Background:

Research reproducibility is vital for translation of epidemiologic findings. However, repeated studies of the same question may be undertaken without enhancing existing knowledge. To identify settings in which additional research is or is not warranted, we adapted research synthesis metrics to determine number of additional observational studies needed to change the inference from an existing meta-analysis.

Methods:

The fail-safe number (FSN) estimates number of additional studies of average weight and null effect needed to drive a statistically significant meta-analysis to null (P ≥ 0.05). We used conditional power to determine number of additional studies of average weight and equivalent heterogeneity to achieve 80% power in an updated meta-analysis to detect the observed summary estimate as statistically significant. We applied these metrics to a curated set of 98 meta-analyses on biomarkers and cancer risk.

Results:

Both metrics were influenced by number of studies, heterogeneity, and summary estimate size in the existing meta-analysis. For the meta-analysis on Helicobacter pylori and gastric cancer with 15 studies [OR = 2.29; 95% confidence interval (CI), 1.71–3.05], FSN was 805 studies, supporting futility of further study. For the meta-analysis on dehydroepiandrosterone sulfate and prostate cancer with 7 studies (OR = 1.29; 95% CI, 0.99–1.69), 5 more studies would be needed for 80% power, suggesting further study could change inferences.

Conclusions:

Along with traditional assessments, these metrics could be used by stakeholders to decide whether additional studies addressing the same question are needed.

Impact:

Systematic application of these metrics could lead to more judicious use of resources and acceleration from discovery to population-health impact.

Translation of cancer etiology, risk, prognosis, and prediction biomarkers into prevention and control strategies relies, in part, on the ability to reproduce associations. However, repetitive investigations of established biomarker–cancer associations that do not contribute meaningful additional information to the existing evidence base, for example, fill remaining knowledge gaps, provide substantial clinical or public health support for an association, or have the potential to improve biological understanding, may be inefficient and a waste of resources (1–3).

To address these concerns, we adapted an application of existing clinical trial and research synthesis metrics, the fail-safe number (FSN; ref. 4) and conditional power (5), to determine whether or not further investigation of cancer relevant biomarkers may provide meaningful contribution to the existing evidence. In its original application, Rosenthal (6) introduced the FSN to quantify the impact of selectively unpublished research on the existing meta-analysis. The FSN indicates the number of unpublished studies with an average null effect (e.g., P ≥ 0.05) needed to be included in an updated meta-analysis to drive a statistically significant summary estimate in the existing meta-analysis (e.g., P < 0.05) to a statistically nonsignificant summary estimate (e.g., to P ≥ 0.05) in the updated meta-analysis. We adapted the FSN for observational epidemiology studies to determine whether the inference from an existing meta-analysis for a statistically significant exposure–outcome association, will likely change to a null association with the addition of further research to update the meta-analysis. In its original application, conditional power was used to guide the design of clinical trials based on effect size and sample size of an existing trial or meta-analysis. In the context of observational epidemiology and assuming a statistically nonsignificant existing meta-analysis, we adapted conditional power calculation to determine the feasibility of conducting the necessary number of future studies with sufficient power to detect a significant association of a certain size in the updated meta-analysis (5).

We applied FSN and conditional power to a collection of 98 existing meta-analyses (7) of associations between nongenomic cancer biomarkers and multiple types of cancer. More detailed illustration of their use is provided using data on a well-established biomarker–cancer relationship [i.e., Helicobacter pylori (H. pylori) and gastric cancer] and an uncertain biomarker–cancer association (i.e., androgens and prostate cancer).

FSN and conditional power were applied to findings from 98 biomarker–cancer meta-analyses (refs. 8–44; Table 1) published in 37 reports that were curated by Tsilidis and colleagues after a comprehensive PubMed search of meta-analyses of epidemiologic studies on biomarkers and cancer risk published between 1966 and 2010 (7). The purpose of that study was to evaluate whether evidence of excess statistical significance could be detected in such studies that would be indicative of publication bias.

Table 1.

Results for Rosenberg's and Orwin's FSN and conditional power for the 98 meta-analysis

