Background: Radiation exposure is a well-documented risk factor for thyroid cancer; diagnostic imaging represents an increasing source of exposure. Germline variations in DNA repair genes could increase risk of developing thyroid cancer following diagnostic radiation exposure. No studies have directly tested for interaction between germline mutations and radiation exposure.

Methods: Using data and DNA samples from a Connecticut population–based case–control study performed in 2010 to 2011, we genotyped 440 cases of incident thyroid cancer and 465 population-based controls for 296 SNPs in 52 DNA repair genes. We used multivariate unconditional logistic regression models to estimate associations between each SNP and thyroid cancer risk, as well as to directly estimate the genotype–environment interaction between each SNP and ionizing radiation.

Results: Three SNPs were associated with increased risk of thyroid cancer and with thyroid microcarcinoma: HUS rs2708896, HUS rs10951937, and MGMT rs12769288. No SNPs were associated with increased risk of larger tumor (>10 mm) in the additive model. The gene–environment interaction analysis yielded 24 SNPs with Pinteraction < 0.05 for all thyroid cancer, 12 SNPs with Pinteraction < 0.05 for thyroid microcarcinoma, and 5 SNPs with Pinteraction < 0.05 for larger tumors.

Conclusions: Germline variants in DNA repair genes are associated with thyroid cancer risk and are differentially associated with thyroid microcarcinoma and large tumor size. Our study provides the first evidence that germline genetic variations modify the association between diagnostic radiation and thyroid cancer risk.

Impact: Thyroid microcarcinoma may represent a distinct subset of thyroid cancer. The effect of diagnostic radiation on thyroid cancer risk varies by germline polymorphism. Cancer Epidemiol Biomarkers Prev; 27(3); 285–94. ©2017 AACR.

The link between ionizing radiation and thyroid cancer, particularly papillary thyroid carcinoma (PTC), has been well characterized in the literature. Given the rapidly increasing use of diagnostic radiation in health care settings, iatrogenic PTC is a potential sequela of routine medical workups (1) that should be mitigated as much as possible through primary prevention efforts.

DNA repair pathways work to protect the body from DNA damage caused by ionizing radiation and other mutagenic sources in the environment. These pathways include nonhomologous end joining, homologous recombination, nucleotide excision repair, and base excision repair, as well as direct reversal of DNA damage. Mutations in any of these pathways, whether acquired during life or inherited at birth, might alter an individual's lifetime risk of carcinogenesis, especially for individuals who have been exposed to higher lifetime doses of ionizing radiation.

The literature of recent years has started to examine the role of somatic mutations in PTC carcinogenesis, such as RET/PTC and other chromosomal arrangements (2, 3). However, the role of germline mutations in PTC development remains poorly documented. Furthermore, no studies to date have examined the role that such germline mutations might have in modifying the risk of PTC due to ionizing radiation. Here, we test the hypothesis that germline variations in DNA repair genes are associated with risk of PTC and, furthermore, that these variations further modify the effects of ionizing radiation on PTC risk. We do so by evaluating 299 SNPs in 52 genes related to DNA repair, using data from the Connecticut population–based case–control study.

Study participants

Details of the population-based case–control study were described in previous publications (1, 4). We identified cases of histologically confirmed, incident thyroid cancer via the Yale Cancer Center's Rapid Case Ascertainment Shared Resource. A total of 462 of the eligible cases (65.9% of all eligible cases) completed in-person interviews and were included in our study. Connecticut residents who had no lifetime history of cancer of any type were recruited via random-digit dialing as population-based controls. A total of 498 individuals participated as controls in the study. Cases and controls were frequency matched by age (±5 years). The study was approved by the Human Investigations Committee at Yale and the Connecticut Department of Public Health. Written informed consent was obtained from each participant.

SNP genotyping

After undergoing the standardized interview process described previously, a total of 448 thyroid cancer cases and 465 controls donated samples of venipuncture whole blood. Peripheral blood leukocyte DNA was extracted using the Qiagen Phenol-Chloroform Extraction Kit (Qiagen, N.V.) according to standard manufacturer protocol. DNA was then genotyped using a custom-made Golden Gate Illumina assay. Genotyping data were successfully obtained for 440 thyroid carcinoma cases and 465 controls. The GoldenGate assay included analysis of 299 SNPs in 52 gene regions involved in DNA repair, based on statistical significance previously demonstrated at the SNP and gene levels in the 2011 analysis by Neta and colleagues (included in our analysis were all individual SNPs that had demonstrated a significance of Psnp < 0.1 in the study by Neta and colleagues, as well as all additional SNPs associated with gene regions with Pgene < 0.1 in the same study; ref. 5). Quality control duplicate samples were also included in the genotyping platform. All duplicate samples yielded a concordance rate of ≥99%. Hardy–Weinberg equilibrium (HWE) was assessed in controls for each SNP using a χ2 test. SNPs with a P > 0.00001 from the χ2 test were considered to be in HWE. Of the 299 SNPs tested, 3 SNPs were not in HWE and were excluded from the final analyses.

Statistical analysis

Unconditional logistic regression models were employed to estimate risk and to calculate ORs and 95% confidence intervals (CIs), adjusting for age, gender, and race. For each SNP of interest, the common homozygote was treated as the reference. We tested for linear trend using an additive model that assigned a value of 0 to common heterozygotes, 1 to heterozygotes (single variant), and 2 to rare homozygotes (double variant). We also compared the sum of heterozygotes and rare homozygotes with the common allele homozygote for each SNP to test for the collective significance of variation compared with the common allele. To control for race, subgroup analysis was performed using only Caucasian participants as the cases and controls. Further subgroup analysis was performed for PTC, PTC microcarcinoma (n = 163), and PTC large tumor size (n = 168). A final subgroup analysis used “PTC microcarcinoma” as cases and “PTC large tumor size” as controls.

Gene–environment interaction analysis

For the gene–environment interaction analysis, exposure to diagnostic radiation was defined as exposure to any of the following procedures: (i) upper gastrointestinal series; (ii) lower gastrointestinal series; (iii) chest X-rays; (iv) head and neck CT scans; (v) chest CT scans; (vi) abdominal CT scans; (vii) pelvic CT scans; (viii) nuclear cardiology tests; (ix) thyroid uptake studies using I-131 or another radioactive agent; (x) nuclear medicine tests, including bone, brain, liver scans, or other studies that utilize pretest injection of a radioactive agent; (xi) kidney X-rays involving dye injection into a vein or artery; and (xii) mammograms. Nonexposure was defined as lack of exposure to any of these 12 procedures. An unconditional logistic regression model was used to estimate the ORs and 95% CIs for association between exposure to diagnostic X-rays and risk of thyroid cancer and its subtypes in different genotypic strata. To increase statistical power, the heterozygous and homozygous variant genotypes were combined for each SNP and compared with the “common homozygous” genotype. The significance of gene–exposure interaction was assessed by adding an interaction term in the logistic models. Results were adjusted for age (continuous), gender, race, and body mass index (BMI).

We used an a priori significance level of 0.01 for each test rather than a Bonferroni correction because the Bonferroni correction is overly conservative when hypothesis tests are correlated (6, 7). A significance level of 0.01 will increase the type I error rate to the point of certainly identifying some false positive findings. However, it will also reduce the number of false negative findings and, thus, the actual α is likely to be substantially less than the nominal α in this case. All P values presented were two-sided. All analyses were performed using Statistical Analysis Software, version 9.3 (SAS Institute, Cary, NC).

Table 1 displays selected demographic characteristics of cases and controls. Distribution of these characteristics was similar to that obtained for the original population (1). Supplementary Table S1 lists the genes represented in our analysis, grouped by category and displaying the number of analyzed SNPs per gene.

Table 1.

