Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.

Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46–1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52–3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29–3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35–2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30–2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50–3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16–1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25–3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23–1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.

This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.

As an important type of noncoding RNA, miRNA comprises a class of small endogenous RNAs of approximately 22 nt in length that play a crucial role in the regulation of gene expression at the posttranscriptional level (1, 2). Previous studies have shown that many miRNAs are aberrantly expressed in tumor tissues and play crucial roles in the growth, differentiation, angiogenesis, metastasis, and drug resistance of various tumors (3, 4). Moreover, some miRNAs are significantly associated with the prognosis of patients with various tumors and are potential prognostic predictors and candidate treatment targets (5). Therefore, the recognition of the clinical significance and regulatory mechanisms of miRNAs may assist with the diagnosis, prognosis prediction, and treatment of malignant tumors.

miR-145 is derived from chromosome 5q32 and contains two mature subtypes of miR-145-5p and miR-145-3p (6). On the basis of the deep sequencing data referred to in miRBase (7), miR-145-5p is much more abundantly expressed than miR-145-3p. Substantial data obtained from previous studies have demonstrated that miR-145 is downregulated in various tumors and corresponding cell lines to be considered as tumor suppressors (8–14). On the contrary, several studies have found that miR-145 is upregulated in tumor tissues and functions as an oncogene (15, 16). For example, Naito and colleagues (15) showed that miR-145 was upregulated in patients with gastric cancer with more advanced tumor stages or with scirrhous type histology, and highly expressed miR-145 was significantly associated with poor prognosis in patients with gastric cancer. To date, although the correlation between miR-145 expression and the prognosis of patients with various tumors has been investigated by numerous studies, the conclusions are not completely consistent. Therefore, we aimed to conduct a meta-analysis based on all eligible evidence to evaluate the association between miR-145 expression and the prognosis of patients with malignant tumors. In addition, in response to the need for comprehensive recognition of miR-145, known regulatory mechanisms of miR-145 will be illustrated in this study via systematically reviewing previous studies.

Identification of relevant studies

A systematic literature search was conducted using online databases including MEDLINE, Embase, PubMed, Google Scholar, and China Biology Medicine disc. The keywords used in the searches were “miR-145 or miRNA-145 or microRNA-145 (all fields).” The categories of diseases and research types were not limited so that the maximum number of studies was identified. In addition, the reference lists of relevant reviews, meta-analyses, and original studies were manually screened to acquire more studies. The language was not restricted.

Outcomes and definition

In this study, two primary outcomes, overall survival (OS) and progression-free survival (PFS), were selected to calculate the association between miR-145 expression and survival outcome of patients with multiple tumors. OS was measured from the time at which the baseline blood or tissue sample was obtained to the date of death from any cause or the date of last follow-up. PFS was recorded as the time between the baseline blood and tissue sampling for miRNA analysis and documentation of the first tumor progression, based on clinical or radiological findings. In different studies, OS was also expressed as disease-specific survival (DSS; ref. 17) and cancer-specific survival (CSS; ref. 15), while PFS was also described as recurrence-free interval (RFI; ref. 8), disease-free survival (DFS; refs. 9, 10, 18–26), biochemical-free survival (BFS; ref. 27), metastasis-free survival (MFS; ref. 28), relapse-free survival (RFS; ref. 29), and time to relapse (TTR; ref. 11).

Inclusion and exclusion criteria

The following criteria were used to help select eligible literature: (i) published studies that could be retrieved from the abovementioned online databases; (ii) the expression of miR-145 was measured in the tumor tissue, peripheral blood, or body liquid; (iii) the association between miR-145 expression level and survival outcome was analyzed; and (iv) HR and 95% confidence interval (CI) were reported or enough information was provided to calculate such parameters. Studies were excluded if they included the following items: (i) the patients did not suffer from malignant tumors; (ii) the study was only conducted on an animal model or tumor cell lines; and (iii) no data could be extracted or the studies were published as abstracts, reviews, conference reports, letters, or editorials.

Study selection and data extraction

To make the management of literature more convenient, all identified citations were imported into an EndNote library (Thomson Corporation). After removing duplicated studies, two independent investigators (Y. Zhang and J. Tang) carefully screened the relevant studies by reading the titles and abstracts. Then, the entire text of potential eligible studies was evaluated to confirm the final inclusion. Any discrepancies during the study selection were resolved by discussion with the corresponding author (M. Xu) for consensus.

The relevant information was extracted from all included studies by two independent authors (P. Wang and L. Li). The following data elements were sought and recorded: (i) first author, publication year, and nationality of study population; (ii) miR-145 subtype, tumor type, sample type, and miR-145 assay method; and (iii) sample size, period of follow up, cut-off value, HR, and corresponding 95% CI. When a study reported the survival results of both univariate and multivariate analyses, only the latter was extracted because it is more accurate as it accounts for confounding factors. If a study only reported the survival results using Kaplan–Meier curves, then the statistical variables were read from the graphical survival plots with the Engauge Digitizer 4.1 software program, and then the HR value and 95% CI were calculated via the method reported by Tierney and colleagues (30). Regarding other missing information, e-mails were sent to corresponding authors requesting useful data. Finally, the extracted data forms were crosschecked between the abovementioned two reviewers, and any disagreements during the process of data extraction were resolved by discussions with a third author (M. Zhang).

Quality assessment

In this study, the quality of included studies was assessed by two independent investigators (P. Wang and L. Li) using the Newcastle-Ottawa Scale (NOS; ref. 31). This is an acknowledged tool for assessing the quality of nonrandomized studies via the judgment of three main study characteristics as follows: selection and definition of the study groups, comparability of the groups, and ascertainment of outcomes. Then, a possible score of 0–9 was assigned to each study. A study with a NOS score greater than 6 was considered to be high quality.

Statistical analysis

The RevMan software version 5.3 (Cochrane Collaboration) and STATA software version 14.1 (StataCorp) were used to perform statistical analyses in this study. The pooled HR and corresponding 95% CI values were used to evaluate the prognostic value of miR-145 for various malignant neoplasms. The statistical significance of the outcomes was determined by the Z-test and P values less than 0.05 were considered statistically significant. miR-145 is a known tumor suppressor in most tumors; therefore, low expression of miR-145 was thought as a risk factor and HR greater than one indicated a poor prognosis. The heterogeneity among studies was assessed using Cochran Q test and Higgins I-square (I2) statistic (32, 33). If a significant heterogeneity was observed, namely P < 0.05 and/or I2 > 50%, the random-effects model (DerSimonian and Laird method; ref. 34) was used. Alternatively, the fixed-effects model (Mantel–Haenszel method; ref. 35) was applied to calculate the pooled HR and 95% CI of survival outcomes. To decrease the heterogeneity among studies and recognize the prognostic value of miR-145 in greater detail, subgroup analyses were conducted on the basis of multiple criteria such as miR-145 subtype, tumor type, sample type, and patient ethnicity. In addition, Begg test (rank correlation test; ref. 36) and Egger test (weighted linear regression test; ref. 37) were employed to evaluate the potential publication bias (P < 0.05 was considered statistically significant). Furthermore, one-way sensitivity analysis was performed to identify studies that had a crucial influence on the pooled HR by removing one study at a time.

Literature selection

A total of 1,262 studies were identified from online databases MEDLINE, Embase, PubMed, Google Scholar, and China Biology Medicine disc. Another five studies (17, 38–41) were acquired through manually screening the reference lists of relevant reviews and meta-analyses. After removing 54 duplicated publications, the remaining 1,213 studies were evaluated by carefully reading the titles and abstracts, after which 1,059 studies were excluded because of the following reasons: not tumor studies, unpublished, withdrawn articles, letters, abstracts, reviews, or meta-analyses. Next, the entire text of the remaining 154 studies was assessed. Among them, 106 were removed because survival analyses were not performed in 92 studies, and HR could not be extracted or calculated from the other 14 studies. Finally, 48 articles containing 50 studies, which were published between 2010 and 2017, were included in the meta-analysis for this study. A detailed flowchart illustrating the process of literature selection is shown in Fig. 1.

Figure 1.

A flowchart illustrating the process of study selection. CBM, China Biology Medicine.

Figure 1.

A flowchart illustrating the process of study selection. CBM, China Biology Medicine.

Close modal

Literature characteristics

Among the 50 included studies, 46 studies investigated the prognostic value of miR-145-5p for malignant tumors and only 4 studies focused on miR-145-3p. A total of 6,875 patients suffering from 18 different tumors were included in the meta-analysis, with the sample size in each study ranging from 20 to 1,141 patients (median 74.5). Quantitative real-time PCR was the method used most often to measure the expression of miR-145 (43/50, 86%). A total of 17 of 50 studies (34%) measured the expression of miR-145 in frozen tissues, 18 (36%) in formalin-fixed, paraffin-embedded tissues (FFPE), 6 (12%) in plasma or serum, while the remaining 8 studies (16%) did not specifically report the tissue type used. The cut-off value that stratified patients into high and low expression groups varied among the different studies, with the median value being the most widely used value (28/50, 56%). For the prognosis, 25 studies reported a correlation between miR-145 expression and OS, 14 reported PFS, and the remaining 11 reported both OS and PFS. The length of follow-up ranged from 24 to 310 months with a median of 69.5 months. With respect to HR, 18 studies reported the HR and 95% CI directly, whereas the remaining 32 studies reflected the survival outcomes using survival curves, and thus the HR and 95% CI could be calculated. With respect to the quality of included studies, most included studies (43/50, 86%) were high quality with the NOS score greater than 6. Other detailed information of enrolled studies is listed in Table 1.

Table 1.

