, 30, 35, 62)  C carrier 1.48 (1) 0.22 1.28 0.86–1.91  
CYP19 (TTTA)n All cases  (32, 37, 55, 65)  (TTTA)12 carrier 1.98 (1) 0.16 1.26 0.91–1.74  
CYP19 (TTTA)n All cases  (32, 55, 65)  (TTTA)10 carrier 9.62 (1) 0.002 2.33 1.36–4.17 Evidence for heterogeneity (χ2 = 5.34; P = 0.069) 
ER CCC325CCG All cases  (42, 58)  CG 4.74 (2) 0.09 1.34 1.02–1.76  
   GG   1.25 0.68–2.23  
   G carriers 2.29 (1)  1.25 0.94–1.68  
PR PROGINS All cases  (31, 38, 48)  T1/T2 4.97 (2) 0.08 0.97 0.73–1.28  
   T2/T2   0.41 0.15–0.95  
CYP1A1 Ile462Val All cases  (23, 41, 59)  Val carrier 0.14 (1) 0.71 0.94 0.68–1.30 Val/Val homozygotes rare 
CYP1A1 3′ UTR T6235C All Caucasian  (23, 41, 59)  C carrier 1.71 (1) 0.19 1.20 0.91–1.58 CC homozygotes rare 
CYP1A1 3′ UTR T6235C All African-American  (23, 59)  TC het 1.30 (2) 0.52 0.97 0.54–1.73  
   CC hom   1.72 0.56–4.69  
CYP2D6 All cases  (24, 36, 45, 46, 53, 57)  Poor metabolizer  0.08 1.36 0.96–1.91  
GSTM1 deletion All cases  (23, 34, 44, 64)  Null 2.66 (1) 0.10 1.14 0.97–1.35  
GSTM1 deletion Pre-men  (26, 34)  Null 0.05 (1) 0.83 0.96 0.70–1.34  
GSTM1 deletion Post-men  (20, 26, 34)  Null 4.11 (1) 0.04 1.33 1.01–1.76 Evidence for heterogeneity (χ2 = 6.21, 2 df; P = 0.045) 
GST1 deletion All Caucasian  (23, 34)  Null 0.75 (1) 0.39 1.18 0.81–1.73  
GSTP1 Ile105Val All cases  (33, 34)  Ile/Val 6.52 (2) 0.04 1.61 1.10–2.34 No evidence for heterogeneity 
   Val/Val   1.83 0.95–4.48  (χ2 = 0.16; P = 0.69) 
   Val carrier 5.42 (1) 0.02 1.60 1.08–2.39 No evidence for heterogeneity (χ2 = 0.03; P = 0.86) 
NAT1 All cases  (50, 63)  T carrier 0.24 (1) 0.63 1.07 0.82–1.39  
NAT2 All cases  (19, 21, 40, 50)  Slow acetylator 0.15 (1) 0.70 0.97 0.84–1.13  
NAT2 Pre-men case  (21, 50)  Slow acetylator 0.085 (1) 0.77 1.05 0.78–1.40  
NAT2 Post-men cases  (21, 50)  Slow acetylator 0.61 (1) 0.44 0.90 0.69–1.17  
TP53 Arg72Pro All cases  (43, 56, 61)  Arg/Pro 4.64 (2) 0.10 1.23 1.02–1.58  
   Pro/Pro   1.12 0.74–1.65  
   Pro carrier 4.52 (1) 0.03 1.27 1.02–1.59  
TP53 intron 6 A → G   (49, 52, 56, 61)  AG 1.95 (2) 0.38 1.16 0.91–1.47  
   AA   0.84 0.32–1.79  
TP53 intron 16-bp insertion   (43, 56, 61)  A1/A2 0.16 (2) 0.92 1.02 0.79–1.31  
   A2/A2   0.89 0.39–1.79  
a

CI, confidence interval; Pre-men, premenopausal; Post-men, postmenopausal; het, heterozygote; hom, homozygote.

1
Pharoah P. D. P., Mackay J. Absolute risk of breast cancer in women at increased risk: a more useful clinical measure than relative risk?.
Breast
,
7
:
255
-259,  
1998
.
2
National Cancer Institute. SEER Cancer Statistics Review, 1973–1995 National Cancer Institute Bethesda, MD  
1999
.