Distribution of selected characteristics among thyroid cancer cases and controls

Cases (n = 440)Controls (n = 465)
Number (%)Number (%)P
Age (years)   0.0001 
 <40 84 (19.1) 61 (13.1)  
 40–49 112 (25.5) 117 (25.2)  
 50–59 140 (31.8) 126 (27.1)  
 60–69 78 (17.7) 94 (20.2)  
 ≥70 26 (5.9) 67 (14.4)  
Gender   <0.0001 
 Male 84 (19.1) 145 (31.2)  
 Female 356 (80.9) 320 (68.8)  
Race   0.21 
 White 396 (90.0) 427 (91.8)  
 Black 16 (3.6) 20 (4.3)  
 Other 28 (6.4) 18 (3.9)  
BMI (kg/m2  0.0005 
 <25 140 (31.8) 185 (39.8)  
 25–29.9 138 (31.4) 160 (34.3)  
 ≥30 159 (36.1) 112 (24.1)  
 Missing 3 (0.7) 8 (1.7)  
Family history of thyroid cancer   0.0051 
 Yes 71 (16.1) 46 (9.9)  
 No 369 (83.9) 419 (90.1)  
Benign thyroid disease   <0.0001 
 Yes 56 (12.7) 12 (2.6)  
 No 384 (87.3) 453 (97.4)  
Cases (n = 440)Controls (n = 465)
Number (%)Number (%)P
Age (years)   0.0001 
 <40 84 (19.1) 61 (13.1)  
 40–49 112 (25.5) 117 (25.2)  
 50–59 140 (31.8) 126 (27.1)  
 60–69 78 (17.7) 94 (20.2)  
 ≥70 26 (5.9) 67 (14.4)  
Gender   <0.0001 
 Male 84 (19.1) 145 (31.2)  
 Female 356 (80.9) 320 (68.8)  
Race   0.21 
 White 396 (90.0) 427 (91.8)  
 Black 16 (3.6) 20 (4.3)  
 Other 28 (6.4) 18 (3.9)  
BMI (kg/m2  0.0005 
 <25 140 (31.8) 185 (39.8)  
 25–29.9 138 (31.4) 160 (34.3)  
 ≥30 159 (36.1) 112 (24.1)  
 Missing 3 (0.7) 8 (1.7)  
Family history of thyroid cancer   0.0051 
 Yes 71 (16.1) 46 (9.9)  
 No 369 (83.9) 419 (90.1)  
Benign thyroid disease   <0.0001 
 Yes 56 (12.7) 12 (2.6)  
 No 384 (87.3) 453 (97.4)  

The results of the additive model SNP analysis were similar for thyroid cancer and for PTC. HUS1 rs2708896 genotypes (Ptrend = 0.0057), HUS1 rs10951937 genotypes (Ptrend = 0.0070), and MGMT rs12769288 genotypes (Ptrend = 0.0023) were associated with PTC risk (Table 2). A number of other SNPs yielded statistically significant ORs for the heterozygous or the homozygous rare genotypes, but did not meet statistical significance in the additive model. These SNPs include EME2 rs2076431, MGMT rs10764901, RAD54B rs2046666, MBD4 rs4273365, and ATR rs10804682.

Table 2.

Statistically significant association between genotypes and risk of PTC among whites (n = 760)

ChromosomeGene nameSNPGenotypeCasesControlsOR (95% CI)P
HUS1 rs2708896 GG 99 108  
   TG 171 199 0.92 (0.65–1.30) 0.641180875 
   TT 63 120 0.55 (0.36–0.83) 0.004611807 
   Ptrend    0.00570544 
   TG & TT 234 319 0.78 (0.56–1.08) 0.133937371 
HUS1 rs10951937 TT 126 142  
   TG 161 185 0.98 (0.70–1.35) 0.886392195 
   GG 46 100 0.51 (0.33–0.79) 0.002373343 
   Ptrend    0.00704081 
   GG & TG 207 285 0.81 (0.60–1.10) 0.182937296 
10 MGMT rs12769288 CC 276 317  
   TC 55 101 0.62 (0.43–0.90) 0.012889857 
   TT 0.23 (0.05–1.10) 0.065342142 
   Ptrend    0.0023066 
   TC & TT 57 110 0.59 (0.41–0.85) 0.004426897 
ChromosomeGene nameSNPGenotypeCasesControlsOR (95% CI)P
HUS1 rs2708896 GG 99 108  
   TG 171 199 0.92 (0.65–1.30) 0.641180875 
   TT 63 120 0.55 (0.36–0.83) 0.004611807 
   Ptrend    0.00570544 
   TG & TT 234 319 0.78 (0.56–1.08) 0.133937371 
HUS1 rs10951937 TT 126 142  
   TG 161 185 0.98 (0.70–1.35) 0.886392195 
   GG 46 100 0.51 (0.33–0.79) 0.002373343 
   Ptrend    0.00704081 
   GG & TG 207 285 0.81 (0.60–1.10) 0.182937296 
10 MGMT rs12769288 CC 276 317  
   TC 55 101 0.62 (0.43–0.90) 0.012889857 
   TT 0.23 (0.05–1.10) 0.065342142 
   Ptrend    0.0023066 
   TC & TT 57 110 0.59 (0.41–0.85) 0.004426897 

In the PTC subtype analysis, the variations in HUS1 rs2708896, HUS1 rs10951937, and MGMT rs12769288 all demonstrated statistically significant associations with PTC microcarcinoma in the additive model (Table 3). MGMT rs10764901, MBD4 rs4273365, and ATR rs10804682, along with RECQL rs12312710, yielded statistically significant ORs for the heterozygous or the homozygous rare genotypes, but did not meet statistical significance in the additive model. No SNPs displayed statistically significant associations with PTC large tumor size in the additive model. However, a number of SNPs did yield statistically significant ORs for the less common genotypes. These SNPs include EME2 rs2076431, OGG1 rs159154, OGG1 rs159153, XAB2 rs1674034, XAB2 rs794078, and ATR rs10804682. None of the SNPs listed above met statistical significance in the case–control analysis of microcarcinoma versus large tumor size.

Table 3.

Statistically significant association between genotypes and risk of papillary thyroid microcarcinoma among whites (n = 590)

ChromosomeGene nameSNPGenotypeCasesControlsOR (95% CI)P
HUS1 rs2708896 GG 53 108  
   TG 81 199 0.78 (0.51–1.21) 0.269937173 
   TT 29 120 0.46 (0.27–0.79) 0.004725606 
   Ptrend    0.005150922 
   TG & TT 110 319 0.66 (0.44–0.99) 0.047220849 
HUS1 rs10951937 TT 68 142  
   TG 78 185 0.86 (0.57–1.28) 0.447883484 
   GG 17 100 0.35 (0.19–0.65) 0.000708759 
   Ptrend    0.001602607 
   GG & TG 95 285 0.68 (0.47–1.00) 0.048742011 
10 MGMT rs12769288 CC 141 317  
   TC 20 101 0.43 (0.25–0.73) 0.001710087 
   TT 0.47 (0.10–2.26) 0.347352446 
   Ptrend    0.002130931 
   TC & TT 22 110 0.43 (0.26–0.72) 0.001229464 
ChromosomeGene nameSNPGenotypeCasesControlsOR (95% CI)P
HUS1 rs2708896 GG 53 108  
   TG 81 199 0.78 (0.51–1.21) 0.269937173 
   TT 29 120 0.46 (0.27–0.79) 0.004725606 
   Ptrend    0.005150922 
   TG & TT 110 319 0.66 (0.44–0.99) 0.047220849 
HUS1 rs10951937 TT 68 142  
   TG 78 185 0.86 (0.57–1.28) 0.447883484 
   GG 17 100 0.35 (0.19–0.65) 0.000708759 
   Ptrend    0.001602607 
   GG & TG 95 285 0.68 (0.47–1.00) 0.048742011 
10 MGMT rs12769288 CC 141 317  
   TC 20 101 0.43 (0.25–0.73) 0.001710087 
   TT 0.47 (0.10–2.26) 0.347352446 
   Ptrend    0.002130931 
   TC & TT 22 110 0.43 (0.26–0.72) 0.001229464 

We performed a post hoc analysis of the results for PTC large tumor size stratified by tumor size (11–15 mm, 16–30 mm, and >30 mm). This analysis revealed one SNP, rs1674034 in XAB2, that was significantly associated with PTC 16 to 30 mm (Ptrend = 0.0009 for all races, Ptrend = 0.0059 for Caucasians). No other SNPs remained significantly associated with any of the subgroups of PTC large tumor size after adjusting for race.

