Background: Digoxin has been shown to affect a number of pathways that are of relevance to cancer, and its use has been associated with increased risks of breast and uterus cancer and, more recently, a 40% increase in colorectal cancer risk. These findings raise questions about the safety of digoxin use in colorectal cancer patients, and, therefore, we investigated whether digoxin use after colorectal cancer diagnosis increased the risk of colorectal cancer–specific mortality.

Methods: A cohort of 10,357 colorectal cancer patients newly diagnosed from 1998 to 2009 was identified from English cancer registries and linked to the UK Clinical Practice Research Datalink (to provide digoxin and other prescription records) and to the Office of National Statistics mortality data (to identify 2,724 colorectal cancer–specific deaths). Using time-dependent Cox regression models, unadjusted and adjusted HRs and 95% confidence intervals (CI) were calculated for the association between postdiagnostic exposure to digoxin and colorectal cancer–specific mortality.

Results: Overall, 682 (6%) colorectal cancer patients used digoxin after diagnosis. Digoxin use was associated with a small increase in colorectal cancer–specific mortality before adjustment (HR, 1.25; 95% CI, 1.07–1.46), but after adjustment for confounders, the association was attenuated (adjusted HR, 1.10; 95% CI, 0.91–1.34) and there was no evidence of a dose response.

Conclusions: In this large population-based colorectal cancer cohort, there was little evidence of an increase in colorectal cancer–specific mortality with digoxin use after diagnosis.

Impact: These results provide some reassurance that digoxin use is safe in colorectal cancer patients. Cancer Epidemiol Biomarkers Prev; 24(11); 1804–7. ©2015 AACR.

The main effect of digoxin, a cardiac glycoside, is on the inhibition of the sodium potassium ATPase pump, but it affects a number of pathways relevant to cancer. For instance, studies have shown increases in breast and uterus cancer probably related to estrogenic effects of digoxin (1). A recent large UK study reported a 40% increase in colorectal cancer risk in digoxin users (2), which the researchers suggest possibly reflects direct effects of the sodium potassium ATPase pump on tumorigenic pathways such as the Src/MAPK (3). In addition, preclinical studies have found that digoxin may reduce chemotherapy efficacy (4). These findings raise questions about the safety of digoxin in colorectal cancer patients. As there has been little research into digoxin use and colorectal cancer progression, we investigated whether colorectal cancer patients using digoxin had increased colorectal cancer–specific mortality.

The data source and methods have been discussed in detail previously (5). In brief, patients with newly diagnosed colorectal cancer from English cancer registries between 1998 and 2009 were identified from the National Cancer Data Repository (NCDR). Colorectal cancer–specific deaths up to January 2012 were identified from the underlying cause of death from Office of National Statistics (ONS) death registration data. The Clinical Practice Research Datalink (CPRD) provided digoxin use from general practitioner (GP) prescribing records. Potential confounders, including stage, grade, and treatment, were determined from NCDR. Smoking, body mass index, deprivation, and comorbidities were determined from GP records.

Statistical analysis

Patients were followed up from 1 year after colorectal cancer diagnosis until death, end of GP registration, last date of data collection from GP, or end of ONS follow-up. In the main analysis, time-dependent Cox regression models were used to calculate HRs and 95% confidence intervals (CI) for colorectal cancer–specific death for digoxin users compared with nonusers using a time varying covariate (lagged by 6 months). Adjusted analyses were conducted including potential confounders. Further analyses were conducted by number of digoxin prescriptions and number of defined daily doses. Analyses were repeated for all-cause mortality. Analyses were conducted in STATA 13.

The final cohort included 10,357 colorectal cancer patients with mean of 4.8 years of follow-up from diagnosis (maximum = 14 years) containing 2,724 colorectal cancer–specific deaths and 1,263 deaths from other causes. Table 1 shows characteristics by digoxin use. Digoxin use was associated with increased colorectal cancer–specific mortality before adjustment (HR, 1.25; 95% CI, 1.07–1.46), but after adjustment for confounders, the association was attenuated (adjusted HR, 1.10; 95% CI, 0.91–1.34) and no dose response associations were apparent. After adjustment for confounders, there was an increase in all-cause mortality in digoxin users (HR, 1.53; 95% CI, 1.34–1.73). This increase was most marked for cardiovascular deaths (adjusted HR, 2.73; 95% CI, 2.11–3.52), as expected, and there was only a small increase in the risk of death for noncardiovascular causes (adjusted HR, 1.26; 95% CI, 1.08–1.47; Table 2). A simplified analysis for colorectal cancer–specific mortality, based upon digoxin use in the year after diagnosis, also revealed little evidence of association (adjusted HR, 0.98; 95% CI, 0.79–1.22). A further sensitivity analyses revealed little evidence of association between colorectal cancer mortality and digoxin use in the year before diagnosis (adjusted HR, 0.88; 95% CI, 0.73–1.06).