Number of studiesNumber cases and controlsFixed-effectRandom-effects
AreaAuthor and yearCancerBiomarkerI2OR (95% CI)FSNaFSNbMcOR (95% CI)FSNaMd
Diet Chen 2010 (8) Breast cancer 1α,25(OH)2 vitamin D 3,627 47 1.02 (0.81–1.29) NA NA 858 0.99 (0.68–1.44) NA 27,210 
Diet Saadatian-Elahi 2004 (9) Breast cancer Arachidonic acid 2,226 0.89 (0.65–1.22) NA NA 79 0.89 (0.65–1.22) NA 181 
Diet Saadatian-Elahi 2004 (9) Breast cancer Linoleic acid 3,081 60 0.88 (0.69–1.12) NA NA 67 0.85 (0.57–1.26) NA 457 
Diet Saadatian-Elahi 2004 (9) Breast cancer MUFA 2,291 67 1.33 (0.98–1.81) NA NA 1.44 (0.82–2.53) NA 31 
Diet Saadatian-Elahi 2004 (9) Breast cancer Palmitic acid 2,802 59 1.04 (0.81–1.35) NA NA 621 1.05 (0.69–1.58) NA 6,656 
Diet Saadatian-Elahi 2004 (9) Breast cancer Palmitoleic acid 798 81 1.09 (0.68–1.74) NA NA 123 1.26 (0.41–3.89) NA 301 
Diet Saadatian-Elahi 2004 (9) Breast cancer SFA 2,570 1.05 (0.79–1.39) NA NA 410 1.05 (0.79–1.39) NA 1,430 
Diet Saadatian-Elahi 2004 (9) Breast cancer Stearic acid 2,802 14 0.93 (0.71–1.23) NA NA 200 0.93 (0.69–1.26) NA 937 
Diet Saadatian-Elahi 2004 (9) Breast cancer α-Linolenic acid 3,444 39 0.82 (0.65–1.03) NA NA 12 0.80 (0.59–1.08) NA 39 
Diet Saadatian-Elahi 2004 (9) Breast cancer n-3 PUFA 2,946 37 0.79 (0.60–1.03) NA NA 11 0.79 (0.56–1.11) NA 51 
Diet Saadatian-Elahi 2004 (9) Breast cancer n-6 PUFA 2,667 16 0.75 (0.55–1.03) NA NA 36 0.75 (0.53–1.06) NA 369 
Diet Chen 2010 (8) Breast cancer 25(OH) vitamin D 11,330 86 0.58 (0.51–0.66) 230 75 NA 0.55 (0.38–0.80) 29 NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Docosahexanoic acid 3,262 36 0.76 (0.59–0.99) 106 NA 0.73 (0.53–1.02) NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Eicosapentanoic acid 2,291 0.91 (0.87–0.95) 48 88 NA 0.91 (0.87–0.95) 48 NA 
Diet Buck 2010 (10) Breast cancer Enterolactone 12 7,710 71 0.84 (0.74–0.96) 24 200 NA 0.79 (0.61–1.02) NA 14 
Diet Larsson 2007 (11) Breast cancer Folate 3,584 41 0.69 (0.53–0.90) 18 79 NA 0.67 (0.46–1.00) NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Oleic acid 3,723 70 0.83 (0.71–0.98) 14 144 NA 0.99 (0.70–1.38) NA 184,370 
Diet Larsson 2010 (12) Colorectal cancer Vitamin B6 2,307 0.52 (0.38–0.71) 31 39 NA 0.52 (0.38–0.71) 31 NA 
Diet Yin 2009 (13) Colon cancer 25(OH) vitamin D 2,944 46 0.77 (0.59–1.00) 103 NA 0.78 (0.53–1.13) NA 46 
Diet Gallicchio 2008 (14) Lung cancer α-Carotene 5,618 53 0.91 (0.69–1.19) NA NA 65 0.88 (0.59–1.33) NA 438 
Diet Gallicchio 2008 (14) Lung cancer B-cryptoxanthin 5,618 75 0.87 (0.62–1.21) NA NA 44 0.82 (0.40–1.69) NA 529 
Diet Gallicchio 2008 (14) Lung cancer Lutein/zeaxanthin 5,066 11 0.95 (0.68–1.33) NA NA 342 0.95 (0.67–1.36) NA 1,192 
Diet Zhuo 2004 (15) Lung cancer Selenium 2,687 42 0.80 (0.63–1.02) NA NA 0.77 (0.56–1.08) NA 17 
Diet Gallicchio 2008 (14) Lung cancer B-carotene 10 37,629 41 0.83 (0.73–0.94) 31 160 NA 0.84 (0.66–1.07) NA 36 
Diet Gallicchio 2008 (14) Lung cancer Carotenoids 7,803 45 0.70 (0.50–0.97) 53 NA 0.70 (0.44–1.11) NA 12 
Diet Gallicchio 2008 (14) Lung cancer Lycopene 5,294 0.71 (0.51–0.99) 54 NA 0.71 (0.51–0.99) NA 
Diet Yin 2009 (16) Prostate cancer 25(OH) vitamin D 11 7,806 26 1.03 (0.97–1.10) NA NA 82 1.03 (0.95–1.11) NA 536 
Diet Collin 2010 (17) Prostate cancer Folate 9,920 39 1.04 (0.98–1.11) NA NA 25 1.11 (0.96–1.28) NA 17 
Diet Collin 2010 (17) Prostate cancer Total homocysteine 7,015 14 0.93 (0.74–1.17) NA NA 77 0.91 (0.70–1.19) NA 123 
Diet Collin 2010 (17) Prostate cancer Vitamin B12 9,401 45 1.09 (1.03–1.14) 24 127 NA 1.10 (1.01–1.19) 10 NA 
Diet Simon 2009 (18) Prostate cancer α-Linolenic acid 2,361 16 1.51 (1.17–1.94) 26 181 NA 1.54 (1.16–2.06) 21 NA 
Environment Khanjani 2007(19) Breast cancer cis-nonachlor 1,387 1.09 (0.72–1.64) NA NA 137 1.09 (0.72–1.64) NA 290 
Environment Lopez-Cervantes 2004 (20) Breast cancer DDT 24 11,369 17 0.97 (0.87–1.09) NA NA 668 0.97 (0.85–1.11) NA 8,663 
Environment Khanjani 2007 (19) Breast cancer Dieldrin 3,223 43 1.18 (0.89–1.58) NA NA 26 1.15 (0.77–1.69) NA 288 
Environment Khanjani 2007 (19) Breast cancer trans-nonachlor 3,248 0.86 (0.68–1.07) NA NA 23 0.86 (0.68–1.07) NA 35 
Environment Khanjani 2007 (19) Breast cancer Oxychlordane 2,718 51 0.75 (0.57–0.98) 73 NA 0.77 (0.51–1.14) NA 38 
Environment Veglia 2008 (21) Cancer (cur smokers) DNA adducts 916 94 3.88 (3.31–4.54) 1,146 628 NA 3.76 (1.75–8.05) 39 NA 
Environment Veglia 2008 (21) Cancer (for smokers) DNA adducts 632 0.94 (0.71–1.25) NA NA 291 0.94 (0.71–1.25) NA 1,041 
Environment Veglia 2008 (21) Cancer (nev smokers) DNA adducts 564 79 1.20 (0.88–1.64) NA NA 41 1.64 (0.72–3.77) NA 103 
IGF/insulin Pisani 2008 (22) Breast cancer C-peptide 11 3,517 64 1.26 (1.07–1.48) 27 269 NA 1.35 (1.01–1.81) 11 NA 
IGF/insulin Morris 2006 (23) Colorectal cancer IGFBP-3 3,501 60 1.00 (0.77–1.30) NA NA NA 0.98 (0.64–1.51) NA 47,178 
IGF/insulin Pisani 2008 (22) Colorectal cancer C-peptide 12 5,542 54 1.36 (1.15–1.62) 64 322 NA 1.51 (1.14–1.99) 39 NA 
IGF/insulin Pisani 2008 (22) Colorectal cancer Glucose 11 1,381,129 47 1.19 (1.07–1.32) 49 257 NA 1.28 (1.06–1.54) 26 NA 
IGF/insulin Rinaldi 2010 (24) Colorectal cancer IGF-1 11 7,828 1.07 (1.01–1.14) 17 230 NA 1.07 (1.01–1.14) 17 NA 
IGF/insulin Morris 2006 (23) Colorectal cancer IGF-2 1,685 1.95 (1.26–3.00) 11 117 NA 1.95 (1.26–3.00) 11 NA 
IGF/insulin Pisani 2008 (22) Endometrial cancer C-peptide 862 69 1.09 (0.74–1.62) NA NA 141 1.18 (0.57–2.43) NA 642 
IGF/insulin Chen 2009 (25) Lung cancer IGF-1 12,515 41 1.05 (0.80–1.37) NA NA 361 0.98 (0.68–1.41) NA 21,602 
IGF/insulin Chen 2009 (25) Lung cancer IGFBP-3 12,515 67 0.89 (0.68–1.15) NA NA 54 0.96 (0.59–1.56) NA 10,376 
IGF/insulin Pisani 2008 (22) Pancreas cancer C-peptide 692 1.70 (1.11–2.61) 68 NA 1.70 (1.11–2.61) NA 
IGF/insulin Pisani 2008 (22) Pancreas cancer Glucose 1,334,539 1.98 (1.67–2.35) 152 198 NA 1.98 (1.67–2.35) 152 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-1 1,553 92 0.93 (0.80–1.09) NA NA 72 1.20 (0.65–2.22) NA 251 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-2 2,670 78 1.07 (0.95–1.21) NA NA 36 1.18 (0.90–1.54) NA 56 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-3 29 17,160 81 0.97 (0.93–1.01) NA NA 80 0.88 (0.79–0.98) 57 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-1 42 19,347 88 1.18 (1.14–1.23) 1,497 974 NA 1.21 (1.07–1.36) 159 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-1/BP-3 11 9,677 80 1.07 (1.02–1.13) 30 230 NA 1.10 (0.97–1.24) NA 46 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-2 10 2,797 77 1.24 (1.12–1.36) 81 242 NA 1.17 (0.93–1.47) NA 75 
IGF/insulin Key 2010 (27) Postmenopausal breast cancer IGF-1 15 8,185 1.30 (1.13–1.49) 92 385 NA 1.30 (1.13–1.49) 92 NA 
IGF/insulin Key 2010 (27) Postmenopausal breast cancer IGFBP-3 15 8,012 31 1.21 (1.04–1.41) 32 357 NA 1.22 (1.01–1.49) 16 NA 
IGF/insulin Key 2010 (27) Premenopausal breast cancer IGFBP-3 11 5,927 0.99 (0.83–1.19) NA NA 7,367 0.99 (0.83–1.19) NA 50,352 
IGF/insulin Key 2010 (27) Premenopausal breast cancer IGF-1 11 6,033 29 1.18 (1.00–1.40) 10 255 NA 1.21 (0.98–1.49) NA 12 
Infection Gutierrez 2006 (28) Bladder cancer HPV (DNA) 13 657 2.29 (1.37–3.84) 53 597 NA 2.30 (1.33–4.00) 45 NA 
Infection Gutierrez 2006 (28) Bladder cancer HPV (no DNA) 379 2.98 (1.65–5.40) 18 180 NA 2.98 (1.65–5.40) 18 NA 
Infection Zhao 2008 (29) Colorectal cancer H. pylori 14 3,581 58 1.41 (1.22–1.65) 127 391 NA 1.49 (1.16–1.90) 57 NA 
Infection Mandelblatt 1999 (30) Cervical cancer HPV 12 3,657 27 8.07 (6.49–10.0) 2,338 1,978 NA 8.08 (6.04–10.8) 1,249 NA 