The main characteristics of all included studies in this meta-analysis

Study (Ref.)YearCountrymiR-145 SubtypeTumor typeDetected sampleAssay methodExpression in tumorCut-off valueSample size (low/high)Follow-up (month)Survival endpointsHR SourceIndependent risk factorNOS Score
Schaefer (8) 2010 Germany 5p Prostate carcinoma FT qRT-PCR Down Median 75 (NR) 93 FRI Reported No 
Chen (38) 2010 China 5p Prostate carcinoma FFPE qRT-PCR Down NR 106 (73/33) 82 PFS SC Yes 
Drebber (39) 2011 Germany 5p Colorectal cancer FFPE qRT-PCR Down ROC curve 50 (15/35) 77 OS SC NR 
Marchini (49) 2011 Italy 5p Ovarian cancer FT qRT-PCR NR Median 89 (NR) 143 PFS/OS Reported NR 
Radojicic (9) 2011 Greece 5p Breast cancer FFPE qRT-PCR Down Mean 49 (28/21) 118 DFS/OS SC NR 
Feber (40) 2011 USA 5p Esophageal cancer FFPE qRT-PCR Down Median 100 (50/50) 55 OS SC NR 
Leite (27) 2011 Brazil 5p Prostate carcinoma FT qRT-PCR NR Median 49 (NR) 122 BFS SC No 
Hamano (43) 2011 Japan 5p Esophageal cancer FFPE qRT-PCR Down Median 98 (49/49) 98 OS SC NR 
Schee (28) 2012 Norway 5p Colorectal cancer FT qRT-PCR NR Median 193 (97/96) 63 MFS SC NR 
Kang (41) 2012 Korea 5p Prostate carcinoma FFPE qRT-PCR NR Median 73 (36/37) 55 FRI SC No 
Huang (44) 2012 China 5p Cervical carcinoma FFPE qRT-PCR NR NR 44 (18/26) 70 OS SC No 
Ko (18) 2012 Canada 5p Esophageal cancer FFPE qRT-PCR NR Median 25 (12/13) 32 DFS SC NR 
Law (10) 2012 China 5p HCC NR qRT-PCR Down 1.5 fold 47 (15/32) 144 DFS SC NR 
Speranza (52) 2012 Italy 5p Glioblastoma FT qRT-PCR Down Median 20 (10/10) 102 PFS/OS SC NR 
Tanaka (16) 2013 Japan 5p Esophageal cancer Serum qRT-PCR High Median 64 (32/32) 40 PFS SC No 
Saija (50) 2013 Finland 5p Glioma FT Microarray Down Three-fold 268 (53/215) 130 OS SC NR 
Campayo (11) 2013 Spain 5p Lung cancer FT qRT-PCR Down NR 70 (14/56) 36 TTR SC Yes 
Tang (53) 2013 China 5p Osteosarcoma Tissues qRT-PCR Down Median 166 (89/77) 152 DFS/OS SC Yes 
Yu (58) 2013 China 5p HNC Tissues qRT-PCR Down Two-fold 250 (125/125) 60 OS SC NR 
Avgeris (19) 2013 Greece 5p Prostate carcinoma FT qRT-PCR Down NR 62 (27/35) 75 DFS Reported Yes 
Muti-1 (17) 2014 Canada 5p Breast cancer Tissues Mircoarray down Median 740 (370/370) 310 DSS SC NR 
Muti-2 (17) 2014 Canada 3p Breast cancer Tissues Mircoarray down Median 740 (370/370) 310 DSS SC NR 
Naito (15) 2014 Japan 5p Gastric cancer FFPE qRT-PCR High Median 71 (36/35) 67 CSS SC No 
Xia (55) 2014 Japan 5p TCL FFPE qRT-PCR NR NR 40 (10/30) 57 OS Reported(m) Yes 
Slattery (51) 2015 USA 3p Colorectal cancer FFPE Mircoarray NR Expressed or not 1,141 (1,141/28) NR OS Reported NR 
Xia (21) 2015 China 3p Lung cancer FFPE qRT-PCR Down Median 92 (36/46) 106 DFS/OS Reported Yes 
Shen (20) 2015 China 5p Lung cancer FT qRT-PCR Down Median 48 (24/24) 24 DFS SC NR 
Larne (12) 2015 Sweden 5p Prostate carcinoma FFPE qRT-PCR Down Median 49 (25/24) 204 OS Reported NR 
Liang (48) 2015 China 5p Ovarian cancer Serum qRT-PCR Down Median 84 (42/42) 36 OS Reported NR 
Avgeris (22) 2015 Greece 5p Bladder cancer Tissues qRT-PCR Down 1.5 fold 40 (22/18) 48 DFS/OS Reported(u) NR 
Wang (54) 2015 China 5p Cervical cancer FT qRT-PCR Down Median 114 (63/51) 69 OS Reported(m) Yes 
Ye (57) 2015 China 5p Lung cancer Tissues qRT-PCR Down Median 122 (61/61) 60 OS SC NR 
Kim (45) 2015 Korea 3p Ovarian cancer FT qRT-PCR Down NR 74 (48/26) 90 OS Reported(m) Yes 
Li (23) 2015 China 5p Colorectal cancer Serum qRT-PCR Down Median 175 (NR) 37 DFS Reported(u) No 
Pecqueux (13) 2016 Germany 5p Colorectal cancer FT qRT-PCR Down Median 25 (12/13) 67 OS SC NR 
Zhang (60) 2016 China 5p Gastric cancer FT qRT-PCR Down NR 145 (49/76) 65 OS Reported(u) Yes 
Yang (56) 2016 USA 5p Colorectal cancer FFPE qRT- PCR Down Survival result NR NR PFS/OS Reported NR 
Zhou (61) 2016 China 5p Colorectal cancer FT qRT-PCR Down NR 60 (27/33) 80 OS Reported(u) No 
Shi-1 (63) 2016 China 5p Lung cancer Serum qRT-PCR NR NR Pemetrexed 76 (31/45) 117 PFS SC NR 
Shi-2 (63) 2016 China 5p Lung cancer Serum qRT-PCR NR NR Observation 72 (50/22) 78 PFS SC NR 
Li (47) 2016 China 5p Osteosarcoma Tissues qRT-PCR Down NR 39 (19/20) 60 OS SC NR 
Zhan (59) 2016 China 5p Gallbladder cancer FFPE qRT-PCR Down Median 82 (41/41) 93 OS SC NR 
Namkung (25) 2016 Korea 5p Pancreatic cancer FT Mircoarray NR NR 104 NR DFS/OS Reported(m) NR 
Zhao (62) 2016 China 5p Gastric cancer FFPE qRT-PCR Down Mean 63 (44/19) 36 OS SC NR 
Liu (24) 2016 China 5p Breast cancer FT qRT-PCR NR Median 117 (NR) 60 DFS/OS SC NR 
Li (46) 2017 China 5p Gastric cancer TCGA Mircoarray Down NR 361 (157/204) 66 OS SC NR 
Kapodistrias (29) 2017 Greece 5p Liposarcoma FFPE qRT-PCR Down Median 61 (31/30) 188 RFS/OS SC No 
Gan (42) 2017 China 5p Lung cancer FFPE qRT-PCR Down Mean 101 (65/36) 51 OS SC NR 
Azizmohammadi (14) 2017 Iran 5p Cervical cancer FT qRT-PCR Down Median 35 (18/17) 54 OS Reported(m) Yes 
Zhao (26) 2017 USA 5p Glioma Serum Mircoarray NR Median 106 (53/53) 24 DFS/OS Reported NR 
Study (Ref.)YearCountrymiR-145 SubtypeTumor typeDetected sampleAssay methodExpression in tumorCut-off valueSample size (low/high)Follow-up (month)Survival endpointsHR SourceIndependent risk factorNOS Score
Schaefer (8) 2010 Germany 5p Prostate carcinoma FT qRT-PCR Down Median 75 (NR) 93 FRI Reported No 
Chen (38) 2010 China 5p Prostate carcinoma FFPE qRT-PCR Down NR 106 (73/33) 82 PFS SC Yes 
Drebber (39) 2011 Germany 5p Colorectal cancer FFPE qRT-PCR Down ROC curve 50 (15/35) 77 OS SC NR 
Marchini (49) 2011 Italy 5p Ovarian cancer FT qRT-PCR NR Median 89 (NR) 143 PFS/OS Reported NR 
Radojicic (9) 2011 Greece 5p Breast cancer FFPE qRT-PCR Down Mean 49 (28/21) 118 DFS/OS SC NR 
Feber (40) 2011 USA 5p Esophageal cancer FFPE qRT-PCR Down Median 100 (50/50) 55 OS SC NR 
Leite (27) 2011 Brazil 5p Prostate carcinoma FT qRT-PCR NR Median 49 (NR) 122 BFS SC No 
Hamano (43) 2011 Japan 5p Esophageal cancer FFPE qRT-PCR Down Median 98 (49/49) 98 OS SC NR 
Schee (28) 2012 Norway 5p Colorectal cancer FT qRT-PCR NR Median 193 (97/96) 63 MFS SC NR 
Kang (41) 2012 Korea 5p Prostate carcinoma FFPE qRT-PCR NR Median 73 (36/37) 55 FRI SC No 
Huang (44) 2012 China 5p Cervical carcinoma FFPE qRT-PCR NR NR 44 (18/26) 70 OS SC No 
Ko (18) 2012 Canada 5p Esophageal cancer FFPE qRT-PCR NR Median 25 (12/13) 32 DFS SC NR 
Law (10) 2012 China 5p HCC NR qRT-PCR Down 1.5 fold 47 (15/32) 144 DFS SC NR 
Speranza (52) 2012 Italy 5p Glioblastoma FT qRT-PCR Down Median 20 (10/10) 102 PFS/OS SC NR 
Tanaka (16) 2013 Japan 5p Esophageal cancer Serum qRT-PCR High Median 64 (32/32) 40 PFS SC No 
Saija (50) 2013 Finland 5p Glioma FT Microarray Down Three-fold 268 (53/215) 130 OS SC NR 
Campayo (11) 2013 Spain 5p Lung cancer FT qRT-PCR Down NR 70 (14/56) 36 TTR SC Yes 
Tang (53) 2013 China 5p Osteosarcoma Tissues qRT-PCR Down Median 166 (89/77) 152 DFS/OS SC Yes 
Yu (58) 2013 China 5p HNC Tissues qRT-PCR Down Two-fold 250 (125/125) 60 OS SC NR 
Avgeris (19) 2013 Greece 5p Prostate carcinoma FT qRT-PCR Down NR 62 (27/35) 75 DFS Reported Yes 
Muti-1 (17) 2014 Canada 5p Breast cancer Tissues Mircoarray down Median 740 (370/370) 310 DSS SC NR 
Muti-2 (17) 2014 Canada 3p Breast cancer Tissues Mircoarray down Median 740 (370/370) 310 DSS SC NR 
Naito (15) 2014 Japan 5p Gastric cancer FFPE qRT-PCR High Median 71 (36/35) 67 CSS SC No 
Xia (55) 2014 Japan 5p TCL FFPE qRT-PCR NR NR 40 (10/30) 57 OS Reported(m) Yes 
Slattery (51) 2015 USA 3p Colorectal cancer FFPE Mircoarray NR Expressed or not 1,141 (1,141/28) NR OS Reported NR 
Xia (21) 2015 China 3p Lung cancer FFPE qRT-PCR Down Median 92 (36/46) 106 DFS/OS Reported Yes 
Shen (20) 2015 China 5p Lung cancer FT qRT-PCR Down Median 48 (24/24) 24 DFS SC NR 
Larne (12) 2015 Sweden 5p Prostate carcinoma FFPE qRT-PCR Down Median 49 (25/24) 204 OS Reported NR 
Liang (48) 2015 China 5p Ovarian cancer Serum qRT-PCR Down Median 84 (42/42) 36 OS Reported NR 
Avgeris (22) 2015 Greece 5p Bladder cancer Tissues qRT-PCR Down 1.5 fold 40 (22/18) 48 DFS/OS Reported(u) NR 
Wang (54) 2015 China 5p Cervical cancer FT qRT-PCR Down Median 114 (63/51) 69 OS Reported(m) Yes 
Ye (57) 2015 China 5p Lung cancer Tissues qRT-PCR Down Median 122 (61/61) 60 OS SC NR 
Kim (45) 2015 Korea 3p Ovarian cancer FT qRT-PCR Down NR 74 (48/26) 90 OS Reported(m) Yes 
Li (23) 2015 China 5p Colorectal cancer Serum qRT-PCR Down Median 175 (NR) 37 DFS Reported(u) No 
Pecqueux (13) 2016 Germany 5p Colorectal cancer FT qRT-PCR Down Median 25 (12/13) 67 OS SC NR 
Zhang (60) 2016 China 5p Gastric cancer FT qRT-PCR Down NR 145 (49/76) 65 OS Reported(u) Yes 
Yang (56) 2016 USA 5p Colorectal cancer FFPE qRT- PCR Down Survival result NR NR PFS/OS Reported NR 
Zhou (61) 2016 China 5p Colorectal cancer FT qRT-PCR Down NR 60 (27/33) 80 OS Reported(u) No 
Shi-1 (63) 2016 China 5p Lung cancer Serum qRT-PCR NR NR Pemetrexed 76 (31/45) 117 PFS SC NR 
Shi-2 (63) 2016 China 5p Lung cancer Serum qRT-PCR NR NR Observation 72 (50/22) 78 PFS SC NR 
Li (47) 2016 China 5p Osteosarcoma Tissues qRT-PCR Down NR 39 (19/20) 60 OS SC NR 
Zhan (59) 2016 China 5p Gallbladder cancer FFPE qRT-PCR Down Median 82 (41/41) 93 OS SC NR 
Namkung (25) 2016 Korea 5p Pancreatic cancer FT Mircoarray NR NR 104 NR DFS/OS Reported(m) NR 
Zhao (62) 2016 China 5p Gastric cancer FFPE qRT-PCR Down Mean 63 (44/19) 36 OS SC NR 
Liu (24) 2016 China 5p Breast cancer FT qRT-PCR NR Median 117 (NR) 60 DFS/OS SC NR 
Li (46) 2017 China 5p Gastric cancer TCGA Mircoarray Down NR 361 (157/204) 66 OS SC NR 
Kapodistrias (29) 2017 Greece 5p Liposarcoma FFPE qRT-PCR Down Median 61 (31/30) 188 RFS/OS SC No 
Gan (42) 2017 China 5p Lung cancer FFPE qRT-PCR Down Mean 101 (65/36) 51 OS SC NR 
Azizmohammadi (14) 2017 Iran 5p Cervical cancer FT qRT-PCR Down Median 35 (18/17) 54 OS Reported(m) Yes 
Zhao (26) 2017 USA 5p Glioma Serum Mircoarray NR Median 106 (53/53) 24 DFS/OS Reported NR 