Table 1.

Characteristics of colorectal cancer patients by digoxin use after diagnosis

Digoxin use after diagnosisDigoxin use in first year after diagnosis
CharacteristicsEver n (%)Never n (%)Ever n (%)Never n (%)
Year of diagnosis 
 1998–2000 149 (22) 1,599 (17) 94 (19) 1,654 (17) 
 2001–2003 233 (34) 2,345 (24) 149 (30) 2,429 (25) 
 2004–2006 173 (25) 2,724 (28) 140 (28) 2,757 (28) 
 2007–2009 127 (19) 3,007 (31) 112 (23) 3,022 (31) 
Age at diagnosis 
 <50 3 (0) 610 (6) 1 (0) 612 (6) 
 50–59 20 (3) 1,463 (15) 10 (2) 1,473 (15) 
 60–69 90 (13) 2,683 (28) 50 (10) 2,723 (28) 
 70–79 299 (44) 3,204 (33) 216 (44) 3,287 (33) 
 80–89 245 (36) 1,585 (16) 198 (40) 1,632(17) 
 ≥90 25 (4) 130 (1) 20 (4) 135(1) 
Gender 
 Males 379 (56) 5,353 (55) 272 (55) 5,460 (55) 
Stage     
 I 93 (18) 1,229 (16) 61 (16) 1,261 (16) 
 II 240 (45) 3,004 (39) 173 (45) 3,071 (39) 
 III 177 (33) 2, 914 (38) 134 (35) 2,957 (38) 
 IV 19 (4) 524 (7) 15 (4) 528 (7) 
 Missing 153 2,004 112 2,045 
Grade 
 Well 33 (6) 547 (7) 22 (6) 585 (6) 
 Moderately 445 (78) 6,432 (78) 328 (78) 6,549 (79) 
 Poorly 92 (16) 1,259 (15) 62 (16) 1,279 (15) 
 Missing 112 1,420 83 1,449 
Treatment within 6 months of cancer diagnosis 
 Surgery 588 (86) 8,510 (88) 425 (86) 8,673 (88) 
 Chemotherapy 88 (13) 3,054 (32) 63 (13) 3,079 (31) 
 Radiotherapy 64 (9) 1,381 (14) 48 (10) 1,397 (14) 
Smoking status prior to cancer diagnosis 
 Nonsmoker 232 (52) 3,498 (53) 169 (51) 3,561 (53) 
 Ex-smoker 167 (37) 2,145 (32) 128 (39) 2,184 (32) 
 Current smoker 48 (11) 969 (15) 33 (10) 984 (15) 
 Missing 235 3,063 165 3,133 
Alcohol consumption prior to diagnosis 
 Never 87 (20) 1,007 (16) 66 (21) 1,028 (16) 
 Ever 351 (80) 5,443 (84) 255 (79) 5,539 (84) 
 Missing 244 3,225 174 3,295 
Body mass index (kg/m2) prior to diagnosis: mean (SD) 27.0 (4.8) 26.5 (4.7) 26.9(5.1) 26.5(4.7) 
 Underweight (<18.5) 6 (1) 126 (2) 5 (2) 127 (2) 
 Normal (18.5 to 25) 147 (34) 2,407 (37) 114 (36) 2,440 (37) 
 Overweight (25-30) 185 (43) 2,654 (41) 130 (41) 2,709 (41) 
 Obese (>30) 93 (22) 1,258 (20) 68 (21) 1,283 (20) 
 Missing 251 3,230 178 3,303 
Deprivation fifth 
 1st (least deprived) 149 (22) 2,498 (26) 112 (23) 2,535 (26) 
 2nd 173 (25) 2,389 (25) 125 (25) 2,437 (25) 
 3rd 151 (22) 1,986 (21) 105 (21) 2,032 (21) 
 4th 121 (18) 1,694 (18) 85 (17) 1,730 (18) 
 5th (most deprived) 86 (13) 1,091 (11) 66 (13) 1,111 (11) 
 Missing 17 17 
Comorbidity prior to cancer diagnosis 
 Cerebrovascular disease 61 (9) 390 (4) 49 (10) 402 (4) 
 Chronic pulmonary disease 106 (16) 1,182 (12) 69 (14) 1,219 (12) 
 Congestive heart disease 85 (12) 183 (2) 72 (15) 196 (2) 
 Diabetes 102 (15) 758 (8) 83 (17) 777 (8) 
 Myocardial infarction 47 (7) 369 (4) 39 (8) 377 (4) 
 Peptic ulcer disease 39 (6) 398 (4) 27 (5) 410 (4) 
 Peripheral vascular disease 34 (5) 256 (3) 28 (6) 262 (3) 
 Renal disease 31 (5) 353 (4) 25 (5) 359 (4) 
Medication after diagnosisa 
 Low-dose aspirin use (after diagnosis, in exposure period) 283 (42) 2,349 (24) 188 (38) 2,444 (25) 
 Statins use 206 (30) 2,570 (27) 148 (30) 2,628 (27) 
 Metformin use 75 (11) 637 (7) 53 (11) 659 (7) 