Infection Zhang 1994 (31) Cervical cancer T. vaginalis 65,764 1.88 (1.29–2.74) 75 NA 1.88 (1.29–2.74) NA 
Infection Islami 2008 (32) ESCC H. pylori 3,664 73 1.08 (0.92–1.27) NA NA 73 1.10 (0.78–1.55) NA 1,356 
Infection Islami 2008 (32) ESCC cagA (H. pylori) 2,327 1.01 (0.79–1.27) NA NA NA 1.01 (0.79–1.27) NA NA 
Infection Islami 2008 (32) Esophageal adeno cancer H. pylori 13 3,730 15 0.56 (0.48–0.67) 275 136 NA 0.57 (0.47–0.69) 207 NA 
Infection Islami 2008 (32) Esophageal adeno cancer cagA (H. pylori) 1,472 17 0.41 (0.29–0.59) 54 37 NA 0.41 (0.28–0.62) 42 NA 
Infection Huang 2003 (33) Gastric cancer H. pylori 15 5,054 76 2.05 (1.79–2.35) 805 615 NA 2.29 (1.71–3.05) 224 NA 
Infection Huang 2003 (33) Gastric cancer cagA (H. pylori) 10 3,831 85 2.65 (2.29–3.05) 888 531 NA 2.87 (1.95–4.22) 137 NA 
Infection Zhuo 2008 (34) Laryngeal cancer H. pylori 357 2.02 (1.27–3.23) 10 121 NA 2.02 (1.27–3.23) 10 NA 
Infection Hobbs 2006 (35) Larynx cancer HPV 1,133 50 1.71 (1.11–2.64) 17 281 NA 2.01 (0.96–4.22) NA 
Infection Donato 1998 (36) Liver cancer HBV (HCV-) 28 9,199 86 17.9 (15.7–20.5) 24,939 10,279 NA 21.9 (14.9–32.3) 3,464 NA 
Infection Donato 1998 (36) Liver cancer HBV + HCV 2,437 37 65.0 (35.0–121) 784 12,315 NA 61.2 (27.0–139) 440 NA 
Infection Donato 1998 (36) Liver cancer HCV (HBV-) 26 7,694 86 16.8 (14.1–20.0) 13,151 9,822 NA 20.3 (12.2–33.7) 1,924 NA 
Infection Zhuo 2009 (37) Lung cancer H. pylori 430 79 2.31 (1.46–3.65) 22 185 NA 3.24 (1.11–9.41) NA 
Infection Hobbs 2006 (35) Oral cancer HPV 3,976 62 1.68 (1.36–2.08) 76 274 NA 1.99 (1.17–3.38) 17 NA 
Infection Hobbs 2006 (35) Oropharynx cancer HPV 2,199 56 3.01 (2.11–4.30) 93 300 NA 4.31 (2.07–8.95) 35 NA 
Infection Taylor 2005 (38) Prostate cancer HPV 4,864 35 1.37 (1.11–1.69) 31 246 NA 1.52 (1.12–2.06) 23 NA 
Infection Hobbs 2006 (35) Tonsil cancer HPV 380 15.1 (6.78–33.4) 173 2,471 NA 15.1 (6.78–33.4) 173 NA 
Infection Wang 2007 (39) Early gastric cancer H. pylori 15 16,698 83 4.83 (4.27–5.48) 4,639 1,467 NA 3.38 (2.15–5.32) 197 NA 
Inflammation Heikkila 2009 (40) Cancer IL6 6,785 21 1.01 (0.92–1.11) NA NA 718 1.01 (0.90–1.12) NA 3,321 
Inflammation Heikkila 2009 (40) Cancer C-reactive protein 14 74,545 73 1.09 (1.05–1.13) 150 299 NA 1.10 (1.02–1.18) 35 NA 
Inflammation Tsilidis 2008 (41) Colorectal cancer C-reactive protein 39,145 51 1.10 (1.02–1.18) 20 172 NA 1.12 (1.01–1.25) 12 NA 
Sex hormones Barba 2009 (42) Prostate cancer 2OHE1 536 0.76 (0.45–1.28) NA NA 13 0.76 (0.45–1.28) NA 15 
Sex hormones Roddam 2008 (43) Prostate cancer A-diol G 5,488 24 1.12 (0.96–1.31) NA NA 17 1.15 (0.95–1.38) NA 28 
Sex hormones Roddam 2008 (43) Prostate cancer D4 4,211 1.02 (0.85–1.21) NA NA 994 1.02 (0.85–1.21) NA 3,995 
Sex hormones Roddam 2008 (43) Prostate cancer DHEAS 3,024 17 1.22 (0.98–1.53) NA NA 1.29 (0.99–1.68) NA 
Sex hormones Roddam 2008 (43) Prostate cancer DHT 2,455 0.88 (0.69–1.11) NA NA 41 0.88 (0.69–1.11) NA 80 
Sex hormones Roddam 2008 (43) Prostate cancer E2 5,225 0.92 (0.78–1.09) NA NA 62 0.92 (0.78–1.09) NA 162 
Sex hormones Roddam 2008 (43) Prostate cancer Free E2 4,778 0.97 (0.82–1.16) NA NA 1173 0.97 (0.82–1.16) NA 5,279 
Sex hormones Roddam 2008 (43) Prostate cancer Free T 14 9,365 1.12 (0.98–1.27) NA NA 18 1.12 (0.98–1.27) NA 20 
Sex hormones Roddam 2008 (43) Prostate cancer 17 10,324 0.98 (0.87–1.10) NA NA 502 0.98 (0.87–1.10) NA 3,602 
Sex hormones Barba 2009 (42) Prostate cancer 16α-OHE1 536 1.82 (1.08–3.05) 73 NA 1.82 (1.08–3.05) NA 
Sex hormones Barba 2009 (42) Prostate cancer 2OHE1/16α-OHE1 536 0.52 (0.31–0.89) 19 NA 0.52 (0.31–0.89) NA 
Sex hormones Roddam 2008 (43) Prostate cancer SHBG 15 9,702 0.86 (0.76–0.97) 32 249 NA 0.86 (0.76–0.97) 32 NA 
Sex hormones Key 2002 (44) Postmenopausal breast cancer E2 2,365 42 1.29 (1.14–1.45) 72 227 NA 1.26 (1.07–1.49) 27 NA 
Number of studiesNumber cases and controlsFixed-effectRandom-effects
AreaAuthor and yearCancerBiomarkerI2OR (95% CI)FSNaFSNbMcOR (95% CI)FSNaMd
Diet Chen 2010 (8) Breast cancer 1α,25(OH)2 vitamin D 3,627 47 1.02 (0.81–1.29) NA NA 858 0.99 (0.68–1.44) NA 27,210 
Diet Saadatian-Elahi 2004 (9) Breast cancer Arachidonic acid 2,226 0.89 (0.65–1.22) NA NA 79 0.89 (0.65–1.22) NA 181 
Diet Saadatian-Elahi 2004 (9) Breast cancer Linoleic acid 3,081 60 0.88 (0.69–1.12) NA NA 67 0.85 (0.57–1.26) NA 457 
Diet Saadatian-Elahi 2004 (9) Breast cancer MUFA 2,291 67 1.33 (0.98–1.81) NA NA 1.44 (0.82–2.53) NA 31 
Diet Saadatian-Elahi 2004 (9) Breast cancer Palmitic acid 2,802 59 1.04 (0.81–1.35) NA NA 621 1.05 (0.69–1.58) NA 6,656 
Diet Saadatian-Elahi 2004 (9) Breast cancer Palmitoleic acid 798 81 1.09 (0.68–1.74) NA NA 123 1.26 (0.41–3.89) NA 301 
Diet Saadatian-Elahi 2004 (9) Breast cancer SFA 2,570 1.05 (0.79–1.39) NA NA 410 1.05 (0.79–1.39) NA 1,430 
Diet Saadatian-Elahi 2004 (9) Breast cancer Stearic acid 2,802 14 0.93 (0.71–1.23) NA NA 200 0.93 (0.69–1.26) NA 937 
Diet Saadatian-Elahi 2004 (9) Breast cancer α-Linolenic acid 3,444 39 0.82 (0.65–1.03) NA NA 12 0.80 (0.59–1.08) NA 39 
Diet Saadatian-Elahi 2004 (9) Breast cancer n-3 PUFA 2,946 37 0.79 (0.60–1.03) NA NA 11 0.79 (0.56–1.11) NA 51 
Diet Saadatian-Elahi 2004 (9) Breast cancer n-6 PUFA 2,667 16 0.75 (0.55–1.03) NA NA 36 0.75 (0.53–1.06) NA 369 
Diet Chen 2010 (8) Breast cancer 25(OH) vitamin D 11,330 86 0.58 (0.51–0.66) 230 75 NA 0.55 (0.38–0.80) 29 NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Docosahexanoic acid 3,262 36 0.76 (0.59–0.99) 106 NA 0.73 (0.53–1.02) NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Eicosapentanoic acid 2,291 0.91 (0.87–0.95) 48 88 NA 0.91 (0.87–0.95) 48 NA 
Diet Buck 2010 (10) Breast cancer Enterolactone 12 7,710 71 0.84 (0.74–0.96) 24 200 NA 0.79 (0.61–1.02) NA 14 
Diet Larsson 2007 (11) Breast cancer Folate 3,584 41 0.69 (0.53–0.90) 18 79 NA 0.67 (0.46–1.00) NA 
Diet Saadatian-Elahi 2004 (9) Breast cancer Oleic acid 3,723 70 0.83 (0.71–0.98) 14 144 NA 0.99 (0.70–1.38) NA 184,370 
Diet Larsson 2010 (12) Colorectal cancer Vitamin B6 2,307 0.52 (0.38–0.71) 31 39 NA 0.52 (0.38–0.71) 31 NA 
Diet Yin 2009 (13) Colon cancer 25(OH) vitamin D 2,944 46 0.77 (0.59–1.00) 103 NA 0.78 (0.53–1.13) NA 46 
Diet Gallicchio 2008 (14) Lung cancer α-Carotene 5,618 53 0.91 (0.69–1.19) NA NA 65 0.88 (0.59–1.33) NA 438 
Diet Gallicchio 2008 (14) Lung cancer B-cryptoxanthin 5,618 75 0.87 (0.62–1.21) NA NA 44 0.82 (0.40–1.69) NA 529 
Diet Gallicchio 2008 (14) Lung cancer Lutein/zeaxanthin 5,066 11 0.95 (0.68–1.33) NA NA 342 0.95 (0.67–1.36) NA 1,192 
Diet Zhuo 2004 (15) Lung cancer Selenium 2,687 42 0.80 (0.63–1.02) NA NA 0.77 (0.56–1.08) NA 17 
Diet Gallicchio 2008 (14) Lung cancer B-carotene 10 37,629 41 0.83 (0.73–0.94) 31 160 NA 0.84 (0.66–1.07) NA 36 
Diet Gallicchio 2008 (14) Lung cancer Carotenoids 7,803 45 0.70 (0.50–0.97) 53 NA 0.70 (0.44–1.11) NA 12 
Diet Gallicchio 2008 (14) Lung cancer Lycopene 5,294 0.71 (0.51–0.99) 54 NA 0.71 (0.51–0.99) NA 
Diet Yin 2009 (16) Prostate cancer 25(OH) vitamin D 11 7,806 26 1.03 (0.97–1.10) NA NA 82 1.03 (0.95–1.11) NA 536 
Diet Collin 2010 (17) Prostate cancer Folate 9,920 39 1.04 (0.98–1.11) NA NA 25 1.11 (0.96–1.28) NA 17 
Diet Collin 2010 (17) Prostate cancer Total homocysteine 7,015 14 0.93 (0.74–1.17) NA NA 77 0.91 (0.70–1.19) NA 123 
Diet Collin 2010 (17) Prostate cancer Vitamin B12 9,401 45 1.09 (1.03–1.14) 24 127 NA 1.10 (1.01–1.19) 10 NA 
Diet Simon 2009 (18) Prostate cancer α-Linolenic acid 2,361 16 1.51 (1.17–1.94) 26 181 NA 1.54 (1.16–2.06) 21 NA 
Environment Khanjani 2007(19) Breast cancer cis-nonachlor 1,387 1.09 (0.72–1.64) NA NA 137 1.09 (0.72–1.64) NA 290 