Abbreviations: 3P, miR-145-3P; 5P, miR-145-5P; CSS, cancer-specific survival; FT, frozen tissues; HCC, hepatocellular carcinoma; HNC, head and neck cancer; NOS, Newcastle-Ottawa Scale; NR, not reported; Ref., reference; SC, survival curve; TCGA, The Cancer Genome Altas; TCL, T-cell leukemia/lymphoma.

Meta-analysis of miR-145 expression and overall survival

A total of 36 (9, 12–15, 17, 21, 22, 24–26, 29, 39, 40, 42–62) of the 50 studies that included 5,074 patients evaluated the relationship between miR-145 expression and OS of patients suffering from various tumors. Among them, two studies investigated the expression level and prognostic value of miR-145 in blood samples, and the results of these two studies were similar with most tissue studies. Therefore, a pooled analysis containing blood and tissue studies were performed. Owing to a significant heterogeneity existing among studies (I2 = 62%, P < 0.001), a random model was employed to calculated the pooled HR and 95% CI of OS. The result showed that low miR-145 expression was associated with poor OS in multiple tumors, with a pooled HR of 1.70 (95% CI, 1.46–1.99; P < 0.001; Fig. 2). To decrease the heterogeneity among studies, subgroup analyses were performed on the basis of 7 criteria: miR-145 subtype, tumor type, sample type, HR resource, patient ethnicity, miR-145 assay method, and cut-off value (Table 2; Supplementary Figs. S1A–S7A). The results showed that low expression of miR-145 was significantly associated with worse OS in subgroup analyses of miR-145 subtype, HR resource, patient ethnicity, miR-145 assay method, and cut-off value. However, the results from subgroup analysis of tumor type suggested that the downregulation of miR-145 was obviously associated with poor OS in colorectal cancer (HR = 2.17; 95% CI, 1.52–3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29–3.59; P = 0.003), glioma (HR = 1.65; 95% CI, 1.30–2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50–3.47; P < 0.001), but not in lung cancer (HR = 1.54; 95% CI, 0.70–3.36; P = 0.28), cervical cancer (HR = 1.32; 95% CI, 0.64–2.68; P = 0.45), esophageal cancer (HR = 0.97; 95% CI, 0.30–0.09; P = 0.95), and breast cancer (HR = 1.19; 95% CI, 0.79–1.81; P = 0.41). The study conducted by Naito and colleagues (15) found that miR-145 was upregulated in scirrhous type gastric cancer and the downregulation of miR-145 was significantly associated with better OS in gastric cancer (HR = 0.50; 95% CI, 0.26–2.98; P = 0.44; ref. 15). The pathologic type and survival result from this previous study were totally different from other studies focusing on the association between miR-145 expression and OS in gastric cancer (46, 60). Therefore, further subgroup analysis for gastric cancer was performed after omitting the study conducted by Naito and colleagues, and the result without heterogeneity (I2 = 0; P = 0.55) suggested that the low miR-145 expression also indicated worse OS in gastric cancer (HR = 1.78; 95% CI, 1.35–2.36; P < 0.001). For the subgroup analysis of sample type, the downregulated miR-145 in frozen tissues and serum was significantly associated with poor OS (frozen tissues: HR = 1.81; 95% CI, 1.39–2.35; P < 0.001; serum: HR = 1.74; 95% CI, 1.21–2.49; P = 0.003), whereas the association between the downregulation of miR-145 in FFPE tissues and OS was not statistically significant (HR = 1.35; 95% CI, 0.99–1.84; P = 0.06).

Figure 2.

Frost plot of the association between the downregulation of miR-145 and OS of patients with various tumors.

Figure 2.

Frost plot of the association between the downregulation of miR-145 and OS of patients with various tumors.

Close modal
Table 2.

Subgroup analysis of OS and PFS in patients with various cancers

OS (n = 36)PFS (n = 26)
SubgroupNumber of studiesModelPooled HR (95% CI)PHG I2 %Number of studiesModelPooled HR (95% CI)PHG I2 %
miR-145 Type 
 miR-145-5P 32 Random 1.66 (1.40–1.97) <0.001 65 25 Random 1.37 (1.14–1.65) <0.001 70 
 miR-145-3P Fixed 1.99 (1.53–2.59) <0.001 ND 2.18 (1.30–3.65) 0.003 ND 
Tumor type 
 Prostate cancer ND 3.00 (1.50–6.00) 0.002 ND Random 1.14 (0.83–1.56) 0.41 75 
 Colorectal cancer Fixed 2.17 (1.52–3.08) <0.0001 Random 1.22 (0.69–2.16) 0.5 69 
 Lung cancer Random 1.54 (0.70–3.36) 0.28 77 Random 1.97 (1.25–3.09) 0.003 68 
 Ovarian cancer Fixed 2.15 (1.29–3.59) 0.003 21 ND 0.20 (0.05–0.87) 0.03 ND 
 Cervical cancer Random 1.32 (0.64–2.68) 0.45 84 ND ND ND ND ND 
 Esophageal cancer Random 0.97 (0.30–3.09) 0.95 83 Fixed 0.43 (0.19–1.00) 0.05 
 Gastric cancer Random 1.40 (0.79–2.48) 0.24 77 ND ND ND ND ND 
 Breast cancer Random 1.19 (0.79–1.81) 0.41 66 Fixed 1.28 (0.94–1.75) 0.12 47 
 Glioma Fixed 1.65 (1.30–2.10) <0.0001 Random 2.56 (0.86–7.63) 0.09 65 
 Osteosarcoma Fixed 2.28 (1.50–3.47) 0.0001 ND 1.56 (1.12–2.17) 0.008 ND 
 Others Random 2.36 (1.55–3.59) <0.0001 61 Random 1.96 (1.13–3.37) 0.02 59 
Sample type 
 Frozen tissues 10 Random 1.81 (1–39–2.35) <0.0001 51 11 Random 1.51 (0.96–2.37) 0.08 75 
 FFPE 15 Random 1.35 (0.99–1.84) 0.06 72 Random 1.18 (0.94–1.48) 0.15 63 
 Serum Fixed 1.74 (1.21–2.49) 0.003 Random 1.26 (0.86–1.86) 0.23 61 
 Others Random 2.17 (1.64–2.88) <0.0001 57 Random 2.33 (1.22–4.46) 0.01 62 
HR Resource 
 Reported 15 Fixed 2.02 (1.74–2.34) <0.0001 10 Random 1.62 (1.18–2.24) 0.003 54 
 SC 21 Random 1.43 (1.14–1.79) 0.002 72 16 Random 1.28 (1.03–1.60) 0.03 73 
Ethnicity 
 Asian 21 Random 1.73 (1.38–2.17) <0.0001 72 13 Random 1.50 (1.23–1.82) <0.0001 68 
 European Fixed 1.75 (1.40–2.18) <0.0001 26 Random 1.41 (0.87–2.29) 0.16 69 
 American Fixed 1.57 (1.29–1.90) <0.0001 49 Random 0.80 (0.32–2.02) 0.64 84 
Assay method 
 qRT-PCR 29 Random 1.68 (1.37–2.06) <0.0001 68 24 Random 1.36 (1.12–1.66) 0.002 71 
 Microarray Fixed 1.75 (1.49–2.06) <0.0001 Fixed 1.70 (1.22–2.35) 0.001 
Cut-off value 
 Median 19 Random 1.59 (1.31–1.92) <0.0001 60 15 Random 1.14 (0.86–1.51) 0.37 72 
 Others 17 Random 1.88 (1.44–2.45) <0.0001 66 11 Random 1.72 (1.34–2.21) <0.0001 64 
OS (n = 36)PFS (n = 26)
SubgroupNumber of studiesModelPooled HR (95% CI)PHG I2 %Number of studiesModelPooled HR (95% CI)PHG I2 %
miR-145 Type 
 miR-145-5P 32 Random 1.66 (1.40–1.97) <0.001 65 25 Random 1.37 (1.14–1.65) <0.001 70 
 miR-145-3P Fixed 1.99 (1.53–2.59) <0.001 ND 2.18 (1.30–3.65) 0.003 ND 
Tumor type 
 Prostate cancer ND 3.00 (1.50–6.00) 0.002 ND Random 1.14 (0.83–1.56) 0.41 75 
 Colorectal cancer Fixed 2.17 (1.52–3.08) <0.0001 Random 1.22 (0.69–2.16) 0.5 69 
 Lung cancer Random 1.54 (0.70–3.36) 0.28 77 Random 1.97 (1.25–3.09) 0.003 68 
 Ovarian cancer Fixed 2.15 (1.29–3.59) 0.003 21 ND 0.20 (0.05–0.87) 0.03 ND 
 Cervical cancer Random 1.32 (0.64–2.68) 0.45 84 ND ND ND ND ND 
 Esophageal cancer Random 0.97 (0.30–3.09) 0.95 83 Fixed 0.43 (0.19–1.00) 0.05 
 Gastric cancer Random 1.40 (0.79–2.48) 0.24 77 ND ND ND ND ND 
 Breast cancer Random 1.19 (0.79–1.81) 0.41 66 Fixed 1.28 (0.94–1.75) 0.12 47 
 Glioma Fixed 1.65 (1.30–2.10) <0.0001 Random 2.56 (0.86–7.63) 0.09 65 
 Osteosarcoma Fixed 2.28 (1.50–3.47) 0.0001 ND 1.56 (1.12–2.17) 0.008 ND 
 Others Random 2.36 (1.55–3.59) <0.0001 61 Random 1.96 (1.13–3.37) 0.02 59 
Sample type 
 Frozen tissues 10 Random 1.81 (1–39–2.35) <0.0001 51 11 Random 1.51 (0.96–2.37) 0.08 75 
 FFPE 15 Random 1.35 (0.99–1.84) 0.06 72 Random 1.18 (0.94–1.48) 0.15 63 
 Serum Fixed 1.74 (1.21–2.49) 0.003 Random 1.26 (0.86–1.86) 0.23 61 
 Others Random 2.17 (1.64–2.88) <0.0001 57 Random 2.33 (1.22–4.46) 0.01 62 
HR Resource 
 Reported 15 Fixed 2.02 (1.74–2.34) <0.0001 10 Random 1.62 (1.18–2.24) 0.003 54 
 SC 21 Random 1.43 (1.14–1.79) 0.002 72 16 Random 1.28 (1.03–1.60) 0.03 73 
Ethnicity 
 Asian 21 Random 1.73 (1.38–2.17) <0.0001 72 13 Random 1.50 (1.23–1.82) <0.0001 68 
 European Fixed 1.75 (1.40–2.18) <0.0001 26 Random 1.41 (0.87–2.29) 0.16 69 
 American Fixed 1.57 (1.29–1.90) <0.0001 49 Random 0.80 (0.32–2.02) 0.64 84 
Assay method 
 qRT-PCR 29 Random 1.68 (1.37–2.06) <0.0001 68 24 Random 1.36 (1.12–1.66) 0.002 71 
 Microarray Fixed 1.75 (1.49–2.06) <0.0001 Fixed 1.70 (1.22–2.35) 0.001 
Cut-off value 
 Median 19 Random 1.59 (1.31–1.92) <0.0001 60 15 Random 1.14 (0.86–1.51) 0.37 72 
 Others 17 Random 1.88 (1.44–2.45) <0.0001 66 11 Random 1.72 (1.34–2.21) <0.0001 64 

Abbreviations: HG, heterogeneity; ND, no data; SC, survival curve.