Supplementary Table S2 displays associations between diagnostic radiation exposure and risk of thyroid cancer among genotyped cases and controls. The results were similar to those obtained in the original 2015 analysis (1). The initial GxE analysis of thyroid cancer (Table 4) yielded 23 total SNPs with Pinteraction < 0.05. Only 3 of these SNPs reached a priori significance of Pinteraction < 0.01: ALKBH3 rs10768994 (Pinteraction = 0.0086), LIG1 rs2163619 (Pinteraction = 0.0060), and LIG1 rs10421339 (Pinteraction = 0.0081). Three more SNPs only achieved P < 0.05 but yielded large ORs: MGMT rs4750763 (OR = 3.79; CI, 1.44–9.98; Pinteraction = 0.015), MGMT rs1762444 (OR = 3.36; CI, 1.37–8.27; Pinteraction = 0.024), and RPA3 rs4720751 (OR = 2.91; CI, 1.39–6.09; Pinteraction = 0.034). When cases were restricted to PTC (Table 5), only LIG1 rs2163619 and LIG1 rs10421339 reached Pinteraction < 0.01. In total, the SNPs with Pinteraction < 0.05 for thyroid cancer included mutations in ALKBH3 (7), LIG1 (7), TOPBP1 (3), RPA3 (2), MGMT (2), PARP4 (1), and UBE2A (1). The thyroid microcarcinoma subanalysis (Table 6) yielded 12 SNPs with Pinteraction < 0.05, but only 1 SNP that reached a priori significance, XRCC2 rs10234749 (OR = 7.82; CI, 2.20–27.78; Pinteraction = 0.0041). Of the other 11 SNPs with Pinteraction < 0.05, 4 were associated with ALKBH3, 4 were associated with ERCC5, and one was associated with PARP4. The subanalysis of PTC microcarcinoma (Supplementary Table S3) yielded similar results. The subanalysis of thyroid cancer with large tumor size yielded 5 SNPs with Pinteraction < 0.05 (Supplementary Table S4). Three of these SNPs reached a priori significance: LIG1 rs251693 (OR = 2.20; CI, 1.02–4.73; Pinteraction = 0.0056), LIG1 rs2288878 (OR = 2.19; CI, 1.02–4.70; Pinteraction = 0.0040), and LIG1 rs274897 (OR = 2.26; CI, 1.05–4.87; Pinteraction = 0.0038). When cases were restricted to PTC, none of the SNPs remained significant.

Table 4.

Statistically significant effect modification of genotypes between diagnostic radiation exposure and risk of thyroid cancer (n = 905)

NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
TOPBP1_06 rs17301766       
   CC 21 40 1.00 269 260 1.96 (1.06–3.66) 
   TC or TT 15 12 1.00 134 152 0.81 (0.33–1.98) 
  Pinteraction      0.028 
TOPBP1_09 rs11706586       
   CC 20 40 1.00 267 262 2.06 (1.10–3.86) 
   TC or TT 15 12 1.00 135 151 0.85 (0.35–2.08) 
  Pinteraction      0.025 
TOPBP1_10 rs7349558       
   AA 22 40 1.00 270 257 1.94 (1.05–3.59) 
   AC or CC 14 12 1.00 133 156 0.79 (0.32–1.95) 
  Pinteraction      0.039 
RPA3_01 rs4720751       
   TT 20 24 1.00 175 217 0.85 (0.43–1.71) 
   TC or CC 15 28 1.00 227 196 2.91 (1.39–6.09) 
  Pinteraction      0.034 
RPA3_02 rs17136898       
   AA 22 41 1.00 301 292 2.11 (1.15–3.88) 
   AG or GG 13 11 1.00 101 121 0.78 (0.29–2.07) 
  Pinteraction      0.050 
XRCC2_01 rs10234749       
   CC 19 36 1.00 279 251 2.51 (1.32–4.75) 
   AC or AA 16 16 1.00 122 162 0.59 (0.25–1.44) 
  Pinteraction      0.025 
10 MGMT_02 rs1762444       
   GG 25 1.00 158 161 3.36 (1.37–8.27) 
   AG or AA 27 27 1.00 244 252 0.98 (0.52–1.85) 
  Pinteraction      0.024 
10 MGMT_32 rs12219606       
   CC 21 1.00 139 143 2.55 (0.98–6.65) 
   AC or AA 27 31 1.00 265 270 1.19 (0.65–2.16) 
  Pinteraction      0.049 
10 MGMT_36 rs4750763       
   AA 26 1.00 165 171 3.79 (1.44–9.98) 
   AC or CC 28 26 1.00 237 242 0.99 (0.54–1.85) 
  Pinteraction      0.015 
11 ALKBH3_03 rs11037690       
   GG 14 32 1.00 203 193 2.43 (1.15–5.14) 
   AG or AA 21 20 1.00 198 220 0.99 (0.48–2.02) 
  Pinteraction      0.029 
11 ALKBH3_14 rs10768994       
   TT 26 1.00 137 131 2.88 (1.13–7.29) 
   TC or CC 28 26 1.00 267 282 0.99 (0.53–1.84) 
  Pinteraction      0.0086 
11 ALKBH3_15 rs10768995       
   GG 21 19 1.00 146 158 0.97 (0.45–2.09) 
   GC or CC 14 33 1.00 256 255 2.37 (1.16–4.86) 
  Pinteraction      0.012 
11 ALKBH3_19 rs868784       
   CC 11 29 1.00 169 155 2.66 (1.16–6.12) 
   TC or TT 24 23 1.00 233 258 1.06 (0.54–2.05) 
  Pinteraction      0.018 
11 ALKBH3_20 rs3893853       
   CC 20 38 1.00 275 247 2.01 (1.06–3.82) 
   TC or TT 16 14 1.00 128 166 0.85 (0.36–1.98) 
  Pinteraction      0.014 
11 ALKBH3_21 rs4755217       
   TT 26 1.00 137 133 2.86 (1.13–7.24) 
   TC or CC 27 25 1.00 259 275 1.03 (0.55–1.95) 
  Pinteraction      0.014 
11 ALKBH3_22 rs1973717       
   CC 20 20 1.00 155 165 1.10 (0.52–2.34) 
   TC or TT 15 32 1.00 245 247 2.09 (1.03–4.26) 
  Pinteraction      0.045 
13 PARP4_04 rs4770687       
   GG 14 13 1.00 99 121 0.62 (0.23–1.65) 
   AG or AA 22 39 1.00 303 291 2.28 (1.24–4.19) 
  Pinteraction      0.043 
19 LIG1_01 rs251693       
   TT 16 18 1.00 112 138 0.71 (0.32–1.61) 
   TC or CC 19 34 1.00 291 275 2.51 (1.30–4.83) 
  Pinteraction      0.024 
19 LIG1_02 rs2288878       
   GG 16 18 1.00 108 137 0.72 (0.32–1.61) 
   AG or AA 20 34 1.00 294 276 2.36 (1.23–4.50) 
  Pinteraction      0.024 
19 LIG1_03 rs274897       
   CC 16 18 1.00 109 138 0.69 (0.30–1.55) 
   GC or GG 19 34 1.00 293 274 2.55 (1.32–4.91) 
  Pinteraction      0.020 
19 LIG1_04 rs2386523       
   CC 14 15 1.00 86 103 0.73 (0.30–1.80) 
   TC or TT 21 37 1.00 317 309 2.34 (1.25–4.38) 
  Pinteraction      0.025 
19 LIG1_05 rs2163619       
   GG 13 13 1.00 73 95 0.57 (0.22–1.50) 
   AG or AA 22 39 1.00 330 316 2.40 (1.30–4.42) 
  Pinteraction      0.0060 
19 LIG1_07 rs274873       
   AA 14 16 1.00 95 111 0.59 (0.24–1.46) 
   AG or GG 22 36 1.00 308 302 2.24 (1.21–4.15) 
  Pinteraction      0.035 
19 LIG1_10 rs10421339       
   GG 15 15 1.00 94 113 0.45 (0.18–1.16) 
   GC or CC 20 37 1.00 308 300 2.50 (1.34–4.69) 
  Pinteraction      0.0081 
UBE2A_01 rs5910616       
   GG 33 43 1.00 309 328 1.28 (0.75–2.19) 
   AG or GG 1.00 91 85 6.82 (1.08–43.08) 
  Pinteraction      0.043 
NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
TOPBP1_06 rs17301766       
   CC 21 40 1.00 269 260 1.96 (1.06–3.66) 
   TC or TT 15 12 1.00 134 152 0.81 (0.33–1.98) 
  Pinteraction      0.028 
TOPBP1_09 rs11706586       
   CC 20 40 1.00 267 262 2.06 (1.10–3.86) 
   TC or TT 15 12 1.00 135 151 0.85 (0.35–2.08) 
  Pinteraction      0.025 
TOPBP1_10 rs7349558       
   AA 22 40 1.00 270 257 1.94 (1.05–3.59) 
   AC or CC 14 12 1.00 133 156 0.79 (0.32–1.95) 
  Pinteraction      0.039 
RPA3_01 rs4720751       
   TT 20 24 1.00 175 217 0.85 (0.43–1.71) 
   TC or CC 15 28 1.00 227 196 2.91 (1.39–6.09) 
  Pinteraction      0.034 
RPA3_02 rs17136898       
   AA 22 41 1.00 301 292 2.11 (1.15–3.88) 
   AG or GG 13 11 1.00 101 121 0.78 (0.29–2.07) 
  Pinteraction      0.050 
XRCC2_01 rs10234749       
   CC 19 36 1.00 279 251 2.51 (1.32–4.75) 
   AC or AA 16 16 1.00 122 162 0.59 (0.25–1.44) 
  Pinteraction      0.025 
10 MGMT_02 rs1762444       
   GG 25 1.00 158 161 3.36 (1.37–8.27) 
   AG or AA 27 27 1.00 244 252 0.98 (0.52–1.85) 
  Pinteraction      0.024 
10 MGMT_32 rs12219606       
   CC 21 1.00 139 143 2.55 (0.98–6.65) 
   AC or AA 27 31 1.00 265 270 1.19 (0.65–2.16) 
  Pinteraction      0.049 
10 MGMT_36 rs4750763       
   AA 26 1.00 165 171 3.79 (1.44–9.98) 
   AC or CC 28 26 1.00 237 242 0.99 (0.54–1.85) 
  Pinteraction      0.015 
11 ALKBH3_03 rs11037690       
   GG 14 32 1.00 203 193 2.43 (1.15–5.14) 
   AG or AA 21 20 1.00 198 220 0.99 (0.48–2.02) 
  Pinteraction      0.029 
11 ALKBH3_14 rs10768994       
   TT 26 1.00 137 131 2.88 (1.13–7.29) 
   TC or CC 28 26 1.00 267 282 0.99 (0.53–1.84) 
  Pinteraction      0.0086 
11 ALKBH3_15 rs10768995       
   GG 21 19 1.00 146 158 0.97 (0.45–2.09) 
   GC or CC 14 33 1.00 256 255 2.37 (1.16–4.86) 
  Pinteraction      0.012 
11 ALKBH3_19 rs868784       
   CC 11 29 1.00 169 155 2.66 (1.16–6.12) 
   TC or TT 24 23 1.00 233 258 1.06 (0.54–2.05) 
  Pinteraction      0.018 
11 ALKBH3_20 rs3893853       
   CC 20 38 1.00 275 247 2.01 (1.06–3.82) 
   TC or TT 16 14 1.00 128 166 0.85 (0.36–1.98) 
  Pinteraction      0.014 
11 ALKBH3_21 rs4755217       
   TT 26 1.00 137 133 2.86 (1.13–7.24) 
   TC or CC 27 25 1.00 259 275 1.03 (0.55–1.95) 
  Pinteraction      0.014 
11 ALKBH3_22 rs1973717       
   CC 20 20 1.00 155 165 1.10 (0.52–2.34) 
   TC or TT 15 32 1.00 245 247 2.09 (1.03–4.26) 
  Pinteraction      0.045 
13 PARP4_04 rs4770687       
   GG 14 13 1.00 99 121 0.62 (0.23–1.65) 
   AG or AA 22 39 1.00 303 291 2.28 (1.24–4.19) 
  Pinteraction      0.043 
19 LIG1_01 rs251693       
   TT 16 18 1.00 112 138 0.71 (0.32–1.61) 
   TC or CC 19 34 1.00 291 275 2.51 (1.30–4.83) 
  Pinteraction      0.024 
19 LIG1_02 rs2288878       
   GG 16 18 1.00 108 137 0.72 (0.32–1.61) 
   AG or AA 20 34 1.00 294 276 2.36 (1.23–4.50) 
  Pinteraction      0.024 
19 LIG1_03 rs274897       
   CC 16 18 1.00 109 138 0.69 (0.30–1.55) 
   GC or GG 19 34 1.00 293 274 2.55 (1.32–4.91) 
  Pinteraction      0.020 
19 LIG1_04 rs2386523       
   CC 14 15 1.00 86 103 0.73 (0.30–1.80) 
   TC or TT 21 37 1.00 317 309 2.34 (1.25–4.38) 
  Pinteraction      0.025 
19 LIG1_05 rs2163619       
   GG 13 13 1.00 73 95 0.57 (0.22–1.50) 
   AG or AA 22 39 1.00 330 316 2.40 (1.30–4.42) 
  Pinteraction      0.0060 
19 LIG1_07 rs274873       
   AA 14 16 1.00 95 111 0.59 (0.24–1.46) 
   AG or GG 22 36 1.00 308 302 2.24 (1.21–4.15) 
  Pinteraction      0.035 
19 LIG1_10 rs10421339       
   GG 15 15 1.00 94 113 0.45 (0.18–1.16) 
   GC or CC 20 37 1.00 308 300 2.50 (1.34–4.69) 
  Pinteraction      0.0081 
UBE2A_01 rs5910616       
   GG 33 43 1.00 309 328 1.28 (0.75–2.19) 
   AG or GG 1.00 91 85 6.82 (1.08–43.08) 
  Pinteraction      0.043 

aAdjusted for age (continuous), gender, race, and BMI.

Table 5.

Statistically significant effect modification of genotypes between diagnostic radiation exposure and risk of PTC (n = 838)

NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
TOPBP1_06 rs17301766       
   CC 21 40 1.00 221 260 1.62 (0.86–3.06) 
   TC or TT 14 12 1.00 116 152 0.79 (0.32–1.96) 
  Pinteraction      0.044 
TOPBP1_09 rs11706586       
   CC 20 40 1.00 221 262 1.73 (0.91–3.27) 
   TC or TT 14 12 1.00 115 151 0.81 (0.33–2.01) 
  Pinteraction      0.035 
RPA3_01 rs4720751       
   TT 19 24 1.00 141 217 0.69 (0.33–1.41) 
   TC or CC 15 28 1.00 196 196 2.73 (1.29–5.75) 
  Pinteraction      0.024 
HUS1_03 rs3176595       
   GG 31 36 1.00 261 328 1.03 (0.59–1.82) 
   AG or AA 16 1.00 74 84 4.20 (1.09–16.23) 
  Pinteraction      0.033 
XRCC2_01 rs10234749       
   CC 18 36 1.00 231 251 2.24 (1.16–4.32) 
   AC or AA 16 16 1.00 104 162 0.50 (0.20–1.24) 
  Pinteraction      0.026 
10 MGMT_02 rs1762444       
   GG 25 1.00 131 161 2.86 (1.15–7.11) 
   AG or AA 26 27 1.00 205 252 0.84 (0.44–1.62) 
  Pinteraction      0.025 
10 MGMT_36 rs4750763       
   AA 26 1.00 137 171 3.49 (1.30–9.39) 
   AC or CC 27 26 1.00 199 242 0.85 (0.45–1.59) 
  Pinteraction      0.016 
11 ALKBH3_03 rs11037690       
   GG 13 32 1.00 171 193 2.16 (0.99–4.72) 
   AG or AA 21 20 1.00 164 220 0.88 (0.43–1.81) 
  Pinteraction      0.026 
11 ALKBH3_14 rs10768994       
   TT 26 1.00 115 131 2.40 (0.93–6.17) 
   TC or CC 27 26 1.00 223 282 0.87 (0.46–1.63) 
  Pinteraction      0.010 
11 ALKBH3_15 rs10768995       
   GG 21 19 1.00 124 158 0.83 (0.38–1.80) 
   GC or CC 13 33 1.00 212 255 2.21 (1.05–4.64) 
  Pinteraction      0.011 
11 ALKBH3_19 rs868784       
   CC 10 29 1.00 144 155 2.40 (1.01–5.72) 
   TC or TT 24 23 1.00 193 258 0.92 (0.47–1.80) 
  Pinteraction      0.014 
11 ALKBH3_20 rs3893853       
   CC 19 38 1.00 231 247 1.72 (0.89–3.34) 
   TC or TT 16 14 1.00 106 166 0.74 (0.31–1.74) 
  Pinteraction      0.013 
11 ALKBH3_21 rs4755217       
   TT 26 1.00 116 133 2.47 (0.96–6.32) 
   TC or CC 26 25 1.00 214 275 0.90 (0.47–1.72) 
  Pinteraction      0.015 
11 ALKBH3_22 rs1973717       
   CC 20 20 1.00 133 165 0.95 (0.44–2.04) 
   TC or TT 14 32 1.00 201 247 1.89 (0.91–3.96) 
  Pinteraction      0.048 
13 PARP4_04 rs4770687       
   GG 13 13 1.00 80 121 0.56 (0.20–1.55) 
   AG or AA 22 39 1.00 256 291 1.92 (1.04–3.54) 
  Pinteraction      0.042 
19 LIG1_01 rs251693       
   TT 16 18 1.00 93 138 0.55 (0.24–1.28) 
   TC or CC 18 34 1.00 244 275 2.33 (1.19–4.56) 
  Pinteraction      0.019 
19 LIG1_02 rs2288878       
   GG 16 18 1.00 90 137 0.55 (0.24–1.28) 
   AG or AA 19 34 1.00 246 276 2.20 (1.13–4.27) 
  Pinteraction      0.020 
19 LIG1_03 rs274897       
   CC 16 18 1.00 90 138 0.52 (0.22–1.21) 
   GC or GG 18 34 1.00 246 274 2.38 (1.22–4.67) 
  Pinteraction      0.015 
19 LIG1_04 rs2386523       
   CC 14 15 1.00 72 103 0.56 (0.22–1.43) 
   TC or TT 20 37 1.00 265 309 2.16 (1.14–4.10) 
  Pinteraction      0.020 
19 LIG1_05 rs2163619       
   GG 13 13 1.00 61 95 0.39 (0.14–1.12) 
   AG or AA 21 39 1.00 276 316 2.19 (1.17–4.09) 
  Pinteraction      0.0044 
19 LIG1_07 rs274873       
   AA 14 16 1.00 79 111 0.43 (0.16–1.11) 
   AG or GG 21 36 1.00 258 302 2.07 (1.10–3.90) 
  Pinteraction      0.026 
19 LIG1_10 rs10421339       
   GG 15 15 1.00 79 113 0.34 (0.12–0.91) 
   GC or CC 19 37 1.00 257 300 2.29 (1.20–4.36) 
  Pinteraction      0.0066 
UBE2A_01 rs5910616       
   GG 32 43 1.00 256 328 1.11 (0.64–1.92) 
   AG or AA 1.00 80 85 6.35 (1.00–40.40) 
  Pinteraction      0.034 
NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
TOPBP1_06 rs17301766       
   CC 21 40 1.00 221 260 1.62 (0.86–3.06) 
   TC or TT 14 12 1.00 116 152 0.79 (0.32–1.96) 
  Pinteraction      0.044 
TOPBP1_09 rs11706586       
   CC 20 40 1.00 221 262 1.73 (0.91–3.27) 
   TC or TT 14 12 1.00 115 151 0.81 (0.33–2.01) 
  Pinteraction      0.035 
RPA3_01 rs4720751       
   TT 19 24 1.00 141 217 0.69 (0.33–1.41) 
   TC or CC 15 28 1.00 196 196 2.73 (1.29–5.75) 
  Pinteraction      0.024 
HUS1_03 rs3176595       
   GG 31 36 1.00 261 328 1.03 (0.59–1.82) 
   AG or AA 16 1.00 74 84 4.20 (1.09–16.23) 
  Pinteraction      0.033 
XRCC2_01 rs10234749       
   CC 18 36 1.00 231 251 2.24 (1.16–4.32) 
   AC or AA 16 16 1.00 104 162 0.50 (0.20–1.24) 
  Pinteraction      0.026 
10 MGMT_02 rs1762444       
   GG 25 1.00 131 161 2.86 (1.15–7.11) 
   AG or AA 26 27 1.00 205 252 0.84 (0.44–1.62) 
  Pinteraction      0.025 
10 MGMT_36 rs4750763       
   AA 26 1.00 137 171 3.49 (1.30–9.39) 
   AC or CC 27 26 1.00 199 242 0.85 (0.45–1.59) 
  Pinteraction      0.016 
11 ALKBH3_03 rs11037690       
   GG 13 32 1.00 171 193 2.16 (0.99–4.72) 
   AG or AA 21 20 1.00 164 220 0.88 (0.43–1.81) 
  Pinteraction      0.026 
11 ALKBH3_14 rs10768994       
   TT 26 1.00 115 131 2.40 (0.93–6.17) 
   TC or CC 27 26 1.00 223 282 0.87 (0.46–1.63) 
  Pinteraction      0.010 
11 ALKBH3_15 rs10768995       
   GG 21 19 1.00 124 158 0.83 (0.38–1.80) 
   GC or CC 13 33 1.00 212 255 2.21 (1.05–4.64) 
  Pinteraction      0.011 
11 ALKBH3_19 rs868784       
   CC 10 29 1.00 144 155 2.40 (1.01–5.72) 
   TC or TT 24 23 1.00 193 258 0.92 (0.47–1.80) 
  Pinteraction      0.014 
11 ALKBH3_20 rs3893853       
   CC 19 38 1.00 231 247 1.72 (0.89–3.34) 
   TC or TT 16 14 1.00 106 166 0.74 (0.31–1.74) 
  Pinteraction      0.013 
11 ALKBH3_21 rs4755217       
   TT 26 1.00 116 133 2.47 (0.96–6.32) 
   TC or CC 26 25 1.00 214 275 0.90 (0.47–1.72) 
  Pinteraction      0.015 
11 ALKBH3_22 rs1973717       
   CC 20 20 1.00 133 165 0.95 (0.44–2.04) 
   TC or TT 14 32 1.00 201 247 1.89 (0.91–3.96) 
  Pinteraction      0.048 
13 PARP4_04 rs4770687       
   GG 13 13 1.00 80 121 0.56 (0.20–1.55) 
   AG or AA 22 39 1.00 256 291 1.92 (1.04–3.54) 
  Pinteraction      0.042 
19 LIG1_01 rs251693       
   TT 16 18 1.00 93 138 0.55 (0.24–1.28) 
   TC or CC 18 34 1.00 244 275 2.33 (1.19–4.56) 
  Pinteraction      0.019 
19 LIG1_02 rs2288878       
   GG 16 18 1.00 90 137 0.55 (0.24–1.28) 
   AG or AA 19 34 1.00 246 276 2.20 (1.13–4.27) 
  Pinteraction      0.020 
19 LIG1_03 rs274897       
   CC 16 18 1.00 90 138 0.52 (0.22–1.21) 
   GC or GG 18 34 1.00 246 274 2.38 (1.22–4.67) 
  Pinteraction      0.015 
19 LIG1_04 rs2386523       
   CC 14 15 1.00 72 103 0.56 (0.22–1.43) 
   TC or TT 20 37 1.00 265 309 2.16 (1.14–4.10) 
  Pinteraction      0.020 
19 LIG1_05 rs2163619       
   GG 13 13 1.00 61 95 0.39 (0.14–1.12) 
   AG or AA 21 39 1.00 276 316 2.19 (1.17–4.09) 
  Pinteraction      0.0044 
19 LIG1_07 rs274873       
   AA 14 16 1.00 79 111 0.43 (0.16–1.11) 
   AG or GG 21 36 1.00 258 302 2.07 (1.10–3.90) 
  Pinteraction      0.026 
19 LIG1_10 rs10421339       
   GG 15 15 1.00 79 113 0.34 (0.12–0.91) 
   GC or CC 19 37 1.00 257 300 2.29 (1.20–4.36) 
  Pinteraction      0.0066 
UBE2A_01 rs5910616       
   GG 32 43 1.00 256 328 1.11 (0.64–1.92) 
   AG or AA 1.00 80 85 6.35 (1.00–40.40) 
  Pinteraction      0.034 