Environment Lopez-Cervantes 2004 (20) Breast cancer DDT 24 11,369 17 0.97 (0.87–1.09) NA NA 668 0.97 (0.85–1.11) NA 8,663 
Environment Khanjani 2007 (19) Breast cancer Dieldrin 3,223 43 1.18 (0.89–1.58) NA NA 26 1.15 (0.77–1.69) NA 288 
Environment Khanjani 2007 (19) Breast cancer trans-nonachlor 3,248 0.86 (0.68–1.07) NA NA 23 0.86 (0.68–1.07) NA 35 
Environment Khanjani 2007 (19) Breast cancer Oxychlordane 2,718 51 0.75 (0.57–0.98) 73 NA 0.77 (0.51–1.14) NA 38 
Environment Veglia 2008 (21) Cancer (cur smokers) DNA adducts 916 94 3.88 (3.31–4.54) 1,146 628 NA 3.76 (1.75–8.05) 39 NA 
Environment Veglia 2008 (21) Cancer (for smokers) DNA adducts 632 0.94 (0.71–1.25) NA NA 291 0.94 (0.71–1.25) NA 1,041 
Environment Veglia 2008 (21) Cancer (nev smokers) DNA adducts 564 79 1.20 (0.88–1.64) NA NA 41 1.64 (0.72–3.77) NA 103 
IGF/insulin Pisani 2008 (22) Breast cancer C-peptide 11 3,517 64 1.26 (1.07–1.48) 27 269 NA 1.35 (1.01–1.81) 11 NA 
IGF/insulin Morris 2006 (23) Colorectal cancer IGFBP-3 3,501 60 1.00 (0.77–1.30) NA NA NA 0.98 (0.64–1.51) NA 47,178 
IGF/insulin Pisani 2008 (22) Colorectal cancer C-peptide 12 5,542 54 1.36 (1.15–1.62) 64 322 NA 1.51 (1.14–1.99) 39 NA 
IGF/insulin Pisani 2008 (22) Colorectal cancer Glucose 11 1,381,129 47 1.19 (1.07–1.32) 49 257 NA 1.28 (1.06–1.54) 26 NA 
IGF/insulin Rinaldi 2010 (24) Colorectal cancer IGF-1 11 7,828 1.07 (1.01–1.14) 17 230 NA 1.07 (1.01–1.14) 17 NA 
IGF/insulin Morris 2006 (23) Colorectal cancer IGF-2 1,685 1.95 (1.26–3.00) 11 117 NA 1.95 (1.26–3.00) 11 NA 
IGF/insulin Pisani 2008 (22) Endometrial cancer C-peptide 862 69 1.09 (0.74–1.62) NA NA 141 1.18 (0.57–2.43) NA 642 
IGF/insulin Chen 2009 (25) Lung cancer IGF-1 12,515 41 1.05 (0.80–1.37) NA NA 361 0.98 (0.68–1.41) NA 21,602 
IGF/insulin Chen 2009 (25) Lung cancer IGFBP-3 12,515 67 0.89 (0.68–1.15) NA NA 54 0.96 (0.59–1.56) NA 10,376 
IGF/insulin Pisani 2008 (22) Pancreas cancer C-peptide 692 1.70 (1.11–2.61) 68 NA 1.70 (1.11–2.61) NA 
IGF/insulin Pisani 2008 (22) Pancreas cancer Glucose 1,334,539 1.98 (1.67–2.35) 152 198 NA 1.98 (1.67–2.35) 152 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-1 1,553 92 0.93 (0.80–1.09) NA NA 72 1.20 (0.65–2.22) NA 251 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-2 2,670 78 1.07 (0.95–1.21) NA NA 36 1.18 (0.90–1.54) NA 56 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGFBP-3 29 17,160 81 0.97 (0.93–1.01) NA NA 80 0.88 (0.79–0.98) 57 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-1 42 19,347 88 1.18 (1.14–1.23) 1,497 974 NA 1.21 (1.07–1.36) 159 NA 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-1/BP-3 11 9,677 80 1.07 (1.02–1.13) 30 230 NA 1.10 (0.97–1.24) NA 46 
IGF/insulin Rowlands 2009 (26) Prostate cancer IGF-2 10 2,797 77 1.24 (1.12–1.36) 81 242 NA 1.17 (0.93–1.47) NA 75 
IGF/insulin Key 2010 (27) Postmenopausal breast cancer IGF-1 15 8,185 1.30 (1.13–1.49) 92 385 NA 1.30 (1.13–1.49) 92 NA 
IGF/insulin Key 2010 (27) Postmenopausal breast cancer IGFBP-3 15 8,012 31 1.21 (1.04–1.41) 32 357 NA 1.22 (1.01–1.49) 16 NA 
IGF/insulin Key 2010 (27) Premenopausal breast cancer IGFBP-3 11 5,927 0.99 (0.83–1.19) NA NA 7,367 0.99 (0.83–1.19) NA 50,352 
IGF/insulin Key 2010 (27) Premenopausal breast cancer IGF-1 11 6,033 29 1.18 (1.00–1.40) 10 255 NA 1.21 (0.98–1.49) NA 12 
Infection Gutierrez 2006 (28) Bladder cancer HPV (DNA) 13 657 2.29 (1.37–3.84) 53 597 NA 2.30 (1.33–4.00) 45 NA 
Infection Gutierrez 2006 (28) Bladder cancer HPV (no DNA) 379 2.98 (1.65–5.40) 18 180 NA 2.98 (1.65–5.40) 18 NA 
Infection Zhao 2008 (29) Colorectal cancer H. pylori 14 3,581 58 1.41 (1.22–1.65) 127 391 NA 1.49 (1.16–1.90) 57 NA 
Infection Mandelblatt 1999 (30) Cervical cancer HPV 12 3,657 27 8.07 (6.49–10.0) 2,338 1,978 NA 8.08 (6.04–10.8) 1,249 NA 
Infection Zhang 1994 (31) Cervical cancer T. vaginalis 65,764 1.88 (1.29–2.74) 75 NA 1.88 (1.29–2.74) NA 
Infection Islami 2008 (32) ESCC H. pylori 3,664 73 1.08 (0.92–1.27) NA NA 73 1.10 (0.78–1.55) NA 1,356 
Infection Islami 2008 (32) ESCC cagA (H. pylori) 2,327 1.01 (0.79–1.27) NA NA NA 1.01 (0.79–1.27) NA NA 
Infection Islami 2008 (32) Esophageal adeno cancer H. pylori 13 3,730 15 0.56 (0.48–0.67) 275 136 NA 0.57 (0.47–0.69) 207 NA 
Infection Islami 2008 (32) Esophageal adeno cancer cagA (H. pylori) 1,472 17 0.41 (0.29–0.59) 54 37 NA 0.41 (0.28–0.62) 42 NA 
Infection Huang 2003 (33) Gastric cancer H. pylori 15 5,054 76 2.05 (1.79–2.35) 805 615 NA 2.29 (1.71–3.05) 224 NA 
Infection Huang 2003 (33) Gastric cancer cagA (H. pylori) 10 3,831 85 2.65 (2.29–3.05) 888 531 NA 2.87 (1.95–4.22) 137 NA 
Infection Zhuo 2008 (34) Laryngeal cancer H. pylori 357 2.02 (1.27–3.23) 10 121 NA 2.02 (1.27–3.23) 10 NA 
Infection Hobbs 2006 (35) Larynx cancer HPV 1,133 50 1.71 (1.11–2.64) 17 281 NA 2.01 (0.96–4.22) NA 
Infection Donato 1998 (36) Liver cancer HBV (HCV-) 28 9,199 86 17.9 (15.7–20.5) 24,939 10,279 NA 21.9 (14.9–32.3) 3,464 NA 
Infection Donato 1998 (36) Liver cancer HBV + HCV 2,437 37 65.0 (35.0–121) 784 12,315 NA 61.2 (27.0–139) 440 NA 
Infection Donato 1998 (36) Liver cancer HCV (HBV-) 26 7,694 86 16.8 (14.1–20.0) 13,151 9,822 NA 20.3 (12.2–33.7) 1,924 NA 
Infection Zhuo 2009 (37) Lung cancer H. pylori 430 79 2.31 (1.46–3.65) 22 185 NA 3.24 (1.11–9.41) NA 
Infection Hobbs 2006 (35) Oral cancer HPV 3,976 62 1.68 (1.36–2.08) 76 274 NA 1.99 (1.17–3.38) 17 NA 
Infection Hobbs 2006 (35) Oropharynx cancer HPV 2,199 56 3.01 (2.11–4.30) 93 300 NA 4.31 (2.07–8.95) 35 NA 
Infection Taylor 2005 (38) Prostate cancer HPV 4,864 35 1.37 (1.11–1.69) 31 246 NA 1.52 (1.12–2.06) 23 NA 
Infection Hobbs 2006 (35) Tonsil cancer HPV 380 15.1 (6.78–33.4) 173 2,471 NA 15.1 (6.78–33.4) 173 NA 
Infection Wang 2007 (39) Early gastric cancer H. pylori 15 16,698 83 4.83 (4.27–5.48) 4,639 1,467 NA 3.38 (2.15–5.32) 197 NA 
Inflammation Heikkila 2009 (40) Cancer IL6 6,785 21 1.01 (0.92–1.11) NA NA 718 1.01 (0.90–1.12) NA 3,321 
Inflammation Heikkila 2009 (40) Cancer C-reactive protein 14 74,545 73 1.09 (1.05–1.13) 150 299 NA 1.10 (1.02–1.18) 35 NA 
Inflammation Tsilidis 2008 (41) Colorectal cancer C-reactive protein 39,145 51 1.10 (1.02–1.18) 20 172 NA 1.12 (1.01–1.25) 12 NA 
Sex hormones Barba 2009 (42) Prostate cancer 2OHE1 536 0.76 (0.45–1.28) NA NA 13 0.76 (0.45–1.28) NA 15 
Sex hormones Roddam 2008 (43) Prostate cancer A-diol G 5,488 24 1.12 (0.96–1.31) NA NA 17 1.15 (0.95–1.38) NA 28 
Sex hormones Roddam 2008 (43) Prostate cancer D4 4,211 1.02 (0.85–1.21) NA NA 994 1.02 (0.85–1.21) NA 3,995 
Sex hormones Roddam 2008 (43) Prostate cancer DHEAS 3,024 17 1.22 (0.98–1.53) NA NA 1.29 (0.99–1.68) NA 
Sex hormones Roddam 2008 (43) Prostate cancer DHT 2,455 0.88 (0.69–1.11) NA NA 41 0.88 (0.69–1.11) NA 80 
Sex hormones Roddam 2008 (43) Prostate cancer E2 5,225 0.92 (0.78–1.09) NA NA 62 0.92 (0.78–1.09) NA 162 
Sex hormones Roddam 2008 (43) Prostate cancer Free E2 4,778 0.97 (0.82–1.16) NA NA 1173 0.97 (0.82–1.16) NA 5,279 
Sex hormones Roddam 2008 (43) Prostate cancer Free T 14 9,365 1.12 (0.98–1.27) NA NA 18 1.12 (0.98–1.27) NA 20 
Sex hormones Roddam 2008 (43) Prostate cancer 17 10,324 0.98 (0.87–1.10) NA NA 502 0.98 (0.87–1.10) NA 3,602 
Sex hormones Barba 2009 (42) Prostate cancer 16α-OHE1 536 1.82 (1.08–3.05) 73 NA 1.82 (1.08–3.05) NA 
Sex hormones Barba 2009 (42) Prostate cancer 2OHE1/16α-OHE1 536 0.52 (0.31–0.89) 19 NA 0.52 (0.31–0.89) NA 
Sex hormones Roddam 2008 (43) Prostate cancer SHBG 15 9,702 0.86 (0.76–0.97) 32 249 NA 0.86 (0.76–0.97) 32 NA 
Sex hormones Key 2002 (44) Postmenopausal breast cancer E2 2,365 42 1.29 (1.14–1.45) 72 227 NA 1.26 (1.07–1.49) 27 NA 