3
Newman B., Austin M. A., Lee M. Inheritance of human breast cancer: evidence for autosomal dominant transmission in high risk families.
Proc. Natl. Acad. Sci. USA
,
85
:
3044
-3048,  
1988
.
4
Pharoah P. D. P., Day N. E., Duffy S., Easton D. F., Ponder B. A. J. Family history and the risk of breast cancer: a systematic review and meta-analysis.
Int. J. Cancer
,
71
:
800
-809,  
1997
.
5
Peto J., Easton D. F., Matthews F. E., Ford D., Swerdlow A. J. Cancer mortality in relatives of women with breast cancer: the OPCS study.
Int. J. Cancer
,
65
:
273
-283,  
1996
.
6
Khoury M. J. Genetic epidemiology Rothman K. Greenland S. eds. .
Modern Epidemiology
,
:
609
-622, Lippincott-Raven New York  
1997
.
7
Risch N., Merikangas K. The future of genetic studies of complex diseases.
Science (Washington DC)
,
273
:
1516
-1517,  
1996
.
8
Krontiris T. G., Devlin B., Karp D. D., Robert N. J., Risch N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus.
N. Engl. J. Med.
,
329
:
517
-523,  
1993
.
9
Weston A., Godbold J. H. Polymorphisms of H-ras-1 and p53 in breast cancer and lung cancer: a meta-analysis.
Environ. Health Perspect.
,
105 (Suppl 4)
:
919
-926,  
1997
.
10
Kelsey J. L., Gammon M. D., John E. M. Reproductive factors and breast cancer.
Epidemiol. Rev.
,
15
:
36
-47,  
1993
.
11
Hunter D. J., Willett W. C. Nutrition and breast cancer.
Cancer Causes & Control
,
7
:
56
-68,  
1996
.
12
Rebbeck T. R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility.
Cancer. Epidemiol.
,
6
:
733
-743,  
1997
.
13
Hein D. W., Doll M. A., Rustan T. D., Gray K., Feng Y., Ferguson R. J., Grant D. M. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases.
Carcinogenesis (Lond.)
,
14
:
1633
-1638,  
1993
.
14
Badawi A. F., Hirvonen A., Bell D. A., Lang N. P., Kadlubar F. F. Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen- DNA adduct formation in the human urinary bladder.
Cancer Res.
,
55
:
5230
-5237,  
1995
.
15
Shattuck-Eidens D., McClure M., Simard J., Labrie F., Narod S., Couch F., Hoskins K., Weber B., Castilla L., Erdos M. A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene.
Implications for presymptomatic testing and screening. JAMA
,
273
:
535
-541,  
1995
.
16
Børresen A. L., Andersen T. I., Garber J., Barbier-Piraux N., Thorlacius S., Eyfjörd J., Ottestad L., Smith-Sørensen B., Hovig E., Malkin D., Freind S. H. Screening for germ line TP53 mutations in breast cancer patients.
Cancer Res.
,
52
:
3234
-3236,  
1992
.
17
Friend S., Børresen A. L., Brody L., Casey G., Devilee P., Gayther S., Goldgar D., Murphy P., Weber B. L., Wiseman R. Breast cancer information on the web.
Nat. Genet.
,
11
:
238
-239,  
1995
.
18
Lathrop G. Estimating genotype relative risks.
Tissue Antigens
,
22
:
160
-166,  
1983
.
19
Agundez J. A. G., Ladero J. M., Olivera M., Roman J. M., Benitez J. Genetic analysis of the arylamine N-acetyl transferase polymorphism in breast cancer patients.
Oncology
,
52
:
7
-11,  
1995
.
20
Ambrosone C. B., Freudenheim J. L., Graham S., Marshall J. R., Vena J. E., Brasure J. R., Laughlin R., Nemoto T., Michalek A. M., Harrington A., Ford T. D., Shields P. G. Cytochrome P4501A1 and glutathione S-transferase (M1) polymorphisms and postmenopausal breast cancer risk.
Cancer Res.
,
55
:
3483
-3485,  
1995
.
21
Ambrosone C. B., Freudenheim J. L., Graham S., Marshall J. R., Vena J. E., Brasure J. R., Michalek A. M., Laughlin R., Nemoto T., Gillenwater K. A., Shields P. G. Cigarette smoking, N-acetyltransferase 2 genetic polymorphisms, and breast cancer risk.