 ACEI use 279 (41) 2,241 (23) 186 (38) 2,334 (24) 
Digoxin use after diagnosisDigoxin use in first year after diagnosis
CharacteristicsEver n (%)Never n (%)Ever n (%)Never n (%)
Year of diagnosis 
 1998–2000 149 (22) 1,599 (17) 94 (19) 1,654 (17) 
 2001–2003 233 (34) 2,345 (24) 149 (30) 2,429 (25) 
 2004–2006 173 (25) 2,724 (28) 140 (28) 2,757 (28) 
 2007–2009 127 (19) 3,007 (31) 112 (23) 3,022 (31) 
Age at diagnosis 
 <50 3 (0) 610 (6) 1 (0) 612 (6) 
 50–59 20 (3) 1,463 (15) 10 (2) 1,473 (15) 
 60–69 90 (13) 2,683 (28) 50 (10) 2,723 (28) 
 70–79 299 (44) 3,204 (33) 216 (44) 3,287 (33) 
 80–89 245 (36) 1,585 (16) 198 (40) 1,632(17) 
 ≥90 25 (4) 130 (1) 20 (4) 135(1) 
Gender 
 Males 379 (56) 5,353 (55) 272 (55) 5,460 (55) 
Stage     
 I 93 (18) 1,229 (16) 61 (16) 1,261 (16) 
 II 240 (45) 3,004 (39) 173 (45) 3,071 (39) 
 III 177 (33) 2, 914 (38) 134 (35) 2,957 (38) 
 IV 19 (4) 524 (7) 15 (4) 528 (7) 
 Missing 153 2,004 112 2,045 
Grade 
 Well 33 (6) 547 (7) 22 (6) 585 (6) 
 Moderately 445 (78) 6,432 (78) 328 (78) 6,549 (79) 
 Poorly 92 (16) 1,259 (15) 62 (16) 1,279 (15) 
 Missing 112 1,420 83 1,449 
Treatment within 6 months of cancer diagnosis 
 Surgery 588 (86) 8,510 (88) 425 (86) 8,673 (88) 
 Chemotherapy 88 (13) 3,054 (32) 63 (13) 3,079 (31) 
 Radiotherapy 64 (9) 1,381 (14) 48 (10) 1,397 (14) 
Smoking status prior to cancer diagnosis 
 Nonsmoker 232 (52) 3,498 (53) 169 (51) 3,561 (53) 
 Ex-smoker 167 (37) 2,145 (32) 128 (39) 2,184 (32) 
 Current smoker 48 (11) 969 (15) 33 (10) 984 (15) 
 Missing 235 3,063 165 3,133 
Alcohol consumption prior to diagnosis 
 Never 87 (20) 1,007 (16) 66 (21) 1,028 (16) 
 Ever 351 (80) 5,443 (84) 255 (79) 5,539 (84) 
 Missing 244 3,225 174 3,295 
Body mass index (kg/m2) prior to diagnosis: mean (SD) 27.0 (4.8) 26.5 (4.7) 26.9(5.1) 26.5(4.7) 
 Underweight (<18.5) 6 (1) 126 (2) 5 (2) 127 (2) 
 Normal (18.5 to 25) 147 (34) 2,407 (37) 114 (36) 2,440 (37) 
 Overweight (25-30) 185 (43) 2,654 (41) 130 (41) 2,709 (41) 
 Obese (>30) 93 (22) 1,258 (20) 68 (21) 1,283 (20) 
 Missing 251 3,230 178 3,303 
Deprivation fifth 
 1st (least deprived) 149 (22) 2,498 (26) 112 (23) 2,535 (26) 
 2nd 173 (25) 2,389 (25) 125 (25) 2,437 (25) 
 3rd 151 (22) 1,986 (21) 105 (21) 2,032 (21) 
 4th 121 (18) 1,694 (18) 85 (17) 1,730 (18) 
 5th (most deprived) 86 (13) 1,091 (11) 66 (13) 1,111 (11) 
 Missing 17 17 
Comorbidity prior to cancer diagnosis 
 Cerebrovascular disease 61 (9) 390 (4) 49 (10) 402 (4) 
 Chronic pulmonary disease 106 (16) 1,182 (12) 69 (14) 1,219 (12) 
 Congestive heart disease 85 (12) 183 (2) 72 (15) 196 (2) 
 Diabetes 102 (15) 758 (8) 83 (17) 777 (8) 
 Myocardial infarction 47 (7) 369 (4) 39 (8) 377 (4) 
 Peptic ulcer disease 39 (6) 398 (4) 27 (5) 410 (4) 
 Peripheral vascular disease 34 (5) 256 (3) 28 (6) 262 (3) 
 Renal disease 31 (5) 353 (4) 25 (5) 359 (4) 
Medication after diagnosisa 
 Low-dose aspirin use (after diagnosis, in exposure period) 283 (42) 2,349 (24) 188 (38) 2,444 (25) 
 Statins use 206 (30) 2,570 (27) 148 (30) 2,628 (27) 
 Metformin use 75 (11) 637 (7) 53 (11) 659 (7) 
 ACEI use 279 (41) 2,241 (23) 186 (38) 2,334 (24) 