Meta-analysis of miR-145 expression and PFS

In this study, PFS was analyzed along with disease-free survival (DFS), recurrence-free interval (FRI), biochemical-free survival (BFS), metastasis-free survival (MFS), time to relapse (TTR), and relapse-free survival (RFS), because all these indices were used to indicate the tumor recurrence or deterioration after surgery or treatment. A total of 26 studies (8–11, 16, 18–29, 38, 41, 49, 52, 53, 56, 61, 63) encompassing 1,971 patients with carcinoma evaluated the correlation between miR-145 expression and PFS. The random-effects model was employed to estimate the pooled HR owing to an obvious heterogeneity among studies (I2 = 70%, P < 0.001). Results showed that downregulated miR-145 significantly predicted unfavorable PFS in various cancers, with a HR of 1.39 (95% CI, 1.16–1.67; P < 0.001; Fig. 3). Similar to OS, subgroup analyses of PFS were also performed. The results showed that the predictive value of miR-145 on PFS in various cancers was not altered when patients were stratified on the basis of HR resource and miR-145 assay method (Table 2; Supplementary Figs. S1B–S7B). Nevertheless, the results from the subgroup analysis of tumor type showed that the low miR-145 expression was only significantly associated with worse PFS in lung cancer (HR = 1.97; 95% CI, 1.25–3.09; P = 0.003). The subgroup analysis based on patient ethnicity found that the downregulated miR-145 was only associated with poor PFS in Asian patients (HR = 1.50; 95% CI, 1.23–1.82; P < 0.001) and not with the European (HR = 1.41; 95% CI, 0.87–2.29; P = 0.16) or American patients (HR = 0.80; 95% CI, 0.32–2.02; P = 0.64). For the subgroup analysis of the cut-off value, the results showed that the PFS of patients in high and low miR-145 expression groups that were stratified using the median value was comparable (HR = 1.14; 95% CI, 0.86–1.51; P = 0.37). The subgroup analysis found that the low miR-145 expression in all types of tissues was not associated with the PFS (frozen tissue: HR = 1.51; 95% CI, 0.96–2.37; P = 0.08; FFPE tissue: HR = 1.18; 95% CI, 0.94–1.48; P = 0.15; serum: HR = 1.26; 95% CI, 0.86–1.86; P = 0.23).

Figure 3.

Frost plot of the association between the downregulation of miR-145 and PFS of patients with various tumors.

Figure 3.

Frost plot of the association between the downregulation of miR-145 and PFS of patients with various tumors.

Close modal

The assessment of publication bias

In this study, the funnel plots of Begg and Egger tests were employed to evaluate the publication bias of all included studies. No obvious asymmetry was observed in the funnel plots of Begg (OS, P = 0.17, Fig. 4A; PFS, P = 0.63, Fig. 4C) and the P values of the Egger tests were all higher than 0.05 (OS, P = 0.41, Fig. 4B; PFS, P = 0.33, Fig. 4D). Therefore, significant publication bias did not exist in this meta-analysis.

Figure 4.

Begg funnel plot and Egger test were used to evaluate the publication bias. A and C, Begg funnel plot of OS and PFS. B and D, Egger test of OS and PFS.

Figure 4.

Begg funnel plot and Egger test were used to evaluate the publication bias. A and C, Begg funnel plot of OS and PFS. B and D, Egger test of OS and PFS.

Close modal

Sensitivity analysis

Sensitivity analysis of OS and PFS was performed to investigate the influence of each individual study on the pooled HRs (Fig. 5A and B). The result showed that the pooled results were not significantly altered by sequentially omitting any single dataset, demonstrating that the results of this meta-analysis were robust.

Figure 5.

Sensitivity analysis of the relationship between miR-145 expression and OS (A) as well as PFS (B).

Figure 5.

Sensitivity analysis of the relationship between miR-145 expression and OS (A) as well as PFS (B).

Close modal

miR-145 can be regulated by multiple factors

Consistent with other mammalian miRNAs, miR-145 was first transcribed from its parental gene and termed as pri-miRNA, then the pri-miRNA was cleaved into hairpin intermediates (pre-miRNAs) by the nuclear RNase III Drosha and further processed to mature miRNAs by cytosolic Dicer, another RNase-III related enzyme (Fig. 6; refs. 64, 65). Therefore, the expression level of miR-145 might be regulated in the transcription and maturation process by various factors. During the transcription step, Sachdeva and colleagues (66) first discovered that P53, a well-demonstrated central tumor suppressor, could induce miR-145 transcription by directly interacting with its promoter. From then on, other molecules including EWS-FLI-1 (67), FOXO (68), TP53 (69), EGFR (70), PPARγ (71), DNMT3b (72), AR (73), and DDX3 (74) could also stimulate the transcription of miR-145 by enhancing promoter activity. On the contrary, DNA methylation at the miR-145 promoter region (75), C/EBP-b (76), DCLK1 (77), RREB1 (78), and ZEB2 (79) caused the downregulation of miR-145 by repressing the activity of the miR-145 promoter. With regard to the maturation-process, P53 (80) and BRCA1 (81) could increase the expression of miR-145 by directly interacting with the Drosha complex, whereas p70S6K (82), methyltransferase BCDIN3D (83), and TARBP2 (84) restrained the maturation of miR-145 via inhibition of Dicer activity. Moreover, recent studies have shown that the function of miR-145 could also be repressed by various competing endogenous RNAs (ceRNA) including transcribed pseudogenes (e.g., OCT4-pg4; ref. 85), lncRNAs [e.g., lncRNA RoR (86–88), TUG1 (89), MALAT1 (90), UCA1 (91), and CRNDE (92)], and circular RNAs [e.g., circRNA_001569 (93) and circBIRC6 (94)]. The ceRNAs identified thus far mainly regulate the function of miR-145-5p instead of miR-145-3p.

Figure 6.

The expression and function of miR-145 could be regulated by numerous factors. AR, androgen receptor; BCDIN3D, BCDIN3 domain containing RNA methyltransferase; BRCA1, breast cancer 1; C/EBP-b, CCAAT/enhancer binding protein beta; DCLK1, doublecortin-like kinase 1; DDX3, DEAD (Asp-Glu-Ala-Asp) box polypeptide 3; DNMT3b, DNA methyltransferase 3 beta; EWS-FLI-1, EWS-FLI-1 fusion protein; FOXO, forkhead box, subgroup O; OCT4-pg4, a pseudogene of OCT4; PPARg, peroxisome proliferator activated receptor gamma; RREB1, ras-responsive element binding protein 1; S6K, ribosomal protein S6 kinase; TARBP2, TARBP2 RISC loading complex RNA binding subunit; TP53, tumor protein p53; ZEB2, zinc finger E-box binding homeobox 2.

Figure 6.

The expression and function of miR-145 could be regulated by numerous factors. AR, androgen receptor; BCDIN3D, BCDIN3 domain containing RNA methyltransferase; BRCA1, breast cancer 1; C/EBP-b, CCAAT/enhancer binding protein beta; DCLK1, doublecortin-like kinase 1; DDX3, DEAD (Asp-Glu-Ala-Asp) box polypeptide 3; DNMT3b, DNA methyltransferase 3 beta; EWS-FLI-1, EWS-FLI-1 fusion protein; FOXO, forkhead box, subgroup O; OCT4-pg4, a pseudogene of OCT4; PPARg, peroxisome proliferator activated receptor gamma; RREB1, ras-responsive element binding protein 1; S6K, ribosomal protein S6 kinase; TARBP2, TARBP2 RISC loading complex RNA binding subunit; TP53, tumor protein p53; ZEB2, zinc finger E-box binding homeobox 2.

Close modal

The target genes regulated by miR-145-5p/3p in various malignant tumors

After processing with Dicer, pre-miR-145 generated two mature subtypes named miR-145-5p and miR-145-3p. Then, an RNA-induced silencing complex that silenced the expression of target transcripts by either facilitating corresponding mRNA degradation or blocking its translation was formed (64). By systematically reviewing previous studies, the transcripts that could be targeted by miR-145-5p, miR-145-3p, or both miR-145-5p and miR-145-3p in different malignant tumors were summarized (Table 3). Generally, most of them focused on miR-145-5p and it was found to silence many genes, which participated in almost every aspect of tumor activities, including tumor growth, metastasis, differentiation, angiogenesis, and drug resistance. Among these genes, some played important roles in only one aspect of tumor behavior. Minami and colleagues (95) revealed that miR-145-5p perturbed the Warburg effect by silencing KLF4 in bladder cancer cells, resulting in significant cell growth inhibition. Eades and colleagues (96) found that the small GTPase ADP-ribosylation factor 6, a target of miR-145-5p in the triple-negative breast cancer, promoted cell invasion by regulating E-cadherin localization and impacting cell–cell adhesion. Gao and colleagues (97) suggested overexpression of miR-145-5p sensitized breast cancer cells to doxorubicin in vitro and enhanced the doxorubicin chemotherapy in vivo via inhibition of the multidrug resistance-associated protein 1. Yet, some targeted genes of miR-145-5p possess multiple functions in an individual tumor type. For instance, overexpression of miR-145-5p suppressed esophageal squamous cell carcinoma cell proliferation and invasion via targeting c-Myc (98), and the knockdown of miR-145-5p responsively increased both the mRNA and protein levels of Ets1, and thus promoted the metastasis and angiogenesis of gastric cancer cells (99). In addition, some genes can be regulated by miR-145-5p in multiple tumors. For example, FSCN1, one of the most frequently reported target genes of miR-145-5p, was involved in bladder cancer (100), esophageal cancer (101), hepatocellular carcinoma (HCC; ref. 102), lung cancer (103), nasopharyngeal cancer (104), and prostate cancer (105). Compared with miR-145-5p, the biological functions of miR-145-3p, which were derived from the antisense of miR-145-5p, have been reported in few studies. It was reported that three genes, HMGA2 (45), Ang-2 (106), and HIF-2α (107), could be regulated by miR-145-3p in ovarian cancer, pancreatic cancer, and neuroblastoma, respectively, to inhibit tumor growth or metastasis. Furthermore, previous studies found that MDTH (108) and UHRF1 (109) could be coregulated by both miR-145-5p and miR-145-3p in lung cancer and bladder cancer, respectively.

Table 3.