Abbreviations: A-diol G, androstanediol glucuronide; Cur, current; DDT, dichlorodiphenyltrichloroethane; D4, androstenedione; ESCC, esophageal squamous cell carcinoma; E1, estrone; E2, estradiol; For, former; HBV, hepatitis B virus; HCV, hepatitis C virus; H. pylori, Helicobacter pylori; HPV, human papillomavirus; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor binding protein; MUFA, monounsaturated fatty acids; NA, nonstatistically significant meta-analyses not applicable to the FSN, and statistically significant meta-analyses not applicable to the conditional power analysis; Nev, never; PUFA, polyunsaturated fatty acids; SFA, total saturated fatty acids; SHBG, sex hormone binding globulin; T. vaginalis, Trichomonas vaginalis; T, testosterone.

aRosenberg's FSN, the number of future studies averaging null effect and average weight to reduce the summary OR to null.

bOrwin's FSN, the number of future studies averaging null effect to reduce the summary OR to 1.05.

cNumber of future studies of average weight and no between-study heterogeneity needed to be included in the updated meta-analysis to achieve 80% power to detect the observed fixed-effect summary OR.

dNumber of future studies of average weight and average between-study heterogeneity needed to be included in the updated meta-analysis to achieve 80% power to detect the observed random-effects summary OR.

The 98 meta-analyses included a median of seven studies (range 2–42) and described associations between a diverse range of nongenomic biomarkers and cancer risk including: insulin-like growth factor/insulin markers (21 meta-analyses); sex hormones (13 meta-analyses); dietary markers (31 meta-analyses); inflammatory markers (3 meta-analyses); infectious agents (22 meta-analyses); and environmental markers (8 meta-analyses). The most common cancer sites include breast (28 meta-analyses); prostate (24 meta-analyses); lung (10 meta-analyses); and colorectal (8 meta-analyses). Previously, using the primary study data from the studies included in each of the 98 meta-analyses, Tsilidis and colleagues (7) calculated summary estimates using fixed-effect and random-effects models and corresponding 95% confidence intervals, and I2. On the basis of random-effects models, 44 (45%) of the meta-analyses reported statistically significant summary ORs, whereas on the basis of fixed-effect models 54 (55%) of the meta-analyses reported statistically significant summary ORs.

FSN

For the statistically significant meta-analyses, we used Rosenberg's version of the FSN (ref. 4; a refinement of Rosenthal's FSN, ref. 6) to quantify the number of future studies with an average null effect and average weight (i.e., inverse variance), needed to drive the existing meta-analysis summary estimate to null in the updated meta-analysis (for this work, P ≥ 0.05). To overcome the restriction of statistical significance, we used Orwin's FSN (45) to calculate the number of future studies with an average null effect (OR = 1.00) needed to reduce the updated summary effect to a range of estimates (OR = 1.05; 1.10; 1.25; 1.50; and 2.00) for the updated meta-analysis. Additional details of FSN calculation are presented in Supplementary Methods. FSN is not applicable to nonstatistically significant summary estimates.

Conditional power

For the nonstatistically significant meta-analyses, we calculated conditional power to determine the number of future studies needed to achieve sufficient power to detect a statistically significant summary estimate when added to the observed nonstatistically significant meta-analysis (P ≥ 0.05). We set the minimum power to 0.8 and took a pragmatic approach declaring an alternative hypothesis for the updated meta-analysis equivalent to the observed summary OR, and assumed the future studies were of average weight as those included in the observed meta-analysis. Our conditional power analyses were based on two approaches described by Roloff and colleagues (5). We implemented the first approach in the nonstatistically significant fixed-effect meta-analyses, where we assumed that no heterogeneity is present between the studies included in the existing meta-analysis (I2 = 0%) and that the future studies will not introduce heterogeneity. In approach 2, focusing on the nonstatistically significant random-effects meta-analyses, we fixed the between-study heterogeneity in the future studies to be equivalent to the heterogeneity in the existing meta-analysis. Additional details of conditional power calculation are presented in Supplementary Methods

From the list of 98 meta-analyses, we selected two exemplar scenarios: (i) a well-established causal biomarker–cancer relationship supported by evidence-based classification as a group 1 carcinogen (i.e., H. pylori and gastric cancer risk; ref. 46) and (ii) a biomarker–cancer association with strong biological rationale, but several methodologic concerns leading to an uncertain biomarker–cancer association (i.e., androgens and prostate cancer). We provide these two examples both to describe the application of these adapted methods and how their use can be used in practice to inform the need for future research to be able to fill knowledge gaps and improve biological understanding. For both scenarios, we interpret the number of future studies needed determined by FSN for H. pylori and gastric cancer or by conditional power for androgens and prostate cancer within the context of the existing evidence (e.g., the number, sample size, and heterogeneity of the findings).

We calculated Rosenberg's and Orwin's FSNs and the two conditional power approaches in STATA version 13 (STATA Corp).

FSN

Among the 54 statistically significant fixed-effect [median number of studies 9 (range 2–42); median I2 = 42%] and 44 statistically significant random-effects [median number of studies 9 (range 2–42); median I2 = 36%] meta-analyses, median FSN (Rosenberg) was 31.5 studies (range 3.2–24,939) for the fixed-effect meta-analyses, and 31.1 studies (range 3.2–3,464) for the random-effects meta-analyses.

The influence of between-study heterogeneity on Rosenberg's FSN is illustrated by comparing the FSN between the fixed-effect and random-effects summary estimates from the same meta-analysis (Supplementary Fig. S1). The median FSN was larger for meta-analyses with extreme heterogeneity (I2 > 80%; ref. 47); 1,497 and 148 for fixed-effect and random-effects meta-analyses, respectively, compared with 53 and 45 for fixed-effect and random-effects meta-analyses with low heterogeneity (I2: 1%–29%; ref. 47). The FSN was larger for the fixed-effect than for the random-effects meta-analyses, which is consistent with the assumption of no between-study heterogeneity in fixed-effect meta-analyses that results in more precise summary estimates (ref. 48; Supplementary Fig. S1). Among meta-analyses with similar between-study heterogeneity (0%, 1%–29%, 30%–59%, 60%–80%, and >80%), meta-analyses that included more studies tended to have a higher FSN (Supplementary Fig. S2) as a result of more precise summary estimates.

Rosenberg's FSN was larger when the summary estimates observed in the existing meta-analyses were higher (Supplementary Fig. S3). The influence of summary estimate size in the existing meta-analysis and in the future studies is further illustrated with Orwin's FSN, which does not take into account within- or between-study heterogeneity. Therefore, we only considered the values of Orwin's FSN for fixed-effect meta-analyses. Orwin's FSN was larger for smaller updated summary estimates (Supplementary Fig. S4). To reduce the updated summary OR to 1.05 among 38 meta-analyses with an existing summary OR > 1.05, the median of Orwin's FSN was 271 studies, whereas to reduce the updated summary OR to 2.00 among meta-analyses with an existing summary OR > 2.00 the median FSN was 33 studies. As for Rosenberg's FSN, which is based on statistical significance, Orwin's FSN, which is based on effect size, also indicates that a larger number of future studies is required for existing meta-analyses with larger as opposed to smaller summary ORs.

Conditional power

We used two approaches under a variety of assumptions to conduct conditional power analysis. In the first approach, we assumed no between-study heterogeneity in the existing and updated meta-analyses, and accordingly, used only the 18 fixed-effect meta-analyses with a statistically nonsignificant summary OR > 1.01. With a median power of 15% (range 0.5%–50%) for the existing meta-analyses, a median of 78 studies (range 4–994) of average weight with no between-study heterogeneity would need to be included in the updated meta-analysis to achieve 80% power to detect the summary OR as statistically significant.