JAMA
,
276
:
1494
-1501,  
1996
.
22
Andersen T. I., Heimdal K. R., Skrede M., Tveit K., Berg K., Børresen A. L. Oestrogen receptor (ESR) polymorphisms and breast cancer susceptibility.
Hum. Genet.
,
94
:
665
-670,  
1994
.
23
Bailey L. R., Roodi N., Verrier C. S., Yee C. J., Dupont W. D., Parl F. F. Breast cancer and CYPIA1, GSTM1, and GSTT1 polymorphisms: evidence of a lack of association in Caucasians and African Americans.
Cancer Res.
,
58
:
65
-70,  
1998
.
24
Buchert E. T., Woosley R. L., Swain S. M., Oliver S. J., Coughlin S. S., Pickle L., Trock B., Riegel A. T. Relationship of CYP2D6 (debrisoquine hydroxylase) genotype to breast cancer susceptibility.
Pharmacogenetics
,
3
:
322
-327,  
1993
.
25
Campbell I. G., Eccles D. M., Dunn B., Davis M., Leake V. p53 polymorphism in ovarian and breast cancer.
Lancet
,
347
:
393
-394,  
1996
.
26
Charrier J., Maugard C. M., Le Mevel B., Bignon Y. J. Allelotype influence at glutathione S-transferase M1 locus on breast cancer susceptibility.
Br. J. Cancer
,
79
:
346
-353,  
1999
.
27
Chouchane L., Ahmed S. B., Baccouche S., Remadi S. Polymorphism in the tumor necrosis factor-α promotor region and in the heat shock protein 70 genes associated with malignant tumors.
Cancer (Phila.)
,
80
:
1489
-1496,  
1997
.
28
Dunning A. M., Chiano M., Smith N. R., Dearden J., Gore M., Oakes S., Wilson C., Stratton M., Peto J., Easton D., Clayton D., Ponder B. A. Common BRCA1 variants and susceptibility to breast and ovarian cancer in the general population.
Hum. Mol. Genet.
,
6
:
285
-289,  
1997
.
29
Dunning A. M., Healey C. S., Pharoah P. D. P., Foster N., Easton D. F., Day N. E., Ponder B. A. J. Polymorphism in the steroid metabolism gene CYP17 and risk of breast cancer.
Br. J. Cancer
,
77
:
2045
-2047,  
1998
.
30
Feigelson H. S., Coetzee G. A., Kolonel L. N., Ross R. K., Henderson B. E. A polymorphism in the CYP17 gene increases the risk of breast cancer.
Cancer Res.
,
57
:
1063
-1065,  
1997
.
31
Garrett E., Rowe S. M., Coughlan S. J., Horan R., McLinden J., Carney D. N., Fanning M., Kieback D. G., Headon D. R. Mendelian inheritance of a TaqI restriction fragment length polymorphism due to an insertion in the human progesterone receptor gene and its allelic imbalance in breast cancer.
Cancer Res. Ther. Control
,
4
:
217
-222,  
1995
.
32
Haiman C. A., Hankinson S. E., Speizer F. E., Hunter D. J. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk.
Proc. Am. Assoc. Cancer Res.
,
40
:
194
1999
.
33
Harries L. W., Stubbins M. J., Forman D., Howard G. C. W., Wolf C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer.
Carcinogenesis (Lond.)
,
18
:
641
-644,  
1997
.
34
Helzlsouer K. J., Selmin O., Huang H-Y., Strickland P. T., Hoffman S., Alberg A. J., Watson M., Comstock G. W., Bell D. Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer.
J. Natl. Cancer Inst.
,
90
:
512
-518,  
1998
.
35
Helzlsouer K. J., Huang H-Y., Strickland P. T., Hoffman S., Alberg A. J., Comstock G. W., Bell D. A. Association between CYP17 polymorphism and the development of breast cancer.
Cancer Epidemiol., Biomarkers & Prev.
,
7
:
945
-949,  
1998
.
36
Huober J., Bertram B., Petru E., Kaufmann M., Schmahl D. Metabolism of debrisoquine and susceptibility to breast cancer.
Breast Cancer Res. Treat.
,
18
:
43
-48,  
1991
.