aAdjusted for age (continuous), gender, race, and BMI.

Table 6.

Statistically significant effect modification of genotypes between diagnostic radiation exposure and risk of thyroid microcarcinoma (n = 672)

NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
XRCC2_01 rs10234749       
   CC 36 1.00 135 251 7.82 (2.20–27.78) 
   AC or AA 16 1.00 60 162 0.65 (0.20–2.11) 
  Pinteraction      0.0041 
10 MGMT_33 rs10829618       
   GG 41 1.00 122 264 7.16 (2.02–25.39) 
   GC or CC 11 1.00 75 149 0.99 (0.32–3.12) 
  Pinteraction      0.036 
10 MGMT_39 rs4751112       
   AA 39 1.00 118 256 6.78 (1.89–24.30) 
   AG or GG 13 1.00 79 157 1.01 (0.34–2.99) 
  Pinteraction      0.045 
11 ALKBH3_01 rs12804822       
   AA 33 1.00 109 232 8.92 (1.96–40.55) 
   AC or CC 19 1.00 88 181 1.23 (0.44–3.46) 
  Pinteraction      0.022 
11 ALKBH3_07 rs3740983       
   TT 32 1.00 104 224 9.52 (2.07–43.81) 
   TG or GG 20 1.00 93 189 1.29 (0.47–3.53) 
  Pinteraction      0.030 
11 ALKBH3_08 rs7482199       
   TT 34 1.00 103 231 8.97 (1.97–40.92) 
   TC or CC 18 1.00 94 182 1.15 (0.43–3.07) 
  Pinteraction      0.018 
11 ALKBH3_11 rs11037726       
   AA 34 1.00 106 233 9.01 (1.97–41.15) 
   TA or TT 18 1.00 91 179 1.17 (0.44–3.15) 
  Pinteraction      0.017 
13 PARP4_04 rs4770687       
   GG 13 1.00 48 121 0.62 (0.18–2.16) 
   AG or AA 39 1.00 148 291 5.73 (1.89–17.40) 
  Pinteraction      0.020 
13 ERCC5_07 rs4150355       
   GG 22 1.00 77 173 1.35 (0.49–3.69) 
   AG or AA 30 1.00 120 240 8.01 (1.72–37.23) 
  Pinteraction      0.033 
13 ERCC5_11 rs17655       
   GG 29 1.00 102 244 0.95 (0.39–2.35) 
   CG or CC 23 1.00 95 169 21.97 (2.74–176.47) 
  Pinteraction      0.030 
13 ERCC5_13 rs9586002       
   GG 31 1.00 120 243 8.88 (1.96–40.16) 
   TG or TT 21 1.00 77 170 1.11 (0.40–3.10) 
  Pinteraction      0.033 
13 ERCC5_14 rs1886087       
   AA 16 1.00 52 111 1.47 (0.47–4.62) 
   TA or TT 36 1.00 145 302 5.77 (1.62–20.54) 
  Pinteraction      0.036 
NonexposedExposed
ChromosomeGene nameGenotypeCasesControlsORa (95% CI)CasesControlsORa (95% CI)
XRCC2_01 rs10234749       
   CC 36 1.00 135 251 7.82 (2.20–27.78) 
   AC or AA 16 1.00 60 162 0.65 (0.20–2.11) 
  Pinteraction      0.0041 
10 MGMT_33 rs10829618       
   GG 41 1.00 122 264 7.16 (2.02–25.39) 
   GC or CC 11 1.00 75 149 0.99 (0.32–3.12) 
  Pinteraction      0.036 
10 MGMT_39 rs4751112       
   AA 39 1.00 118 256 6.78 (1.89–24.30) 
   AG or GG 13 1.00 79 157 1.01 (0.34–2.99) 
  Pinteraction      0.045 
11 ALKBH3_01 rs12804822       
   AA 33 1.00 109 232 8.92 (1.96–40.55) 
   AC or CC 19 1.00 88 181 1.23 (0.44–3.46) 
  Pinteraction      0.022 
11 ALKBH3_07 rs3740983       
   TT 32 1.00 104 224 9.52 (2.07–43.81) 
   TG or GG 20 1.00 93 189 1.29 (0.47–3.53) 
  Pinteraction      0.030 
11 ALKBH3_08 rs7482199       
   TT 34 1.00 103 231 8.97 (1.97–40.92) 
   TC or CC 18 1.00 94 182 1.15 (0.43–3.07) 
  Pinteraction      0.018 
11 ALKBH3_11 rs11037726       
   AA 34 1.00 106 233 9.01 (1.97–41.15) 
   TA or TT 18 1.00 91 179 1.17 (0.44–3.15) 
  Pinteraction      0.017 
13 PARP4_04 rs4770687       
   GG 13 1.00 48 121 0.62 (0.18–2.16) 
   AG or AA 39 1.00 148 291 5.73 (1.89–17.40) 
  Pinteraction      0.020 
13 ERCC5_07 rs4150355       
   GG 22 1.00 77 173 1.35 (0.49–3.69) 
   AG or AA 30 1.00 120 240 8.01 (1.72–37.23) 
  Pinteraction      0.033 
13 ERCC5_11 rs17655       
   GG 29 1.00 102 244 0.95 (0.39–2.35) 
   CG or CC 23 1.00 95 169 21.97 (2.74–176.47) 
  Pinteraction      0.030 
13 ERCC5_13 rs9586002       
   GG 31 1.00 120 243 8.88 (1.96–40.16) 
   TG or TT 21 1.00 77 170 1.11 (0.40–3.10) 
  Pinteraction      0.033 
13 ERCC5_14 rs1886087       
   AA 16 1.00 52 111 1.47 (0.47–4.62) 
   TA or TT 36 1.00 145 302 5.77 (1.62–20.54) 
  Pinteraction      0.036 

aAdjusted for age (continuous), gender, race, and BMI.

The role of germline mutations in thyroid cancer and PTC has thus far received limited investigation. Gudmundsson and colleagues (8) performed a genome-wide association study (GWAS) to search for PTC susceptibility loci and uncovered two candidate SNPs. Individuals homozygous for both variant SNPs carried an estimated thyroid cancer risk more than five times greater than that of noncarriers. The authors replicated these results in two populations of European descent. Further studies have identified additional susceptibility loci (9, 10)

Most extant candidate gene studies of PTC have only examined up to 5 to 10 SNPs each (11–15). However, the study performed by Neta and colleagues in 2011 tested 5,077 SNPs from 340 candidate genes involved in genomic integrity (5). This study revealed 9 genomic integrity SNPs associated with PTC risk with Ptrend < 0.0005, as well as 7 gene regions associated with PTC risk with Ptrend < 0.01, although none of these SNPs remained statistically significant after adjustment for FDR. Three of the identified SNPs (HUS1 rs2708906, ALKBH3 rs10838192, and MGMT rs4751109), and two of the identified gene regions (HUS1 and ALKBH3), correspond to genes involved in DNA repair. These promising results have merited validation.