In the second approach, we assumed equivalent between-study heterogeneity in the future studies as in the existing meta-analysis, and accordingly used the 21 random-effects meta-analyses with a statistically nonsignificant summary OR > 1.01. With a median power of 21% (range 6%–47%) for the existing meta-analyses, a median of 103 studies (range 5–6,656) of average weight and equivalent between-study heterogeneity as in the existing meta-analysis would need to be included in the updated meta-analysis to achieve 80% power to detect the summary OR as statistically significant.

The greater number of future studies required to achieve 80% for the random-effects compared with fixed-effect meta-analysis is consistent with their differing assumptions about between-study heterogeneity incorporated into the two approaches (Supplementary Fig. S5). By taking into account the between-study heterogeneity, our second approach incorporated additional uncertainty into the summary estimates, thereby increasing the number of future studies needed. In the both fixed-effect and random-effects meta-analyses, the number of future studies needed was smaller for larger than for smaller summary estimates (Supplementary Fig. S5).

Application of the FSN: H. pylori and gastric cancer

In 1994, the International Agency for Research on Cancer (IARC) classified H. pylori as a Group 1 carcinogen (46). At the time, the evidence supporting IARC's classification included four cohort studies and nine case-control studies of H. pylori infection and gastric cancer risk. Since the initial classification, the accumulation of evidence is sufficient that the relationship is now considered well established. This is reflected in the greater than 2-fold increase in risk of gastric cancer described in the meta-analysis of 15 studies with more than 5,000 cases and controls reported by Huang and colleagues (33) Rosenberg's FSN indicates 805 future studies would be required to reduce the reported fixed-effect summary OR of 2.05 (95% CI, 1.79–2.35; I2 = 76%) to null (P ≥ 0.05) and 224 future studies based on the random-effects meta-analysis (summary OR = 2.29; 95% CI, 1.71–3.05; I2 = 76%). On the basis of Orwin's FSN, a total of 615 future studies averaging null effect (OR = 1.00) would be required to drive the observed fixed-effect summary OR of 2.05 to an essentially null OR of 1.05. The implementation of each FSN to the example of H. pylori and gastric cancer illustrates the futility of further investigation of the association between H. pylori and gastric cancer, while the large between-study heterogeneity (I2 = 76%) suggests the need for further subgroup analysis to determine sources of heterogeneity (e.g., method of detection of H. pylori infection, adjustment for confounding, or geographic/ethnic differences in strength of the association). To this end, the geographic and ethnic differences in the distribution of gastric cancer led to further investigations that revealed a stronger association between H. pylori infection and gastric cancer in studies conducted in populations with diets high in salt-preserved foods, suggesting dietary salt may modify the pathogenic effect of H. pylori infection on gastric cancer (49, 50). The role of a high-salt diet as a potential modifier of the effect of H. pylori is supported by additional laboratory research that identified cagA gene expression in H. pylori, a marker of higher risk of gastric cancer, is upregulated by dietary salt intake (51). These findings further illustrate the importance of examining subgroups or different populations once the main effect of the etiologic cancer biomarker has been established, especially in the context of extreme heterogeneity which can help identify high-risk populations and can provide additional understanding of the underlying biology of the biomarker cancer association (e.g., effect modification).

Application of conditional power: androgens and prostate cancer

In 1993, the Prostate Cancer Prevention Trial was launched to test the hypothesis that finasteride, a drug that blocks the conversion of testosterone into DHT, can prevent prostate cancer (52). The trial was stopped early in 2003 when an interim analysis found a 25% reduction in the period prevalence of prostate cancer in the treatment group receiving finasteride (53). This finding provided additional evidence supporting the underlying hypothesis that DHT is an etiologic factor in prostate cancer. However, several methodologic challenges encountered in population-based epidemiologic investigations including adequacy of measuring circulating hormones, difficulty integrating multiple components of the androgen pathway, difficulty in incorporating clinical and population health important outcomes, and detection bias (e.g., differential opportunity to be screened with PSA by exposure; and differential detection of prostate cancer in PSA-based prostate cancer screening due to the association between androgens and PSA concentration), have contributed to the inconsistent reports on the associations between circulating androgens and prostate cancer incidence (54). Using study-specific estimates for components in the androgen pathway and prostate cancer from a pooled analysis of harmonized primary data, (43) Tsilidis and colleagues (7) calculated fixed-effect and random-effects summary estimates (Table 2). For the six components of the androgen pathway that were not statistically significant in fixed-effect meta-analyses (with I2 = 0% and a median number of studies of 8.5), conditional power indicated that 18 to 1,173 future studies of average weight as those included in the existing meta-analysis would be required to achieve 80% power to detect the summary OR in the updated meta-analysis (Table 2). For these comparisons, the large number of future studies needed to achieve sufficient power, more than twice as many studies as included in the existing meta-analyses, of the same average weight, totaling tens of thousands of cases and controls among the future studies (Table 2), may not be within reach of existing resources, and points to a situation where further research should be aimed at overcoming the methodologic challenges mentioned above (54) to fill important evidence gaps with respect to androgens and prostate cancer.

Table 2.

Results of conditional power for 9 meta-analyses of circulating androgens concentrations and prostate cancer risk

Number included studiesNumber cases and controlsFixed-effectaRandom-effectsa
ComparisonI2OR (95% CI)Future studiesbOR (95% CI)Future studiesc
SHBG 15 9,702 0.86 (0.76–0.97) 0.86 (0.76–0.97) 
Free T 14 9,365 1.12 (0.98–1.27) 18 1.12 (0.98–1.27) 20 
DHT 2,455 0.88 (0.69–1.11) 41 0.88 (0.69–1.11) 80 
E2 5,225 0.92 (0.78–1.09) 62 0.92 (0.78–1.09) 162 
17 10,324 0.98 (0.87–1.10) 502 0.98 (0.87–1.10) 3,602 
D4 4,211 1.02 (0.85–1.21) 994 1.02 (0.85–1.21) 3,995 
Free E2 4,778 0.97 (0.82–1.16) 1,173 0.97 (0.82–1.16) 5,279 
DHEA-S 3,024 17 1.22 (0.98–1.53) 1.29 (0.99–1.68) 
A-diol G 5,488 24 1.12 (0.96–1.31) 17 1.15 (0.95–1.38) 28 
Number included studiesNumber cases and controlsFixed-effectaRandom-effectsa
ComparisonI2OR (95% CI)Future studiesbOR (95% CI)Future studiesc
SHBG 15 9,702 0.86 (0.76–0.97) 0.86 (0.76–0.97) 
Free T 14 9,365 1.12 (0.98–1.27) 18 1.12 (0.98–1.27) 20 
DHT 2,455 0.88 (0.69–1.11) 41 0.88 (0.69–1.11) 80 
E2 5,225 0.92 (0.78–1.09) 62 0.92 (0.78–1.09) 162 
17 10,324 0.98 (0.87–1.10) 502 0.98 (0.87–1.10) 3,602 
D4 4,211 1.02 (0.85–1.21) 994 1.02 (0.85–1.21) 3,995 
Free E2 4,778 0.97 (0.82–1.16) 1,173 0.97 (0.82–1.16) 5,279 
DHEA-S 3,024 17 1.22 (0.98–1.53) 1.29 (0.99–1.68) 
A-diol G 5,488 24 1.12 (0.96–1.31) 17 1.15 (0.95–1.38) 28 

Abbreviations: A-diol G, androstanediol glucuronide; DHT, dihydrotestosterone; D4, androstenedione; E2, estradiol; SHBG, sex hormone binding globulin; T, testosterone.

aFixed-effect and random-effects estimates reported by Tsilidis and colleagues (7) calculated from study-specific estimates for individual components in the androgen pathway and prostate cancer from Roddam and colleagues (43).

bNumber of future studies of average weight as studies included in observed meta-analysis needed to achieve 80% power in updated meta-analysis determined by conditional power assuming no between-study heterogeneity.

cNumber of future studies of average weight and equivalent between-study heterogeneity as studies included in observed meta-analysis needed to achieve 80% power in updated meta-analysis determined by conditional power assuming equivalent between-study heterogeneity in updated meta-analysis.

In the case of the random-effects meta-analysis with seven included studies evaluating the association between dehydroepiandrosterone sulfate (DHEAS) and prostate cancer (summary OR = 1.29; 95% CI, 0.99–1.68; I2 = 17%), the five future studies required to achieve 80% power to detect the observed summary OR may be within reach of existing resources, and points to a scenario where additional research could provide a meaningful contribution to the existing meta-analysis. However, we caution against the inappropriate interpretation of applying conditional power to the example of DHEAS and prostate cancer incidence. Our approach assumed that the number of future studies are of the average weight of those already included in the existing meta-analysis and that they will not introduce additional between-study heterogeneity into the updated meta-analysis. However, this assumption may not be realistic; with respect to molecular epidemiologic investigations, measurement error in the index biomarker assay may introduce between-study heterogeneity. Furthermore, relying on the number of needed studies does not guarantee that a future study will be informative. Whether to conduct future studies on DHEAS and prostate cancer must also take into consideration the composition of the existing evidence base (e.g., existing study population characteristics and prostate cancer case mix) and failure to consider the methodologic issues previously cited as factors leading to inconsistent associations could also lead to uninformative research.