37
Kristensen V. N., Andersen T. I., Lindblom A., Erikstein B., Magnus P., Børresen-Dale A. L. A rare CYP19 (aromatase) variant may increase the risk of breast cancer.
Pharmacogenetics
,
8
:
43
-48,  
1998
.
38
Lancaster J. M., Berchuck A., Carney M. E., Wiseman R., Taylor J. A. Re: “Progesterone receptor gene polymorphism and risk for breast and ovarian cancer.”.
Br. J. Cancer
,
78
:
277
1998
.
39
Lavigne J. A., Helzlsouer K. J., Huang H-Y., Strickland P. T., Bell D. A., Selmin O., Watson M. A., Hoffman S., Comstock G. W., Yager J. D. An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer.
Cancer Res.
,
57
:
5493
-5497,  
1997
.
40
Hunter D. J., Hankinson S. E., Hough H., Gertig D. M., Garcia Closas M., Spiegelman D., Manson J. E., Colditz G. A., Willett W. C., Speizer F. E., Kelsey K. A prospective study of NAT2 acetylation genotype, cigarette smoking, and risk of breast cancer.
Carcinogenesis (Lond.)
,
18
:
2127
-2132,  
1997
.
41
Ishibe N., Hankinson S. E., Colditz G. A., Spiegelman D., Willett W. C., Speizer F. E., Kelsey K. T., Hunter D. J. Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses’ Health Study.
Cancer Res.
,
58
:
667
-671,  
1998
.
42
Iwase H., Greenman J. M., Barnes D. M., Hodgson S., Bobrow L., Mathew C. G. Sequence variants of the estrogen receptor (ER) gene found in breast cancer patients with ER negative and progesterone receptor positive tumors.
Cancer Lett.
,
108
:
179
-184,  
1996
.
43
Kawajiri K., Nakachi K., Imai K., Watanabe J., Hayashi S. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer.
Carcinogenesis (Lond.)
,
14
:
1085
-1089,  
1993
.
44
Kelsey K. T., Hankinson S. E., Colditz G. A., Springer K., Garcia-Closas M., Spiegelman D., Manson J. E., Garland M., Stampfer M. J., Willett W. C., Speizer F. E., Hunter D. J. Glutathione S-transferase class μ deletion polymorphism and breast cancer: results from prevalent versus incident cases.
Cancer Epidemiol., Biomarkers & Prev.
,
6
:
511
-515,  
1997
.
45
Ladero J. M., Benitez J., Jara C., Llerena A., Valdivielso M. J., Munoz J. J., Vargas E. Polymorphic oxidation of debrisoquine in women with breast cancer.
Oncology
,
48
:
107
-110,  
1991
.
46
Ladona M. G., Abildua R. E., Ladero J. M., Roman J. M., Plaza M. A., Agundez J. A., Munoz J. J., Benitez J. CYP2D6 genotypes in Spanish women with breast cancer.
Cancer Lett.
,
99
:
23
-28,  
1996
.
47
Mannermaa A., Peltoketo H., Winqvist R., Ponder B. A. J., Kiviniemi H., Easton D. F., Poutanen M., Isomaa V., Vihko R. Human familial and sporadic breast cancer: analysis of the coding regions of the 17β-hydroxysteroid dehydrogenase 2 gene (EDH17B2) using a single-strand conformation polymorphism assay.
Hum. Genet.
,
93
:
319
-324,  
1994
.
48
Manolitsas T. P., Englefield P., Eccles D. M., Campbell I. G. Re: “No association of a 306-bp insertion polymorphism in the progesterone receptor gene with ovarian and breast cancer.”.
Br. J. Cancer
,
75
:
1398
-1399,  
1997
.
49
Mavridou D., Gornall R., Campbell I. G., Eccles D. M. TP53 intron 6 polymorphism and the risk of ovarian and breast cancer.
Br. J. Cancer
,
77
:
676
-677,  
1998
.
50
Millikan R. C., Pittman G. S., Newman B., Tse C. K., Selmin O., Rockhill B., Savitz D., Moorman P. G., Bell D. A. Cigarette smoking, N-acetyltransferases 1 and 2, and breast cancer risk.
Cancer Epidemiol., Biomarkers & Prev.
,
7
:
371
-378,  
1998
.