The target genes regulated by miR-145 in various malignant tumors

Tumor typeNumber of studiesFunctionTarget gene
miR-145-5p    
 Bladder cancer Growth KLF4/PTBP1, ILK, SOCS7, FSCN1 
  Metastasis PAK1, PAI-1 
  Growth and metastasis IGFIR 
 Breast cancer Growth RTKN, MMP11, Rab27a 
  Metastasis ARF6, MUC1 
  Growth and metastasis ERBB3 
  Drug resistance MRP1 
  Growth and angiogenesis NRAS, VEGFA 
 Cervical cancer Growth CDK6 
  Growth and metastasis SIP1 
  Radiation resistance HLTF, OCT4 
 Colorectal cancer 14 Growth NAIP, IGF1R, YES, STAT1, DFF45 
  Metastasis Paxillin, LASP1, ERG 
  Growth and metastasis FSCN1, N-RAS, IRS1, PAK4 
  Growth and angiogenesis p70S6K1 
  Drug resistance RAD18 
  Growth and drug resistance FLI-1 
 Esophageal carcinoma Growth and metastasis PLCE1, c-Myc, FSCN1 
 Gastric cancer Metastasis CTNND1, N-cadherin, ZEB2, 
  Growth E2F3 
  Drug resistance CD44 
  Metastasis and angiogenesis Ets1 
 Glioma Metastasis ABCG2, ROCK1, ADAM17 
  Growth SOX9, ADD3 
 Hepatocellular carcinoma Growth IRS1, ADAM17, HDAC2, IRS1, IRS2 
  Metastasis ADAM17 
  Growth and metastasis FSCN1 
 Lung cancer Growth ICP27, OCT4 
  Metastasis OCT4, FSCN1, MTDH, SMAD3, N-cadherin 
  Growth and metastasis Mucin 1 
 Melanoma Metastasis FSCN1 
  Growth and metastasis NRAS 
 Nasopharyngeal cancer Metastasis SMAD3, FSCN1, ADAM17 
 Osteosarcoma Metastasis MMP16, Snail, VEGF 
  Growth and metastasis CDK6, FLI-1, ROCK1 
 Ovarian cancer Growth c-Myc, 
  Drug resistance SP1, CDK6 
  Growth and metastasis TRIM2, p70S6K1, MUC1 
 Pancreatic cancer Growth and metastasis NEDD9, MUC13 
  Drug resistance p70S6K1 
 Prostate cancer Growth SOX2, SENP1, ERG, BNIP3 
  Metastasis DAB2, HEF1, SWAP70 
  Growth and metastasis FSCN1 
 Renal cell carcinoma Growth and metastasis ANGPT2, NEDD9, HK2 
 Others 10 Growth c-Myc, CDK6, DUSP6, CBFB, PPP3CA, CLINT1 
  Metastasis CTGF 
  Growth and metastasis NUAK1, SOX2, AKT3, ADAM19 
  Drug resistance MRP1 
  Differentiation OCT4 
miR-145-3p    
 Ovarian cancer Growth and metastasis HMGA2 
 Pancreatic cancer Metastasis Ang-2 
 Neuroblastoma Growth and metastasis HIF-2α 
miR-145-3p/5p    
 Lung cancer Growth MTDH 
 Bladder cancer Growth and metastasis UHRF1 
Tumor typeNumber of studiesFunctionTarget gene
miR-145-5p    
 Bladder cancer Growth KLF4/PTBP1, ILK, SOCS7, FSCN1 
  Metastasis PAK1, PAI-1 
  Growth and metastasis IGFIR 
 Breast cancer Growth RTKN, MMP11, Rab27a 
  Metastasis ARF6, MUC1 
  Growth and metastasis ERBB3 
  Drug resistance MRP1 
  Growth and angiogenesis NRAS, VEGFA 
 Cervical cancer Growth CDK6 
  Growth and metastasis SIP1 
  Radiation resistance HLTF, OCT4 
 Colorectal cancer 14 Growth NAIP, IGF1R, YES, STAT1, DFF45 
  Metastasis Paxillin, LASP1, ERG 
  Growth and metastasis FSCN1, N-RAS, IRS1, PAK4 
  Growth and angiogenesis p70S6K1 
  Drug resistance RAD18 
  Growth and drug resistance FLI-1 
 Esophageal carcinoma Growth and metastasis PLCE1, c-Myc, FSCN1 
 Gastric cancer Metastasis CTNND1, N-cadherin, ZEB2, 
  Growth E2F3 
  Drug resistance CD44 
  Metastasis and angiogenesis Ets1 
 Glioma Metastasis ABCG2, ROCK1, ADAM17 
  Growth SOX9, ADD3 
 Hepatocellular carcinoma Growth IRS1, ADAM17, HDAC2, IRS1, IRS2 
  Metastasis ADAM17 
  Growth and metastasis FSCN1 
 Lung cancer Growth ICP27, OCT4 
  Metastasis OCT4, FSCN1, MTDH, SMAD3, N-cadherin 
  Growth and metastasis Mucin 1 
 Melanoma Metastasis FSCN1 
  Growth and metastasis NRAS 
 Nasopharyngeal cancer Metastasis SMAD3, FSCN1, ADAM17 
 Osteosarcoma Metastasis MMP16, Snail, VEGF 
  Growth and metastasis CDK6, FLI-1, ROCK1 
 Ovarian cancer Growth c-Myc, 
  Drug resistance SP1, CDK6 
  Growth and metastasis TRIM2, p70S6K1, MUC1 
 Pancreatic cancer Growth and metastasis NEDD9, MUC13 
  Drug resistance p70S6K1 
 Prostate cancer Growth SOX2, SENP1, ERG, BNIP3 
  Metastasis DAB2, HEF1, SWAP70 
  Growth and metastasis FSCN1 
 Renal cell carcinoma Growth and metastasis ANGPT2, NEDD9, HK2 
 Others 10 Growth c-Myc, CDK6, DUSP6, CBFB, PPP3CA, CLINT1 
  Metastasis CTGF 
  Growth and metastasis NUAK1, SOX2, AKT3, ADAM19 
  Drug resistance MRP1 
  Differentiation OCT4 
miR-145-3p    
 Ovarian cancer Growth and metastasis HMGA2 
 Pancreatic cancer Metastasis Ang-2 
 Neuroblastoma Growth and metastasis HIF-2α 
miR-145-3p/5p    
 Lung cancer Growth MTDH 
 Bladder cancer Growth and metastasis UHRF1 

Abbreviations: ABCG2, ATP binding cassette subfamily G member 2; ADAM17, ADAM metallopeptidase domain 17; ADD3, adducin 3; AKT3, AKT serine/threonine kinase 3; Ang-2, angiogenin, ribonuclease A family, member 2; ANGPT2, angiopoietin 2; ARF6, ADP ribosylation factor 6; BNIP3, BCL2 interacting protein 3; CBFB, core-binding factor subunit beta; CDK6, cyclin dependent kinase 6; CLINT1, clathrin interactor 1; CTGF, connective tissue growth factor; CTNND1, catenin delta 1; DAB2, DAB2, clathrin adaptor protein; DFF45, DNA fragmentation factor subunit alpha; DUSP6, dual specificity phosphatase 6; E2F3, E2F transcription factor 3; ERBB3, erb-b2 receptor tyrosine kinase 3; ERG, ERG, ETS transcription factor; Ets1, ETS proto-oncogene 1, transcription factor; FLI-1, Fli-1 proto-oncogene, ETS transcription factor; FSCN1, fascin actin-bundling protein 1; HDAC2, histone deacetylase 2; HK2, hexokinase 2; HLTF, helicase like transcription factor; HMGA2, high mobility group AT-hook 2; IGF-IR, insulin like growth factor 1 receptor; ILK, integrin linked kinase; IRS1/2, insulin receptor substrate 1/2; KLF4, Kruppel like factor 4; LASP1, LIM and SH3 protein 1; MMP11, matrix metallopeptidase 11; MRP1, mitochondrial 37S ribosomal protein MRP1; MTDH, metadherin; MUC1, mucin 1, cell surface associated; MUC1/13, mucin 1/13, cell surface associated; NAIP, NLR family apoptosis inhibitory protein; NEDD9, neural precursor cell expressed, developmentally down-regulated 9; NRAS, NRAS proto-oncogene, GTPase; NUAK1, NUAK family kinase 1; OCT4, organic cation/carnitine transporter4; PAI-1, serpin family E member 1; PAK1, p21 (RAC1) activated kinase 1; PAK4, p21 (RAC1) activated kinase 4; PLCE1, phospholipase C epsilon 1; PPP3CA, protein phosphatase 3, catalytic subunit, alpha isoform; PTBP1, polypyrimidine tract binding protein 1; RAD18, RAD18, E3 ubiquitin protein ligase; Rab27a, RAB27A, member RAS oncogene family; ROCK1, Rho-associated coiled-coil containing protein kinase 1; RTKN, rhotekin; S6K, Ribosomal protein S6 kinase; SENP1, SUMO-specific peptidase 1; SMAD3, SMAD family member 3; SOCS7, suppressor of cytokine signaling 7; SOX2/9, SRY (sex determining region Y)-box 2/9; STAT1, signal transducer and activator of transcription 1; TRIM2, tripartite motif containing 2; UHRF1, ubiquitin like with PHD and ring finger domains 1; VEGFA, vascular endothelial growth factor A; YES, YES proto-oncogene, Src family tyrosine kinase; ZEB2, zinc finger E-box binding homeobox 2.

Although miRNAs only encompass 19–23 nucleotides and do not have the ability to encode proteins, they are involved in multiple cellular pathways and play crucial roles in various diseases (1). Identifying aberrantly expressed miRNAs and illustrating their underlying mechanisms may assist with early diagnosis, prognosis evaluation, and treatment development of numerous diseases (110, 111). Among thousands of known cancer-related miRNAs, miRNA-145 is considered an important one whose biological function and clinical significance have been investigated by many studies. To date, only two other meta-analyses have assessed the association between miR-145 expression and the prognosis of patients with malignant tumors (112, 113). Zhang and colleagues (112) utilized four prostate cancer studies and evaluated the predicted value of miR-145 for the DFS. In this study, the author defined the pooled HR < 1 indicated poor prognosis for the groups with lower miR-145 expression and was considered statistically significant if the 95% CI did not overlap 1. The pooled result indicated that the low expression of miR-145 in prostate cancer tissues predicted poor DFS (HR = 0.48; 95% CI, 0.30–0.75; P = 0.001). However, the result of their study cannot be applied to other cancers due to the heterogeneity among different tumors and the small sample size. Yang and colleagues (113) reported that overexpression of miR-145 was significantly associated with favorable OS in various carcinomas (HR = 0.47; 95% CI, 0.31–0.72; P < 0.01), but not with DFS (HR = 0.87; 95% CI, 0.51–1.47; P = 0.569). However, the conclusion of their study was not robust enough because it was published 3 years ago and only included 18 studies. In this study, a comprehensive literature search was performed to collect all relevant evidence available from previous studies, and we performed more detailed subgroup analyses to recognize the prognostic value of miR-145 in greater detail.

A total of 50 studies that included 6,875 patients evaluated the association between miR-145 expression and the prognosis of patients with malignant tumors. The pooled results from 36 studies suggested that low expression of miR-145 significantly predicted a poor OS, and this result was not altered when the patients were stratified into different subgroups based on HR resource, patient ethnicity, miR-145 assay method, and cut-off value. The subgroup analysis based on tumor type suggested that the downregulation of miR-145 was obviously associated with poor OS in colorectal cancer, ovarian cancer, gastric cancer, glioma, and osteosarcoma. In addition, the subgroup analysis based on tissue type found the prognosis value of frozen tissue and peripheral blood was better than that of FFPE tissues, which was probably caused by higher speed of RNA degradation in FFPE tissues than that in the other two types of tissues (114).