We adapted two established metrics, the FSN (4) and conditional power (5), to quantify the impact of future investigations on the inferences drawn in existing meta-analyses. Both metrics provide a heuristic approach to inform whether continued investigation is warranted versus sufficient evidence is available to establish or refute an exposure–outcome association. Our motivation to adapt the application of these metrics is to be able to quantify the impact of further investigation of the same association as the primary research question. However, the application of these metrics should not be interpreted as stopping research all together, but rather, to focus future research to address current evidence gaps and improve biologic understanding of the biomarker–cancer association by evaluating new or improved methods to measure the biomarker or using other markers correlated and more specific to the studied biomarker, evaluating clinically meaningful outcomes, and reducing heterogeneity and imprecision in the observed associations by investigating the biomarker–cancer relationship in important subpopulations. When further research does not add information to the existing literature, unnecessary and wasteful research may be undertaken (55). We envision the application of these metrics along with traditional assessments of study quality (e.g., STROBE, ref. 56; PRISMA, ref. 57) causal criteria (58), and remaining knowledge gaps (e.g., subgroup associations) by stakeholders engaged in translational epidemiologic research including principal investigators, funding agencies, grant reviewers, journal editors, and peer-reviewers to make more informed decisions about the need for additional research. While our application of FSN and conditional power focused on observational studies of etiologic biomarkers and cancer risk, these methods are equally applicable to other epidemiologic study designs including randomized trials as well as nonbiomarker exposures and other important outcomes such as mortality, and prognosis.

FSN can be calculated using several common meta-analysis software packages and calculation of conditional power is straightforward (See Supplementary Methods) but requires a number of assumptions (e.g., heterogeneity, effect size, and study weights) that influence how the corresponding metrics are interpreted, thus informing the impact of future research. We applied these metrics to 98 meta-analyses of observational epidemiologic studies evaluating the associations between nongenomic biomarkers and cancer risk to demonstrate the ability of these metrics to identify situations where future research may or may not provide a meaningful contribution to an updated meta-analysis. When adapting the application of these metrics, the patterns of the output of the FSN and conditional power analysis are consistent with the underlying computation of each metric. For example, FSN appears to increase with decreasing heterogeneity, increasing number of included studies, and increasing magnitude of summary estimates. For conditional power, the number of additional studies appears to decrease with increasing magnitude of summary estimates.

To our knowledge, no method has been introduced to directly quantify the expected impact of further observational epidemiologic research on the current evidence base. While our motivation was to explore whether the FSN and conditional power could be used to quantify the impact of future research, additional work is needed to incorporate these metrics into a formal framework for deciding whether additional epidemiologic studies addressing the same question are needed. Such a framework might include cut-off points or ranges for defining whether the number of future studies needed is too large to make additional work worthwhile. We do not envision that the framework would rely on cut-off points alone: considerations that could be incorporated into the framework beyond a cut-off point might include feasibility and cost, as well as implications for policy, and clinical and public health recommendations. Such a framework could encompass aspects of the value of information approach to deciding cost-effectiveness, which has been described for improving research prioritization and reducing waste (59).

We recognize that application of these adapted methods to existing meta-analyses is not the only strategy to minimize the problem of repetitive research. Facilitating and encouraging the publication of null results that can be included in meta-analyses such that the null results are interpreted alongside the relevant evidence is a direct way investigators and stakeholders can minimize the production of redundant uninformative research (60). An alternative approach is a coordinated effort among individual investigators to determine which exposures require additional investigations, to share and pool their data and biospecimens, to standardize an exposure's measurement, and harmonize the outcome and covariate data, all while ensuring optimal study design and minimizing selection and information bias. Using this approach, research on particular exposures is prioritized through consensus, exposure–outcome associations can be investigated in subpopulations of the pooled studies, and power is maximized. This practice-based approach has been used over the past 15 years by large consortia, including the NCI Cohort Consortium (>50 cohorts with 7 million participants; https://epi.grants.cancer.gov/Consortia/cohort.html#overview) and the Early Detection Research Network (https://edrn.nci.nih.gov) both supported by the NCI, and the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group (35 studies with biomarker data on 23,000 men with prostate cancer and 35,000 controls; https://www.ceu.ox.ac.uk/research/endogenous-hormones-nutritional-biomarkers-and-prostate-cancer). We view the approach that we describe herein as complementary to the practice-based approach.

In summary, we show how FSN and conditional power can be adapted to quantify the impact of future investigations of a specified exposure and outcome on the current evidence base summarized in the corresponding meta-analysis. To illustrate the utility of these approaches, we applied them to meta-analyses of biomarkers and cancer risk. The systematic application of these metrics by researchers, funding agencies, and grant reviewers when considering future research, journal editors, and peer-reviewers when considering the novelty and impact of submitted manuscripts, could lead to more judicious use of resources and acceleration along the translational continuum from discovery to population-health impact.

No potential conflicts of interest were disclosed.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the NIH.

Conception and design: M.T. Marrone, K.K. Tsilidis, T.R. Rebbeck, E.A. Platz

Development of methodology: M.T. Marrone, S. Ehrhardt, T.R. Rebbeck

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.T. Marrone, K.K. Tsilidis, C.E. Joshu

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.T. Marrone, K.K. Tsilidis, S. Ehrhardt, C.E. Joshu, T.R. Rebbeck, E.A. Platz

Writing, review, and/or revision of the manuscript: M.T. Marrone, K.K. Tsilidis, S. Ehrhardt, C.E. Joshu, T.R. Rebbeck, T.A. Sellers, E.A. Platz