Our study identifies a number of SNPs in DNA repair genes statistically significant associated with PTC. Among these genes are the three identified by Neta and colleagues: HUS1, MGMT, and ALKBH3. The HUS1 protein forms a complex with two other proteins, RAD1 and RAD9, and deposits in regions of damaged DNA. This activates the ATR kinase signaling cascade and thus the overall cellular response to DNA damage (16). MGMT repairs mutagenic methylguanine lesions generated by alkylating agents; decreased expression has been linked to increased incidence of gliomas (17) and testicular germ cell tumors (18). ALKBH3 plays a similar role by removing 1-methyladenine and 3-methylcytosine lesions from DNA (19).

Interestingly, our subanalysis reveals SNPs being differentially associated with PTC microcarcinoma and PTC larger tumor. For example, significant mutations in HUS1 and MGMT were identified in microcarcinoma but not in larger tumor. Other mutations, such as those in XAB2 and OGG1, only showed association with larger tumor. None of these SNPs yielded significant values in the head-to-head comparison of microcarcinoma versus larger tumor (one possible explanation could be that some “microcarcinoma” cases in fact represent a misclassification of larger tumors in their early stages of development). The differential association of SNPs with tumor sizes suggests that there might be underlying biological differences between microcarcinomas and larger tumors, which would merit further genomic investigation.

Our study is the first to examine interaction between SNPs and lifetime exposure to ionizing radiation. The GxE analyses revealed significant SNPs linked to MGMT and ALKBH3 (described previously) as well as in four additional genes: ERCC5, PARP1, XRCC2, and LIG1. The ERCC5 endonuclease makes the 3′ incision in DNA excision repair following UV-induced damage (20). Genetic variation in ERCC5 has been associated with risk of lung cancer (21), gastric cancer (22), and xeroderma pigmentosum (23). XRCC2 and PARP1 are both involved in homologous recombination. XRCC2-deficient cells appear more sensitive to PARP1 inhibitors than XRCC2-expressing cells, suggesting that XRCC2 and PARP1 share a DNA repair pathway (24). The LIG1 ligase is involved in DNA replication, recombination, and base excision repair (25); LIG1 germline polymorphisms have been associated with non–small cell lung cancer (26, 27). SNPs in LIG1 appeared to be most strongly associated with larger tumor in this study, whereas the SNPs in ERCC5, PARP1, and XRCC2 displayed association with microcarcinoma.

None of our significant SNPs were in protein-coding regions. SNPs within introns might affect RNA splicing patterns and thus upregulate or downregulate key DNA repair protein products (28). In particular, SNPs that alter the usual pattern of exonic splicing enhancers (ESE) could affect spliceosome assembly and lead to exon skipping (29). To investigate this hypothesis, we used ESEFinder (Cold Spring Harbor Laboratory) to test 43 of our most significant SNP “hits” for changes in their pattern of ESEs. Thirty-three SNPs demonstrated the potential to modify at least one ESE (Supplementary Table S5). SNPs located upstream of genes could be involved with promotor or regulator sequences, influencing the amount of RNA transcribed in various biological circumstances (30). Mounting evidence suggests that a majority of gene–environment interaction is determined by distant regulatory sequences (31). We did not directly test for cellular RNA or protein content, but further biological experiments could test for evidence differential gene transcription and RNA modification.

An important limitation of the current study is the sample size, which, although larger than those of previous candidate SNP studies, still proved insufficient to detect SNPs with unequivocal statistical significance after Bonferroni correction for multiple comparison. SNP validation would require an even larger pool of cases and controls. A larger sample size would also increase confidence in certain “significant” results that are based on very small sample sizes. Finally, although our post hoc analysis of large tumor size subsets suggests that additional SNP associations might exist, the current study was not powered to detect such associations.

Recall bias must be considered in this study. Data on diagnostic radiography exposure relied upon self-reporting by cases and controls, rather than health record documentation. However, as described in our previous publication, other studies (32–34) have suggested nondifferential reporting error between thyroid cancer cases and controls. Even if differential recall bias were a possibility for subjects in a particular age range (35), our age-stratified analysis of the original data described previously was unable to uncover evidence of such bias in our own findings. Furthermore, our significant findings are limited to thyroid microcarcinoma. In addition, diverse types of diagnostic radiation exposure were combined, which might cause potential exposure misclassification. In gene–environment interaction studies, both differential and nondifferential misclassification of a binary environmental factor biases a multiplicative interaction effect toward the null (36).

As previously discussed, our candidate gene approach likely misses many potentially significant regions of the genome. A fruitful future direction for this work would be performing a GWAS using a randomly selected subset of our cases and controls, to identify novel regions of genomic significance.

Conclusion

This study provides further evidence that germline mutations in DNA repair genes are significantly associated with risk of thyroid cancer and PTC. It suggests that microcarcinoma, which is particularly associated with diagnostic radiation exposure, represents a distinct subset of thyroid cancer and PTC with its own biological signature. Finally, our study provides novel evidence to suggest a significant interaction between germline mutations in DNA repair genes and ionizing radiation in the pathogenesis of thyroid cancer. These results merit replication with larger sample sizes and alternative study methods to establish statistical significance, and to further explore the basis of the molecular biology behind them.

No potential conflicts of interest were disclosed.

The authors assume full responsibility for analyses and interpretation of these results.

Conception and design: R. Udelsman, Y. Zhang

Development of methodology: J.E. Sandler, Y. Zhang

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.E. Sandler, H. Huang, N. Zhao, W. Wu, F. Liu, S. Ma, R. Udelsman

Writing, review, and/or revision of the manuscript: J.E. Sandler, H. Huang, S. Ma, R. Udelsman, Y. Zhang

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): N. Zhao, F. Liu, Y. Zhang

Study supervision: Y. Zhang

This research was supported by the American Cancer Society grant RSGM-10-038-01-CCE (to Y. Zhang) and the NIH grant R01ES020361 (to Y. Zhang).