51
Millikan R. C., Pittman G. S., Tse C. K., Duell E., Newman B., Savitz D., Moorman P. G., Boissy R. J., Bell D. A. Catechol-O-methyltransferase and breast cancer risk.
Carcinogenesis (Lond.)
,
19
:
1943
-1947,  
1998
.
52
Peller S., Kopilova Y., Slutzki S., Halevy A., Kvitko K., Rotter V. A novel polymorphism in intron 6 of the human p53 gene: a possible association with cancer predisposition and susceptibility.
DNA Cell Biol.
,
14
:
983
-990,  
1995
.
53
Pontin J. E., Hamed H., Fentiman I. S., Idle J. R. Cytochrome p450dbl phenotypes in malignant and benign breast disease.
Eur. J. Cancer
,
26
:
790
-792,  
1998
.
54
Shields P. G., Ambrosone C. B., Graham S., Bowman E. D., Harrington A. M., Gillenwater K. A., Marshall J. R., Vena J. E., Laughlin R., Nemoto T., Freudenheim J. L. A cytochrome P4502E1 genetic polymorphism and tobacco smoking in breast cancer.
Mol. Carcinog.
,
17
:
144
-150,  
1996
.
55
Siegelmann-Danieli N., Buetow K. H. Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk.
Br. J. Cancer
,
79
:
456
-463,  
1999
.
56
Sjalander A., Birgander R., Hallmans G., Cajander S., Lenner P., Athlin L., Beckman G., Beckman L. p53 polymorphisms and haplotypes in breast cancer.
Carcinogenesis (Lond.)
,
17
:
1313
-1316,  
1996
.
57
Smith C. A., Moss J. E., Gough A. C., Spurr N. K., Wolf C. R. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.
Environ. Health Perspect.
,
98
:
107
-112,  
1992
.
58
Southey M. C., Batten L. E., McCredie M. R. E., Giles G. C., Dite G., Hopper J. L., Venter D. J. Estrogen receptor polymorphism at codon 325 and risk of breast cancer in women before age forty.
J. Natl. Cancer Inst.
,
90
:
533
-536,  
1998
.
59
Taioli E., Trachman J., Chen X., Toniolo P., Garte S. J. A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women.
Cancer Res.
,
55
:
3757
-3758,  
1995
.
60
Thompson P. A., Shields P. G., Fruedenheim J. L., Stone A., Vena J. E., Marshall J. R., Graham S., Laughlin R., Nemoto T., Kadlubar F. F., Ambrosone C. B. Genetic polymorphisms in catechol-O-methyltransferase, menopausal status and breast cancer risk.
Cancer Res.
,
58
:
2107
-2110,  
1998
.
61
Wang-Gohrke S., Rebbeck T. R., Besenfelder W., Kreienberg R., Runnebaum I. B. p53 germline polymorphisms are associated with an increased risk for breast cancer in German women.
Anticancer Res.
,
18
:
2095
-2099,  
1998
.
62
Weston A., Pan C-F., Bleiweiss I. J., Ksieski H. B., Roy N., Maloney N., Wolff M. S. CYP17 genotype and breast cancer risk.
Cancer Epidemiol., Biomarkers & Prev.
,
7
:
941
-944,  
1998
.
63
Zheng W., Deitz A. C., Campbell D. R., Wen W. Q., Cerhan J. R., Sellers T. A., Folsom A. R., Hein D. W. N-acetyltransferase 1 genetic polymorphism, cigarette smoking, well-done meat intake, and breast cancer risk.
Cancer Epidemiol., Biomarkers & Prev.
,
8
:
233
-239,  
1999
.
64
Zhong S., Wyllie A. H., Barnes D., Wolf C. R., Spurr N. K. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer.
Carcinogenesis (Lond.)
,
14
:
1821
-1824,  
1993
.
65
Healey, C. S., Dunning, A. M., Durocher, F., Teare, D., Easton, D. F., and Ponder, B. A. J. Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk. Carcinogenesis (Lond.), in press, 1999.
66
Collins F. S., Guyer M. S., Charkravarti A. Variations on a theme: cataloging human DNA sequence variation.
Science (Washington DC)
,
278
:
1580
-1581,  
1997
.
67
Easton D. F. Cancer risks in A-T heterozygotes.
Int. J. Radiat. Biol.
,
66
:
S177
-S182,  
1994
.