Study supervision: E.A. Platz

We appreciate Dr. Muin Khoury's helpful comments during the conduct of this work. M.T. Marrone was supported by NCI grant T32 93140 (Platz). E.A. Platz was supported by NCI Cancer Center Support Grant P30 CA006973 (Nelson). C.E. Joshu was supported by the Prostate Cancer Foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Kern
SE
. 
Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures
.
Cancer Res
2012
;
72
:
6097
101
.
2.
Ioannidis
JP
,
Greenland
S
,
Hlatky
MA
,
Khoury
MJ
,
Macleod
MR
,
Moher
D
, et al
Increasing value and reducing waste in research design, conduct, and analysis
.
Lancet
2014
;
383
:
166
75
.
3.
Chalmers
I
,
Bracken
MB
,
Djulbegovic
B
,
Garattini
S
,
Grant
J
,
Gulmezoglu
AM
, et al
How to increase value and reduce waste when research priorities are set
.
Lancet
2014
;
383
:
156
65
.
4.
Rosenberg
MS
. 
The file-drawer problem revisited: a general weighted method for calculating the fail-safe number in meta-analysis
.
Evolution
2005
;
59
:
464
68
.
5.
Roloff
V
,
Higgins
JP
,
Sutton
AJ
. 
Planning future studies based on the conditional power of a meta-analysis
.
Stat Med
2013
;
32
:
11
24
.
6.
Rosenthal
R
. 
The file drawer problem and tolerance for null results
.
Psychol Bull
1979
;
86
:
638
41
.
7.
Tsilidis
KK
,
Papatheodorou
SI
,
Evangelou
E
,
Ioannidis
JP
. 
Evaluation of excess statistical significance in meta-analyses of 98 biomarker associations with cancer risk
.
J Natl Cancer Inst
2012
;
104
:
1867
78
.
8.
Chen
P
,
Hu
P
,
Xie
D
,
Qin
Y
,
Wang
F
,
Wang
H
. 
Meta-analysis of vitamin D, calcium and the prevention of breast cancer
.
Breast Cancer Res Treat
2010
;
121
:
469
77
.
9.
Saadatian-Elahi
M
,
Norat
T
,
Goudable
J
,
Riboli
E
. 
Biomarkers of dietary fatty acid intake and the risk of breast cancer: a meta-analysis
.
Int J Cancer
2004
;
111
:
584
91
.
10.
Buck
K
,
Zaineddin
AK
,
Vrieling
A
,
Linseisen
J
,
Chang-Claude
J
. 
Meta-analyses of lignans and enterolignans in relation to breast cancer risk
.
Am J Clin Nutr
2010
;
92
:
141
53
.
11.
Larsson
SC
,
Giovannucci
E
,
Wolk
A
. 
Folate and risk of breast cancer: a meta-analysis
.
J Natl Cancer Inst
2007
;
99
:
64
76
.
12.
Larsson
SC
,
Orsini
N
,
Wolk
A
. 
Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies
.
JAMA
2010
;
303
:
1077
83
.
13.
Yin
L
,
Grandi
N
,
Raum
E
,
Haug
U
,
Arndt
V
,
Brenner
H
. 
Meta-analysis: longitudinal studies of serum vitamin D and colorectal cancer risk
.
Aliment Pharmacol Ther
2009
;
30
:
113
25
.
14.
Gallicchio
L
,
Boyd
K
,
Matanoski
G
,
Tao
XG
,
Chen
L
,
Lam
TK
, et al
Carotenoids and the risk of developing lung cancer: a systematic review
.
Am J Clin Nutr
2008
;
88
:
372
83
.
15.
Zhuo
H
,
Smith
AH
,
Steinmaus
C
. 
Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature
.
Cancer Epidemiol Biomarkers Prev
2004
;
13
:
771
8
.
16.
Yin
L
,
Raum
E
,
Haug
U
,
Arndt
V
,
Brenner
H
. 
Meta-analysis of longitudinal studies: serum vitamin D and prostate cancer risk
.
Cancer Epidemiol
2009
;
33
:
435
45
.
17.
Collin
SM
,
Metcalfe
C
,
Refsum
H
,
Lewis
SJ
,
Zuccolo
L
,
Smith
GD
, et al
Circulating folate, vitamin B12, homocysteine, vitamin B12 transport proteins, and risk of prostate cancer: a case-control study, systematic review, and meta-analysis
.
Cancer Epidemiol Biomarkers Prev
2010
;
19
:
1632
42
.
18.
Simon
JA
,
Chen
YH
,
Bent
S
. 
The relation of alpha-linolenic acid to the risk of prostate cancer: a systematic review and meta-analysis
.
Am J Clin Nutr
2009
;
89
:
1558s
64s
.
19.
Khanjani
N
,
Hoving
JL
,
Forbes
AB
,
Sim
MR
. 
Systematic review and meta-analysis of cyclodiene insecticides and breast cancer
.
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev
2007
;
25
:
23
52
.
20.
Lopez-Cervantes
M
,
Torres-Sanchez
L
,
Tobias
A
,
Lopez-Carrillo
L
. 
Dichlorodiphenyldichloroethane burden and breast cancer risk: a meta-analysis of the epidemiologic evidence
.
Environ Health Perspect
2004
;
112
:
207
14
.
21.
Veglia
F
,
Loft
S
,
Matullo
G
,
Peluso
M
,
Munnia
A
,
Perera
F
, et al
DNA adducts and cancer risk in prospective studies: a pooled analysis and a meta-analysis
.
Carcinogenesis
2008
;
29
:
932
6
.
22.
Pisani
P
. 
Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies
.
Arch Physiol Biochem
2008
;
114
:
63
70
.
23.
Morris
JK
,
George
LM
,
Wu
T
,
Wald
NJ
. 
Insulin-like growth factors and cancer: no role in screening. Evidence from the BUPA study and meta-analysis of prospective epidemiological studies
.
Br J Cancer
2006
;
95
:
112
7
.
24.
Rinaldi
S
,
Cleveland
R
,
Norat
T
,
Biessy
C
,
Rohrmann
S
,
Linseisen
J
, et al
Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies
.
Int J Cancer
2010
;
126
:
1702
15
.
25.
Chen
B
,
Liu
S
,
Xu
W
,
Wang
X
,
Zhao
W
,
Wu
J
. 
IGF-I and IGFBP-3 and the risk of lung cancer: a meta-analysis based on nested case-control studies
.
J Exp Clin Cancer Res
2009
;
28
:
89
.
26.
Rowlands
MA
,
Gunnell
D
,
Harris
R
,
Vatten
LJ
,
Holly
JM
,
Martin
RM
. 
Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis
.
Int J Cancer
2009
;
124
:
2416
29
.
27.
Key
TJ
,
Appleby
PN
,
Reeves
GK
,
Roddam
AW
. 
Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies
.
Lancet Oncol
2010
;
11
:
530
42
.
28.
Gutierrez
J
,
Jimenez
A
,
de Dios Luna
J
,
Soto
MJ
,
Sorlozano
A
. 
Meta-analysis of studies analyzing the relationship between bladder cancer and infection by human papillomavirus
.
J Urol
2006
;
176
:
2474
81
.
29.
Zhao
YS
,
Wang
F
,
Chang
D
,
Han
B
,
You
DY
. 
Meta-analysis of different test indicators: Helicobacter pylori infection and the risk of colorectal cancer
.
Int J Colorectal Dis
2008
;
23
:
875
82
.
30.
Mandelblatt
JS
,
Kanetsky
P
,
Eggert
L
,
Gold
K
. 
Is HIV infection a cofactor for cervical squamous cell neoplasia?
Cancer Epidemiol Biomarkers Prev
1999
;
8
:
97
106
.
31.
Zhang
ZF
,
Begg
CB
. 
Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies
.
Int J Epidemiol
1994
;
23
:
682
90
.
32.
Islami
F
,
Kamangar
F
. 
Helicobacter pylori and esophageal cancer risk: a meta-analysis
.
Cancer Prev Res
2008
;
1
:
329
38
.
33.
Huang
JQ
,
Zheng
GF
,
Sumanac
K
,
Irvine
EJ
,
Hunt
RH
. 
Meta-analysis of the relationship between cagA seropositivity and gastric cancer
.
Gastroenterology
2003
;
125
:
1636
44
.
34.
Zhuo
XL
,
Wang
Y
,
Zhuo
WL
,
Zhang
XY
. 
Possible association of Helicobacter pylori infection with laryngeal cancer risk: an evidence-based meta-analysis
.
Arch Med Res
2008
;
39
:
625
8
.
35.
Hobbs
CG
,
Sterne
JA
,
Bailey
M
,
Heyderman
RS
,
Birchall
MA
,
Thomas
SJ
. 
Human papillomavirus and head and neck cancer: a systematic review and meta-analysis
.
Clin Otolaryngol
2006
;
31
:
259
66
.
36.
Donato
F
,
Boffetta
P
,
Puoti
M
. 
A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma
.
Int J Cancer
1998
;
75
:
347
54
.
37.
Zhuo
WL
,
Zhu
B
,
Xiang
ZL
,
Zhuo
XL
,
Cai
L
,
Chen
ZT
. 
Assessment of the relationship between Helicobacter pylori and lung cancer: a meta-analysis
.
Arch Med Res
2009
;
40
:
406
10
.
38.
Taylor
ML
,
III
Mainous
AG
,
Wells
BJ
. 
Prostate cancer and sexually transmitted diseases: a meta-analysis
.
Fam Med
2005
;
37
:
506
12
.
39.
Wang
C
,
Yuan
Y
,
Hunt
RH
. 
The association between Helicobacter pylori infection and early gastric cancer: a meta-analysis
.
Am J Gastroenterol
2007
;
102
:
1789
98
.
40.
Heikkila
K
,
Harris
R
,
Lowe
G
,
Rumley
A
,
Yarnell
J
,
Gallacher
J
, et al
Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis
.
Cancer Causes Control
2009
;
20
:
15
26
.
41.
Tsilidis
KK
,
Branchini
C
,
Guallar
E
,
Helzlsouer
KJ
,
Erlinger
TP
,
Platz
EA
. 
C-reactive protein and colorectal cancer risk: a systematic review of prospective studies
.
Int J Cancer
2008
;
123
:
1133
40
.
42.
Barba
M
,
Yang
L
,
Schunemann
HJ
,
Sperati
F
,
Grioni
S
,
Stranges
S
, et al
Urinary estrogen metabolites and prostate cancer: a case-control study and meta-analysis
.
J Exp Clin Cancer Res
2009
;
28
:
135
.
43.
Roddam
AW
,
Allen
NE
,
Appleby
P
,
Key
TJ
. 
Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies
.
J Natl Cancer Inst
2008
;
100
:
170
83
.
44.
Key
T
,
Appleby
P
,
Barnes
I
,
Reeves
G
. 
Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies
.
J Natl Cancer Inst
2002
;
94
:
606
16
.
45.
Orwin
RG
. 
A fail-safe N for effect size in meta-analysis
.
Am Educ Res Assoc
1983
;
8
:
157
59
.
46.
International Agency for Research on Cancer
. 
Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans
.
Lyon, France
, 
7–14 June 1994
.
IARC Monogr Eval Carcinog Risks Hum
1994
;
61
:
1
241
.
47.
Higgins
JPT
,
Green
S
,
editors
.
Cochrane handbook for systematic reviews of interventions version 5.1.0
[updated March 2011]. The Cochrane Collaboration, 2011. Available from:
www.handbook.cochrane.org.
48.
Borenstein
M
,
Hedges
LV
,
Higgins
JP
,
Rothstein
HR
.
Introduction to meta-analysis
.
Chichester:
Wiley
; 
2009
.
49.
Tsugane
S
,
Sasazuki
S
. 
Diet and the risk of gastric cancer: review of epidemiological evidence
.
Gastric Cancer
2007
;
10
:
75
83
.
50.
Gaddy
JA
,
Radin
JN
,
Loh
JT
,
Zhang
F
,
Washington
MK
,
Peek
RM
 Jr
, et al
High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis
.
Infect Immun
2013
;
81
:
2258
67
.
51.
Loh
JT
,
Torres
VJ
,
Cover
TL
. 
Regulation of Helicobacter pylori cagA expression in response to salt
.
Cancer Res
2007
;
67
:
4709
15
.
52.
Brawley
OW
,
Thompson
IM
. 
Chemoprevention of prostate cancer
.
Urology
1994
;
43
:
594
9
.
53.
Thompson
IM
,
Goodman
PJ
,
Tangen
CM
,
Lucia
MS
,
Miller
GJ
,
Ford
LG
, et al
The influence of finasteride on the development of prostate cancer
.
N Engl J Med
2003
;
349
:
215
24
.
54.
Platz
EA
,
Giovannucci
E
. 
The epidemiology of sex steroid hormones and their signaling and metabolic pathways in the etiology of prostate cancer
.
J Steroid Biochem Mol Biol
2004
;
92
:
237
53
.
55.
Chalmers
I
,
Glasziou
P
. 
Avoidable waste in the production and reporting of research evidence
.
Lancet
2009
;
374
:
86
9
.
56.
Vandenbroucke
JP
,
von Elm
E
,
Altman
DG
,
Gotzsche
PC
,
Mulrow
CD
,
Pocock
SJ
, et al
Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration
.
Int J Surg
2014
;
12
:
1500
24
.
57.
Moher
D
,
Liberati
A
,
Tetzlaff
J
,
Altman
DG
. 
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
.
Ann Intern Med
2009
;
151
:
264
9
.
58.
Hill
AB
. 
The environment and disease: association or causation?
Proc R Soc Med
1965
;
58
:
295
300
.
59.
Minelli
C
,
Baio
G
. 
Value of information: a tool to improve research prioritization and reduce waste
.
PLoS Med
2015
;
12
:
e1001882
.
60.
Macleod
MR
,
Michie
S
,
Roberts
I
,
Dirnagl
U
,
Chalmers
I
,
Ioannidis
JP
, et al
Biomedical research: increasing value, reducing waste
.
Lancet
2014
;
383
:
101
4
.

Supplementary data