We gratefully acknowledge Dr. Alina Brenner, Dr. Gila Neta, and Dr. Alice Sigurdson of the NCI for consulting on this project.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Zhang
Y
,
Chen
Y
,
Huang
H
,
Sandler
JE
,
Dai
M
,
Ma
S
, et al
Diagnostic radiography exposure increases the risk for thyroid microcarcinoma: a population-based case-control study
.
Eur J Cancer Prev
2015
;
24
:
439
46
.
2.
Gandhi
M
,
Evdokimova
V
,
Nikiforov
YE
. 
Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma
.
Mol Cell Endocrinol
2010
;
321
:
36
43
.
3.
Rubinstein
JC
,
Brown
TC
,
Christison-Lagay
ER
,
Zhang
Y
,
Kunstman
JW
,
Juhlin
CC
, et al
Shifting patterns of genomic variation in the somatic evolution of papillary thyroid carcinoma
.
BMC Cancer
2016
;
16
:
646
.
4.
Ba
Y
,
Huang
H
,
Lerro
CC
,
Li
S
,
Zhao
N
,
Li
A
, et al
Occupation and thyroid cancer: a population-based, case-control study in Connecticut
.
J Occup Environ Med
2016
;
58
:
299
305
.
5.
Neta
G
,
Brenner
AV
,
Sturgis
EM
,
Pfeiffer
RM
,
Hutchinson
AA
,
Aschebrook-Kilfoy
B
, et al
Common genetic variants related to genomic integrity and risk of papillary thyroid cancer
.
Carcinogenesis
2011
;
32
:
1231
7
.
6.
Perneger
TV.
What's wrong with Bonferroni adjustments
.
BMJ
1998
;
316
:
1236
8
.
7.
Bender
R
,
Lange
S
. 
Multiple test procedures other than Bonferroni's deserve wider use
.
BMJ
1999
;
318
:
600
1
.
8.
Gudmundsson
J
,
Sulem
P
,
Gudbjartsson
DF
,
Jonasson
JG
,
Sigurdsson
A
,
Bergthorsson
JT
, et al
Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations
.
Nat Genet
2009
;
41
:
460
4
.
9.
Jones
AM
,
Howarth
KM
,
Martin
L
,
Gorman
M
,
Mihai
R
,
Moss
L
,
Auton
A
, et al
Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24
.
J Med Genet
2012
;
49
:
158
63
.
10.
Wang
YL
,
Feng
SH
,
Guo
SC
,
Wei
WJ
,
Li
DS
,
Wang
Y
, et al
Confirmation of papillary thyroid cancer susceptibility loci identified by genome-wide association studies of chromosomes 14q13, 9q22, 2q35 and 8p12 in a Chinese population
.
J Med Genet
2013
;
50
:
689
95
.
11.
Bufalo
NE
,
Leite
JL
,
Guilhen
AC
,
Morari
EC
,
Granja
F
,
Assumpcao
LV
, et al
Smoking and susceptibility to thyroid cancer: an inverse association with CYP1A1 allelic variants
.
Endocr Relat Cancer
2006
;
13
:
1185
93
.
12.
Bauer
J
,
Weng
J
,
Kebebew
E
,
Soares
P
,
Trovisco
V
,
Bastian
BC
. 
Germline variation of the melanocortin-1 receptor does not explain shared risk for melanoma and thyroid cancer
.
Exp Dermatol
2009
;
18
:
548
52
.
13.
Zhang
Q
,
Song
F
,
Zheng
H
,
Zhu
X
,
Song
F
,
Yao
X
, et al
Association between single-nucleotide polymorphisms of BRAF and papillary thyroid carcinoma in a Chinese population
.
Thyroid
2013
;
23
:
38
44
.
14.
Vicchio
TM
,
Giovinazzo
S
,
Certo
R
,
Cucinotta
M
,
Micali
C
,
Baldari
S
, et al
Lack of association between autonomously functioning thyroid nodules and germline polymorphisms of the thyrotropin receptor and Gαs genes in a mild to moderate iodine-deficient Caucasian population
.
J Endocrinol Invest
2013
;
37
:
625
30
.
15.
Rogounovitch
TI
,
Bychkov
A
,
Takahashi
M
,
Mitsutake
N
,
Nakashima
M
,
Nikitski
AV
, et al
The common genetic variant rs944289 on chromosome 14q13.3 associates with risk of both malignant and benign thyroid tumors in the Japanese population
.
Thyroid
2015
;
25
:
333
40
.
16.
Ohashi
E
,
Takeishi
Y
,
Ueda
S
,
Tsurimoto
T
. 
Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage
.
DNA Repair
2014
;
21
:
1
11
.
17.
Esteller
M
,
Garcia-Foncillas
J
,
Andion
E
,
Goodman
SN
,
Hidalgo
OF
,
Vanaclocha
V
, et al
Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents
.
N Engl J Med
2000
;
343
:
1350
4
.
18.
Smith-Sørensen
B
,
Lind
GE
,
Skotheim
RI
,
Fosså
SD
,
Fodstad
Ø
,
Stenwig
AE
, et al
Frequent promoter hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene in testicular cancer
.
Oncogene
2002
;
21
:
8878
84
.
19.
Duncan
T
,
Trewick
SC
,
Koivisto
P
,
Bates
PA
,
Lindahl
T
,
Sedgwick
B
. 
Reversal of DNA alkylation damage by two human dioxygenases
.
Proc Natl Acad Sci USA
2002
;
99
:
16660
5
.
20.
O'Donovan
A
,
Davies
AA
,
Moggs
JG
,
West
SC
,
Wood
RD
. 
XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair
.
Nature
1994
;
371
:
432
5
.
21.
Kiyohara
C
,
Yoshimasu
K
. 
Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis
.
Int J Med Sci
2007
;
4
:
59
71
.
22.
González
CA
,
Sala
N
,
Rokkas
T
. 
Gastric cancer: epidemiologic aspects
.
Helicobacter
2013
;
18
:
34
8
.
23.
Cleaver
JE
,
Thompson
LH
,
Richardson
AS
,
States
JC
. 
A summary of mutations in the UV-sensitive disorders: xerodermapigmentosum, Cockayne syndrome, and trichothiodystrophy
.
HumMutat
1999
;
14
:
9
22
.
24.
Xu
K
,
Song
X
,
Chen
X
,
Qin
C
,
He
Y
. 
XRCC2 rs3218536 polymorphism decreases the sensitivity of colorectal cancer cells to poly(ADP-ribose) polymerase 1 inhibitor
.
Oncol Lett
2014
;
8
:
1222
8
.
25.
Tomkinson
AE
,
Chen
L
,
Dong
Z
,
Leppard
JB
,
Levin
DS
,
Mackey
ZB
, et al
Completion of base excision repair by mammalian DNA ligases
.
Prog Nucleic Acid Res Mol Biol
2001
;
68
:
151
64
.
26.
Chen
YZ
,
Fan
ZH
,
Zhao
YX
,
Bai
L
,
Zhou
BS
,
Zhang
HB
, et al
Single-nucleotide polymorphisms of LIG1 associated with risk of lung cancer
.
Tumor Biol
2014
;
35
:
9229
32
.
27.
Tian
H
,
He
X
,
Yin
L
,
Guo
WJ
,
Xia
YY
,
Jiang
ZX
. 
Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity
.
Genet Mol Res
2015
;
14
:
7047
52
.
28.
Chorev
M
,
Carmel
L
. 
The function of introns
.
Front Genet
2012
;
3
:
55
.
29.
Cartegni
L
,
Wang
J
,
Zhu
Z
,
Zhang
MQ
,
Krainer
AR
. 
ESEfinder: a web resource to identify exonic splicing enhancers
.
Nucleic Acids Res
2003
;
31
:
3568
71
.
30.
Wethmar
K
. 
The regulatory potential of upstream open reading frames in eukaryotic gene expression
.
Wiley Interdiscip Rev RNA
2013
;
5
:
765
78
.
31.
Grishkevich
V
,
Yanai
I
. 
The genomic determinants of genotype × environment interactions in gene expression
.
Trends Genet
2013
;
29
:
479
87
.
32.
Preston-Martin
S
,
Bernstein
L
,
Maldonado
AA
,
Henderson
BE
,
White
SC
. 
A dental x-ray validation study. Comparison of information from patient interviews and dental charts
.
Am J Epidemiol
1985
;
121
:
430
9
.
33.
Hallquist
A
,
Näsman
A
. 
Medical diagnostic x-ray radiation–an evaluation from medical records and dentist cards in a case-control study of thyroid cancer in the northern medical region of Sweden
.
Eur J Cancer Prev
2001
;
10
:
147
52
.
34.
Hallquist
A
,
Jansson
P
. 
Self-reported diagnostic x-ray investigation and data from medical records in case-control studies on thyroid cancer: evidence of recall bias?
Eur J Cancer Prev
2005
;
14
:
271
6
.
35.
Berrington de Gonzalez
A
,
Ekbom
A
,
Glass
AG
,
Galanti
MR
,
Grimelius
L
,
Allison
MJ
, et al
Comparison of documented and recalled histories of exposure to diagnostic x-rays in case-control studies of thyroid cancer
.
Am J Epidemiol
2003
;
157
:
652
63
.
36.
Garcia-Closas
M
,
Thompson
WD
,
Robins
JM
. 
Differential misclassification and the assessment of gene-environment interactions in case-control studies
.
Am J Epidemiol
1998
;
147
:
426
33
.