Consistent with OS, the pooled results showed that the downregulation of miR-145 was significantly associated with worse PFS in patients with various cancers. This result did not change when the patients were assigned to different subgroups based on miR-145 subtype, HR resource, and miR-145 assay method. However, the subgroup analysis based on tumor types showed that the downregulation of miR-145 was only associated with poor PFS in patients suffering from lung cancer, and not those with prostate cancer, colorectal cancer, esophageal cancer, breast cancer, and glioma. Meanwhile, the subgroup analysis based on patient ethnicity found that the downregulation of miR-145 was only associated with poor PFS among Asian patients, but not with the European and American patients. This discrepancy might arise from differences in environment or genetic background. Nevertheless, the subgroup analyses indicated that the aberrantly expressed miR-145 in all types of tissues (e.g., blood, frozen, and FFPE tissues) was not significantly associated with PFS. In addition, there was no significant difference in PFS between high and low miR-145 expressed groups, which was classified by median values.

In response to the need for comprehensive recognition of miR-145, the regulatory mechanisms of miR-145-5p/3p were elucidated in this study. Normally, miR-145 was downregulated in tumor tissues. Chivukula and colleagues (115) found that miR-145 was not expressed in colonic epithelial cells, but highly expressed in mesenchymal cells, such as fibroblasts and smooth muscle cells, this result was further validated by Kent and colleagues (116). Hence, they considered that the downregulation of miR-145 in colorectal tumor tissues was the depletion of mesenchymal cells in tumors relative to adjacent normal tissues. In addition, the underlying molecular mechanisms of the downregulation of miR-145 were also investigated in multiple previous studies. In tumor tissues and cell lines, the factors that prompted the transcription and maturation of miR-145 were downregulated, whereas the molecules that repressed the transcription and maturation of miR-145 were upregulated. These contributed to the downregulation of miR-145. Furthermore, the function of miR-145-5p could also be restrained by various ceRNAs in the cytoplasm. OCT4-pg4, a pseudogene of OCT4, holds the common binding sequence with OCT4 for miR-145-5p, and thus functions as a natural miR-145-5p sponge to protect the OCT4 transcript from being inhibited by miR-145 (85). Long noncoding RNAs (lncRNAs) are an important class of noncoding RNA and partly serve as molecular sponges to competitively inhibit miRNAs. Previous studies have demonstrated that the function of miR-145-5p could be restrained by multiple lncRNAs in various diseases, such as lncRNA-ROR in lung cancer (117), pancreatic cancer (87), endometrial cancer (86), and colorectal cancer (88); lncRNA-TUG1 in gastric cancer (118) and bladder cancer (89); and lncRNA-MALAT1 in cervical cancer (90). In addition, the biological function of miR-145-5p could also be inhibited by circular RNAs (circRNA), which is a novel class ceRNA shaped by a covalently closed loop without 5′-3′ polarity (119). Xie and colleagues (93) found that circ-001569 promoted the proliferation and invasion of colorectal cancer cell by sequestering miR-145-5p. Yu and colleagues (94) found that circBIRC6 directly interacts with miR-145-5p and miR-34a to modulate target genes that maintain human pluripotency and differentiation. The demonstrated target genes of miR-145-5p/3p and their biological functions in different neoplasms were also illustrated in this study. It was shown that numerous oncogenes that are involved in almost every aspect of tumor activity can be regulated by miR-145-5p/3p.

Although this study provides important information in recognition of the clinical value and regulatory mechanism of miR-145, many limitations in the study should be noted. First, despite 50 relevant studies being utilized, the number of studies belonging to each type of tumor was not sufficient and the sample sizes in most of the studies were small, with these factors compromising the statistical power of the meta-analysis. Second, owing to relevant studies being less than two, the prognostic value of miR-145 for some important solid tumors such as HCC, pancreatic cancer, and renal cell cancer could not be evaluated during this meta-analysis; therefore, more well-designed clinical studies with larger sample sizes for these tumors are imperative. Third, the cut-off value in each study varied, with a golden standard regarding the cut-off value should be verified to better evaluate the prognostic value of miR-145. Fourth, owing to several eligible studies not providing the survival data directly, corresponding HRs and 95% CIs were calculated from survival curves, which might cause several micro statistical errors. Fifth, although no significant publication bias was identified in this meta-analysis, potential publication bias might exist owing to desirable results being published more easily, resulting in over estimation of survival outcomes. Finally, this study only collected the regulatory mechanisms and biological functions of miR-145-5p/3p reported thus far, and more novel biological mechanisms containing miR-145-5p/3p might be unveiled in the future.

In conclusion, based on all eligible evidence, our study demonstrated that the downregulation of miR-145 was significantly associated with the poor prognosis of patients with various malignant tumors. The subgroup analyses indicated that low expression of miR-145 significantly predicted worse OS in patients with colorectal cancer, ovarian cancer, glioma, and osteosarcoma. Low expression of miR-145 was also significantly associated with PFS in patients with lung cancer and those of Asian descent. In addition, via comprehensively review previous studies, we found that miR-145 is involved in multiple tumor activities by targeting numerous genes, and the expression level of miR-145 could also be regulated by multiple factors.

No potential conflicts of interest were disclosed.

This study was supported by grants from the National Natural Science Foundation of China (grant no. 71673193) and the Key Technology Research and Development Program of the Sichuan Province (grant nos. 2015SZ0131 and 2017FZ0082).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Bartel
DP
. 
MicroRNAs: genomics, biogenesis, mechanism, and function
.
Cell
2004
;
116
:
281
97
.
2.
Chen
K
,
Rajewsky
N
. 
The evolution of gene regulation by transcription factors and microRNAs
.
Nat Rev Genet
2007
;
8
:
93
103
.
3.
Dillhoff
M
,
Wojcik
SE
,
Bloomston
M
. 
MicroRNAs in solid tumors
.
J Surg Res
2009
;
154
:
349
54
.
4.
Ruan
K
,
Fang
X
,
Ouyang
G
. 
MicroRNAs: novel regulators in the hallmarks of human cancer
.
Cancer Lett
2009
;
285
:
116
26
.
5.
Markopoulos
GS
,
Roupakia
E
,
Tokamani
M
,
Chavdoula
E
,
Hatziapostolou
M
,
Polytarchou
C
, et al
A step-by-step microRNA guide to cancer development and metastasis
.
Cell Oncol
2017
;
40
:
303
39
.
6.
Kozomara
A
,
Griffiths-Jones
S
. 
miRBase: annotating high confidence microRNAs using deep sequencing data
.
Nucleic Acids Res
2014
;
42
:
D68
73
.
7.
Kozomara
A
,
Griffiths-Jones
S
. 
miRBase: integrating microRNA annotation and deep-sequencing data
.
Nucleic Acids Res
2011
;
39
:
D152
7
.
8.
Schaefer
A
,
Jung
M
,
Mollenkopf
HJ
,
Wagner
I
,
Stephan
C
,
Jentzmik
F
, et al
Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma
.
Int J Cancer
2010
;
126
:
1166
76
.
9.
Radojicic
J
,
Zaravinos
A
,
Vrekoussis
T
,
Kafousi
M
,
Spandidos
DA
,
Stathopoulos
EN
. 
MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer
.
Cell Cycle
2011
;
10
:
507
17
.
10.
Law
PT
,
Ching
AK
,
Chan
AW
,
Wong
QW
,
Wong
CK
,
To
KF
, et al
MiR-145 modulates multiple components of the insulin-like growth factor pathway in hepatocellular carcinoma
.
Carcinogenesis
2012
;
33
:
1134
41
.
11.
Campayo
M
,
Navarro
A
,
Vinolas
N
,
Diaz
T
,
Tejero
R
,
Gimferrer
JM
, et al
Low miR-145 and high miR-367 are associated with unfavourable prognosis in resected nonsmall cell lung cancer
.
Eur Respir J
2013
;
41
:
1172
8
.
12.
Larne
O
,
Hagman
Z
,
Lilja
H
,
Bjartell
A
,
Edsjo
A
,
Ceder
Y
. 
miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis
.
Carcinogenesis
2015
;
36
:
858
66
.
13.
Pecqueux
M
,
Liebetrau
I
,
Werft
W
,
Dienemann
H
,
Muley
T
,
Pfannschmidt
J
, et al
A comprehensive microRNA expression profile of liver and lung metastases of colorectal cancer with their corresponding host tissue and its prognostic impact on survival
.
Int J Mol Sci
2016
;
17
:
1
16
.
14.
Azizmohammadi
S
,
Safari
A
,
Azizmohammadi
S
,
Kaghazian
M
,
Sadrkhanlo
M
,
Yahaghi
E
, et al
Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection
.
QJM
2017
;
110
:
11
5
.
15.
Naito
Y
,
Yasuno
K
,
Tagawa
H
,
Sakamoto
N
,
Oue
N
,
Yashiro
M
, et al
MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer
.
Oncol Rep
2014
;
32
:
1720
6
.
16.
Tanaka
K
,
Miyata
H
,
Yamasaki
M
,
Sugimura
K
,
Takahashi
T
,
Kurokawa
Y
, et al
Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal canc er
.
Ann Surg Oncol
2013
;
20
Suppl 3
:
S607
15
.
17.
Muti
P
,
Sacconi
A
,
Hossain
A
,
Donzelli
S
,
Ben Moshe
NB
,
Ganci
F
, et al
Downregulation of microRNAs 145-3p and 145-5p is a long-term predictor of postmenopausal breast cancer risk: the ORDET prospective study
.
Cancer Epidemiol Biomarkers Prev
2014
;
23
:
2471
81
.
18.
Ko
MA
,
Zehong
G
,
Virtanen
C
,
Guindi
M
,
Waddell
TK
,
Keshavjee
S
, et al
MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy
.
Ann Thorac Surg
2012
;
94
:
1094
102
.
19.
Avgeris
M
,
Stravodimos
K
,
Fragoulis
EG
,
Scorilas
A
. 
The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients
.
Br J Cancer
2013
;
108
:
2573
81
.
20.
Shen
H
,
Shen
J
,
Wang
L
,
Shi
Z
,
Wang
M
,
Jiang
BH
, et al
Low miR-145 expression level is associated with poor pathological differentiation and poor prognosis in non-small cell lung cancer
.
Biomed Pharmacother
2015
;
69
:
301
5
.
21.
Xia
W
,
Chen
Q
,
Wang
J
,
Mao
Q
,
Dong
G
,
Shi
R
, et al
DNA methylation mediated silencing of microRNA-145 is a potential prognostic marker in patients with lung adenocarcinoma
.
Sci Rep
2015
;
5
:
16901
.
22.
Avgeris
M
,
Mavridis
K
,
Tokas
T
,
Stravodimos
K
,
Fragoulis
EG
,
Scorilas
A
. 
Uncovering the clinical utility of miR-143, miR-145 and miR-224 for predicting the survival of bladder cancer patients following treatment
.
Carcinogenesis
2015
;
36
:
528
37
.
23.
Li
J
,
Liu
Y
,
Wang
C
,
Deng
T
,
Liang
H
,
Wang
Y
, et al
Serum miRNA expression profile as a prognostic biomarker of stage II/III colorectal adenocarcinoma
.
Sci Rep
2015
;
5
:
12921
.
24.
Liu
HT
,
Xu
YT
,
Li
HY
,
Zhao
J
,
Zhai
HY
,
Chen
Y
. 
Loss of microRNA-145 expression is involved in the development and prognosis of breast cancer complicated by type 2 diabetes mellitus
.
Int J Biol Markers
2016
;
31
:
e368
e74
.
25.
Namkung
J
,
Kwon
W
,
Choi
Y
,
Yi
SG
,
Han
S
,
Kang
MJ
, et al
Molecular subtypes of pancreatic cancer based on miRNA expression profiles have independent prognostic value
.
J Gastroenterol Hepatol
2016
;
31
:
1160
7
.
26.
Zhao
H
,
Shen
J
,
Hodges
TR
,
Song
R
,
Fuller
GN
,
Heimberger
AB
. 
Serum microRNA profiling in patients with glioblastoma: a survival analysis
.
Mol Cancer
2017
;
16
:
59
.
27.
Leite
KR
,
Tomiyama
A
,
Reis
ST
,
Sousa-Canavez
JM
,
Sanudo
A
,
Dall'Oglio
MF
, et al
MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer
.
J Urol
2011
;
185
:
1118
22
.
28.
Schee
K
,
Boye
K
,
Abrahamsen
TW
,
Fodstad
O
,
Flatmark
K
. 
Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer
.
BMC Cancer
2012
;
12
:
505
.
29.
Kapodistrias
N
,
Mavridis
K
,
Batistatou
A
,
Gogou
P
,
Karavasilis
V
,
Sainis
I
, et al
Assessing the clinical value of microRNAs in formalin-fixed paraffin-embedded liposarcoma tissues: overexpressed miR-155 is an indicator of poor prognosis
.
Oncotarget
2017
;
8
:
6896
913
.
30.
Tierney
JF
,
Stewart
LA
,
Ghersi
D
,
Burdett
S
,
Sydes
MR
. 
Practical methods for incorporating summary time-to-event data into meta-analysis
.
Trials
2007
;
8
:
16
.
31.
Stang
A
. 
Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses
.
Eur J Epidemiol
2010
;
25
:
603
5
.
32.
Higgins
JP
,
Thompson
SG
. 
Quantifying heterogeneity in a meta-analysis
.
Stat Med
2002
;
21
:
1539
58
.
33.
Higgins
JP
,
Thompson
SG
,
Deeks
JJ
,
Altman
DG
. 
Measuring inconsistency in meta-analyses
.
BMJ
2003
;
327
:
557
60
.
34.
Mantel
N
,
Haenszel
W
. 
Statistical aspects of the analysis of data from retrospective studies of disease
.
J Natl Cancer Inst
1959
;
22
:
719
48
.
35.
DerSimonian
R
,
Laird
N
. 
Meta-analysis in clinical trials
.
Control Clin Trials
1986
;
7
:
177
88
.
36.
Begg
CB
,
Mazumdar
M
. 
Operating characteristics of a rank correlation test for publication bias
.
Biometrics
1994
;
50
:
1088
101
.
37.
Egger
M
,
Davey Smith
G
,
Schneider
M
,
Minder
C
. 
Bias in meta-analysis detected by a simple, graphical test
.
BMJ
1997
;
315
:
629
34
.
38.
Chen
X
,
Gong
J
,
Zeng
H
,
Chen
N
,
Huang
R
,
Huang
Y
, et al
MicroRNA145 targets BNIP3 and suppresses prostate cancer progression
.
Cancer Res
2010
;
70
:
2728
38
.
39.
Drebber
U
,
Lay
M
,
Wedemeyer
I
,
Vallbohmer
D
,
Bollschweiler
E
,
Brabender
J
, et al
Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy
.
Int J Oncol
2011
;
39
:
409
15
.
40.
Feber
A
,
Xi
L
,
Pennathur
A
,
Gooding
WE
,
Bandla
S
,
Wu
M
, et al
MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma
.
Ann Thorac Surg
2011
;
91
:
1523
30
.
41.
Kang
SG
,
Ha
YR
,
Kim
SJ
,
Kang
SH
,
Park
HS
,
Lee
JG
, et al
Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma?
Asian J Androl
2012
;
14
:
752
7
.
42.
Gan
TQ
,
Xie
ZC
,
Tang
RX
,
Zhang
TT
,
Li
DY
,
Li
ZY
, et al
Clinical value of miR-145-5p in NSCLC and potential molecular mechanism exploration: a retrospective study based on GEO, qRT-PCR, and TCGA data
.
Tumour Biol
2017
;
39
:
1010428317691683
.
43.
Hamano
R
,
Miyata
H
,
Yamasaki
M
,
Kurokawa
Y
,
Hara
J
,
Moon
JH
, et al
Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway
.
Clin Cancer Res
2011
;
17
:
3029
38
.
44.
Huang
L
,
Lin
JX
,
Yu
YH
,
Zhang
MY
,
Wang
HY
,
Zheng
M
. 
Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix
.
PLoS One
2012
;
7
:
e33762
.
45.
Kim
TH
,
Song
JY
,
Park
H
,
Jeong
JY
,
Kwon
AY
,
Heo
JH
, et al
miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma
.
Cancer Lett
2015
;
356
:
937
45
.
46.
Li
CY
,
Liang
GY
,
Yao
WZ
,
Sui
J
,
Shen
X
,
Zhang
YQ
, et al
Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression
.
Clin Transl Oncol
2017
;
19
:
162
72
.
47.
Li
Y
,
Liu
J
,
Liu
ZZ
,
Wei
WB
. 
MicroRNA-145 inhibits tumour growth and metastasis in osteosarcoma by targeting cyclin-dependent kinase, CDK6
.
Eur Rev Med Pharmacol Sci
2016
;
20
:
5117
25
.
48.
Liang
H
,
Jiang
Z
,
Xie
G
,
Lu
Y
. 
Serum microRNA-145 as a novel biomarker in human ovarian cancer
.
Tumour Biol
2015
;
36
:
5305
13
.
49.
Marchini
S
,
Cavalieri
D
,
Fruscio
R
,
Calura
E
,
Garavaglia
D
,
Fuso Nerini
I
, et al
Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections
.
Lancet Oncol
2011
;
12
:
273
85
.
50.
Haapa-Paananen
S
,
Chen
P
,
Hellstrom
K
,
Kohonen
P
,
Hautaniemi
S
,
Kallioniemi
O
, et al
Functional profiling of precursor MicroRNAs identifies MicroRNAs essential for glioma proliferation
.
PLoS One
2013
;
8
:
e60930
.
51.
Slattery
ML
,
Herrick
JS
,
Mullany
LE
,
Valeri
N
,
Stevens
J
,
Caan
BJ
, et al
An evaluation and replication of miRNAs with disease stage and colorectal cancer-specific mortality
.
Int J Cancer
2015
;
137
:
428
38
.
52.
Speranza
MC
,
Frattini
V
,
Pisati
F
,
Kapetis
D
,
Porrati
P
,
Eoli
M
, et al
NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma
.
Oncotarget
2012
;
3
:
723
34
.
53.
Tang
M
,
Lin
L
,
Cai
H
,
Tang
J
,
Zhou
Z
. 
MicroRNA-145 downregulation associates with advanced tumor progression and poor prognosis in patients suffering osteosarcoma
.
Onco Targets Ther
2013
;
6
:
833
8
.
54.
Wang
Q
,
Qin
J
,
Chen
A
,
Zhou
J
,
Liu
J
,
Cheng
J
, et al
Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer
.
Tumour Biol
2015
;
36
:
3703
8
.
55.
Xia
H
,
Yamada
S
,
Aoyama
M
,
Sato
F
,
Masaki
A
,
Ge
Y
, et al
Prognostic impact of microRNA-145 down-regulation in adult T-cell leukemia/lymphoma
.
Hum Pathol
2014
;
45
:
1192
8
.
56.
Yang
J
,
Ma
D
,
Fesler
A
,
Zhai
H
,
Leamniramit
A
,
Li
W
, et al
Expression analysis of microRNA as prognostic biomarkers in colorectal cancer
.
Oncotarget
2016
;
8
:
52403
12
.
57.
Ye
Z
,
Shen
N
,
Weng
Y
,
Li
K
,
Hu
L
,
Liao
H
, et al
Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1
.
Cancer Biol Ther
2015
;
16
:
1071
9
.
58.
Yu
CC
,
Tsai
LL
,
Wang
ML
,
Yu
CH
,
Lo
WL
,
Chang
YC
, et al
miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer
.
Cancer Res
2013
;
73
:
3425
40
.
59.
Zhan
M
,
Zhao
X
,
Wang
H
,
Chen
W
,
Xu
S
,
Wang
W
, et al
miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1
.
Tumour Biol
2016
;
37
:
10553
62
.
60.
Zhang
Y
,
Wen
X
,
Hu
XL
,
Cheng
LZ
,
Yu
JY
,
Wei
ZB
. 
Downregulation of miR-145-5p correlates with poor prognosis in gastric cancer
.
Eur Rev Med Pharmacol Sci
2016
;
20
:
3026
30
.
61.
Zhou
P
,
Sun
L
,
Liu
D
,
Liu
C
,
Sun
L
. 
Long non-coding RNA lincRNA-ROR promotes the progression of colon cancer and holds prognostic value by associating with miR-145
.
Pathol Oncol Res
2016
;
22
:
733
40
.
62.
Zhao
N
,
Zhang
H
,
He
H
. 
Expression of miRNA-145 in gastric cancer and its clinical significance
.
Mod Oncol
2016
;
24
:
1760
2
.
63.
Shi
SB
,
Wang
M
,
Tian
J
,
Li
R
,
Chang
CX
,
Qi
JL
. 
MicroRNA 25, microRNA 145, and microRNA 210 as biomarkers for predicting the efficacy of maintenance treatment with pemetrexed in lung adenocarcinoma patients who are negative for epidermal growth factor receptor mutations or anaplastic lymphoma kinase translocations
.
Transl Res
2016
;
170
:
1
7
.
64.
Winter
J
,
Jung
S
,
Keller
S
,
Gregory
RI
,
Diederichs
S
. 
Many roads to maturity: microRNA biogenesis pathways and their regulation
.
Nat Cell Biol
2009
;
11
:
228
34
.
65.
Newman
MA
,
Hammond
SM
. 
Emerging paradigms of regulated microRNA processing
.
Genes Dev
2010
;
24
:
1086
92
.
66.
Sachdeva
M
,
Zhu
S
,
Wu
F
,
Wu
H
,
Walia
V
,
Kumar
S
, et al
p53 represses c-Myc through induction of the tumor suppressor miR-145
.
Proc Natl Acad Sci U S A
2009
;
106
:
3207
12
.
67.
Riggi
N
,
Suva
ML
,
De Vito
C
,
Provero
P
,
Stehle
JC
,
Baumer
K
, et al
EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells
.
Genes Dev
2010
;
24
:
916
32
.
68.
Gan
B
,
Lim
C
,
Chu
G
,
Hua
S
,
Ding
Z
,
Collins
M
, et al
FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis
.
Cancer Cell
2010
;
18
:
472
84
.
69.
Spizzo
R
,
Nicoloso
MS
,
Lupini
L
,
Lu
Y
,
Fogarty
J
,
Rossi
S
, et al
miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells
.
Cell Death Differ
2010
;
17
:
246
54
.
70.
Zhu
H
,
Dougherty
U
,
Robinson
V
,
Mustafi
R
,
Pekow
J
,
Kupfer
S
, et al
EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators
.
Mol Cancer Res
2011
;
9
:
960
75
.
71.
Dharap
A
,
Pokrzywa
C
,
Murali
S
,
Kaimal
B
,
Vemuganti
R
. 
Mutual induction of transcription factor PPARgamma and microRNAs miR-145 and miR-329
.
J Neurochem
2015
;
135
:
139
46
.
72.
Xue
G
,
Ren
Z
,
Chen
Y
,
Zhu
J
,
Du
Y
,
Pan
D
, et al
A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation
.
Cancer Lett
2015
;
361
:
121
7
.
73.
Chen
Y
,
Sun
Y
,
Rao
Q
,
Xu
H
,
Li
L
,
Chang
C
. 
Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status
.
Oncotarget
2015
;
6
:
31203
15
.
74.
Li
HK
,
Mai
RT
,
Huang
HD
,
Chou
CH
,
Chang
YA
,
Chang
YW
, et al
DDX3 represses stemness by epigenetically modulating tumor-suppressive miRNAs in hepatocellular carcinoma
.
Sci Rep
2016
;
6
:
28637
.
75.
Suh
SO
,
Chen
Y
,
Zaman
MS
,
Hirata
H
,
Yamamura
S
,
Shahryari
V
, et al
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
.
Carcinogenesis
2011
;
32
:
772
8
.
76.
Sachdeva
M
,
Liu
Q
,
Cao
J
,
Lu
Z
,
Mo
YY
. 
Negative regulation of miR-145 by C/EBP-beta through the Akt pathway in cancer cells
.
Nucleic Acids Res
2012
;
40
:
6683
92
.
77.
Sureban
SM
,
May
R
,
Qu
D
,
Weygant
N
,
Chandrakesan
P
,
Ali
N
, et al
DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer
.
PLoS One
2013
;
8
:
e73940
.
78.
Kent
OA
,
Fox-Talbot
K
,
Halushka
MK
. 
RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets
.
Oncogene
2013
;
32
:
2576
85
.
79.
Ren
D
,
Wang
M
,
Guo
W
,
Zhao
X
,
Tu
X
,
Huang
S
, et al
Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145
.
Int J Oncol
2013
;
42
:
1473
81
.
80.
Suzuki
HI
,
Yamagata
K
,
Sugimoto
K
,
Iwamoto
T
,
Kato
S
,
Miyazono
K
. 
Modulation of microRNA processing by p53
.
Nature
2009
;
460
:
529
33
.
81.
Kawai
S
,
Amano
A
. 
BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex
.
J Cell Biol
2012
;
197
:
201
8
.
82.
Lam
SS
,
Ip
CK
,
Mak
AS
,
Wong
AS
. 
A novel p70 S6 kinase-microRNA biogenesis axis mediates multicellular spheroid formation in ovarian cancer progression
.
Oncotarget
2016
;
7
:
38064
77
.
83.
Xhemalce
B
,
Robson
SC
,
Kouzarides
T
. 
Human RNA methyltransferase BCDIN3D regulates microRNA processing
.
Cell
2012
;
151
:
278
88
.
84.
De Vito
C
,
Riggi
N
,
Cornaz
S
,
Suva
ML
,
Baumer
K
,
Provero
P
, et al
A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma
.
Cancer Cell
2012
;
21
:
807
21
.
85.
Wang
L
,
Guo
ZY
,
Zhang
R
,
Xin
B
,
Chen
R
,
Zhao
J
, et al
Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma
.
Carcinogenesis
2013
;
34
:
1773
81
.
86.
Zhou
X
,
Gao
Q
,
Wang
J
,
Zhang
X
,
Liu
K
,
Duan
Z
. 
Linc-RNA-RoR acts as a "sponge" against mediation of the differentiation of endometrial cancer stem cells by microRNA-145
.
Gynecol Oncol
2014
;
133
:
333
9
.
87.
Gao
S
,
Wang
P
,
Hua
Y
,
Xi
H
,
Meng
Z
,
Liu
T
, et al
ROR functions as a ceRNA to regulate Nanog expression by sponging miR-145 and predicts poor prognosis in pancreatic cancer
.
Oncotarget
2016
;
7
:
1608
18
.
88.
Yang
P
,
Yang
Y
,
An
W
,
Xu
J
,
Zhang
G
,
Jie
J
, et al
The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway
.
J Gastroenterol Hepatol
2017
;
32
:
837
45
.
89.
Tan
J
,
Qiu
K
,
Li
M
,
Liang
Y
. 
Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells
.
FEBS Lett
2015
;
589
:
3175
81
.
90.
Lu
H
,
He
Y
,
Lin
L
,
Qi
Z
,
Ma
L
,
Li
L
, et al
Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145
.
Tumour Biol
2016
;
37
:
1683
91
.
91.
Xue
M
,
Pang
H
,
Li
X
,
Li
H
,
Pan
J
,
Chen
W
. 
Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway
.
Cancer Sci
2016
;
107
:
18
27
.
92.
Hu
CE
,
Du
PZ
,
Zhang
HD
,
Huang
GJ
. 
Long noncoding RNA CRNDE promotes proliferation of gastric cancer cells by targeting miR-145
.
J Cell Biochem
2017
;
42
:
13
21
.
93.
Xie
H
,
Ren
X
,
Xin
S
,
Lan
X
,
Lu
G
,
Lin
Y
, et al
Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer
.
FEBS Lett
2016
;
7
:
26680
91
.
94.
Yu
CY
,
Li
TC
,
Wu
YY
,
Yeh
CH
,
Chiang
W
,
Chuang
CY
, et al
The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency
.
Nat Commun
2017
;
8
:
1149
.
95.
Minami
K
,
Taniguchi
K
,
Sugito
N
,
Kuranaga
Y
,
Inamoto
T
,
Takahara
K
, et al
MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells
.
Oncotarget
2017
;
8
:
33064
77
.
96.
Eades
G
,
Wolfson
B
,
Zhang
Y
,
Li
Q
,
Yao
Y
,
Zhou
Q
. 
lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6
.
Mol Cancer Res
2015
;
13
:
330
8
.
97.
Gao
M
,
Miao
L
,
Liu
M
,
Li
C
,
Yu
C
,
Yan
H
, et al
miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1
.
Oncotarget
2016
;
7
:
59714
26
.
98.
Wang
F
,
Xia
J
,
Wang
N
,
Zong
H
. 
miR-145 inhibits proliferation and invasion of esophageal squamous cell carcinoma in part by targeting c-Myc
.
Onkologie
2013
;
36
:
754
8
.
99.
Zheng
L
,
Pu
J
,
Qi
T
,
Qi
M
,
Li
D
,
Xiang
X
, et al
miRNA-145 targets v-ets erythroblastosis virus E26 oncogene homolog 1 to suppress the invasion, metastasis, and angiogenesis of gastric cancer cells
.
Mol Cancer Res
2013
;
11
:
182
93
.
100.
Chiyomaru
T
,
Enokida
H
,
Tatarano
S
,
Kawahara
K
,
Uchida
Y
,
Nishiyama
K
, et al
miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer
.
Br J Cancer
2010
;
102
:
883
91
.
101.
Kano
M
,
Seki
N
,
Kikkawa
N
,
Fujimura
L
,
Hoshino
I
,
Akutsu
Y
, et al
miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma
.
Int J Cancer
2010
;
127
:
2804
14
.
102.
Wang
G
,
Zhu
S
,
Gu
Y
,
Chen
Q
,
Liu
X
,
Fu
H
. 
MicroRNA-145 and microRNA-133a inhibited proliferation, migration, and invasion, while promoted apoptosis in hepatocellular carcinoma cells via targeting FSCN1
.
Dig Dis Sci
2015
;
60
:
3044
52
.
103.
Zhang
Y
,
Lin
Q
. 
MicroRNA-145 inhibits migration and invasion by down-regulating FSCN1 in lung cancer
.
Int J Clin Exp Med
2015
;
8
:
8794
802
.
104.
Li
YQ
,
He
QM
,
Ren
XY
,
Tang
XR
,
Xu
YF
,
Wen
X
, et al
MiR-145 inhibits metastasis by targeting fascin actin-bundling protein 1 in nasopharyngeal carcinoma
.
PLoS One
2015
;
10
:
e0122228
.
105.
Fuse
M
,
Nohata
N
,
Kojima
S
,
Sakamoto
S
,
Chiyomaru
T
,
Kawakami
K
, et al
Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1
.
Int J Oncol
2011
;
38
:
1093
101
.
106.
Wang
H
,
Hang
C
,
Ou
XL
,
Nie
JS
,
Ding
YT
,
Xue
SG
, et al
MiR-145 functions as a tumor suppressor via regulating angiopoietin-2 in pancreatic cancer cells
.
Cancer Cell Int
2016
;
16
:
65
.
107.
Zhang
H
,
Pu
J
,
Qi
T
,
Qi
M
,
Yang
C
,
Li
S
, et al
MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha
.
Oncogene
2014
;
33
:
387
97
.
108.
Mataki
H
,
Seki
N
,
Mizuno
K
,
Nohata
N
,
Kamikawaji
K
,
Kumamoto
T
, et al
Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma
.
Oncotarget
2016
;
7
:
72084
98
.
109.
Matsushita
R
,
Yoshino
H
,
Enokida
H
,
Goto
Y
,
Miyamoto
K
,
Yonemori
M
, et al
Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness
.
Oncotarget
2016
;
7
:
28460
87
.
110.
Baumann
V
,
Winkler
J
. 
miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents
.
Future Med Chem
2014
;
6
:
1967
84
.
111.
Ren
A
,
Dong
Y
,
Tsoi
H
,
Yu
J
. 
Detection of miRNA as non-invasive biomarkers of colorectal cancer
.
Int J Mol Sci
2015
;
16
:
2810
23
.
112.
Zhang
X
,
Wu
J
. 
Prognostic role of microRNA-145 in prostate cancer: a systems review and meta-analysis
.
Prostate Int
2015
;
3
:
71
4
.
113.
Yang
J
,
Zhang
JY
,
Chen
J
,
Chen
C
,
Song
XM
,
Xu
Y
, et al
Prognostic role of microRNA-145 in various human malignant neoplasms: a meta-analysis of 18 related studies
.
World J Surg Oncol
2014
;
12
:
254
.
114.
Abdueva
D
,
Wing
M
,
Schaub
B
,
Triche
T
,
Davicioni
E
. 
Quantitative expression profiling in formalin-fixed paraffin-embedded samples by affymetrix microarrays
.
J Mol Diagn
2010
;
12
:
409
17
.
115.
Chivukula
RR
,
Shi
G
,
Acharya
A
,
Mills
EW
,
Zeitels
LR
,
Anandam
JL
, et al
An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration
.
Cell
2014
;
157
:
1104
16
.
116.
Kent
OA
,
McCall
MN
,
Cornish
TC
,
Halushka
MK
. 
Lessons from miR-143/145: the importance of cell-type localization of miRNAs
.
Nucleic Acids Res
2014
;
42
:
7528
38
.
117.
Pan
Y
,
Chen
J
,
Tao
L
,
Zhang
K
,
Wang
R
,
Chu
X
, et al
Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway
.
Oncotarget
2017
;
8
:
33144
58
.
118.
Ren
K
,
Li
Z
,
Li
Y
,
Zhang
W
,
Han
X
. 
Long noncoding RNA taurine-upregulated gene 1 promotes cell proliferation and invasion in gastric cancer via negatively modulating miRNA-145-5p
.
Oncol Res
2017
;
25
:
789
98
.
119.
Memczak
S
,
Jens
M
,
Elefsinioti
A
,
Torti
F
,
Krueger
J
,
Rybak
A
, et al
Circular RNAs are a large class of animal RNAs with regulatory potency
.
Nature
2013
;
495
:
333
8
.