Abbreviation: ACEI, angiotensin-converting enzyme inhibitor.

aMedication use calculated in the first year after diagnosis for the comparison of digoxin users and nonusers in the first year after diagnosis.

Table 2.

Association between digoxin usage after cancer diagnosis and colorectal cancer–specific and all-cause mortality

Cancer-specific/Cohort with stage and deprivation
Medication usage after diagnosisall-causemortalityAll patientsPerson yearsUnadjusted HR (95% CI)Adjusteda HR (95% CI)Unadjusted HR (95% CI)Adjusteda HR (95% CI)Fully adjustedb HR (95% CI)
Colorectal cancer–specific mortality 
Number of patients    (10,357) (10,357) (8,183) (8,183) (8,183) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
Digoxin userc 164 682 2,023 1.25 (1.07–1.46) 1.18 (1.01–1.40) 1.12 (0.92–1.35) 1.11 (0.91–1.36) 1.10 (0.91–1.34) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 11 digoxin prescriptionsd 82 239 780 1.26 (1.01–1.57) 1.19 (0.95–1.49) 1.14 (0.88–1.49) 1.15 (0.88–1.50) 1.10 (0.84–1.45) 
 ≥ 12 digoxin prescriptionsd 82 443 1,243 1.24 (0.99–1.55) 1.18 (0.94–1.48) 1.09 (0.84–1.43) 1.08 (0.82–1.42) 1.10 (0.84–1.44) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 365 dddsd 113 358 1,090 1.30 (1.07–1.56) 1.22 (1.00–1.47) 1.14 (0.90–1.43) 1.14 (0.90–1.45) 1.10 (0.87–1.40) 
 ≥365 dddsd 51 324 933 1.15 (0.87–1.52) 1.12 (0.84–1.49) 1.09 (0.79–1.49) 1.06 (0.76–1.47) 1.10 (0.79–1.52) 
All-cause mortality 
Number of patients    (10,357) (10,357) (8,183) (8,183) (8,183) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
Digoxin userc 374 682 2,023 1.96 (1.76–2.18) 1.53 (1.37–1.71) 1.92 (1.70–2.17) 1.52 (1.34–1.73) 1.52 (1.34–1.73) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 11 digoxin prescriptionsd 157 239 618 1.81 (1.54–2.13) 1.44 (1.22–1.69) 1.78 (1.48–2.15) 1.46 (1.20–1.76) 1.43 (1.18–1.72) 
 ≥12 digoxin prescriptionsd 217 443 1,023 2.09 (1.82–2.40) 1.60 (1.39–1.85) 2.03 (1.73–2.37) 1.58 (1.34–1.86) 1.60 (1.36–1.89) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 365 dddsd 224 358 864 1.91 (1.67–2.19) 1.49 (1.29–1.71) 1.86 (1.59–2.18) 1.50 (1.27–1.76) 1.47 (1.25–1.73) 
 ≥365 dddsd 150 324 777 2.04 (1.73–2.41) 1.60 (1.35–1.89) 2.00 (1.67–2.41) 1.57 (1.30–1.89) 1.61 (1.33–1.95) 
Cancer-specific/Cohort with stage and deprivation
Medication usage after diagnosisall-causemortalityAll patientsPerson yearsUnadjusted HR (95% CI)Adjusteda HR (95% CI)Unadjusted HR (95% CI)Adjusteda HR (95% CI)Fully adjustedb HR (95% CI)
Colorectal cancer–specific mortality 
Number of patients    (10,357) (10,357) (8,183) (8,183) (8,183) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
Digoxin userc 164 682 2,023 1.25 (1.07–1.46) 1.18 (1.01–1.40) 1.12 (0.92–1.35) 1.11 (0.91–1.36) 1.10 (0.91–1.34) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 11 digoxin prescriptionsd 82 239 780 1.26 (1.01–1.57) 1.19 (0.95–1.49) 1.14 (0.88–1.49) 1.15 (0.88–1.50) 1.10 (0.84–1.45) 
 ≥ 12 digoxin prescriptionsd 82 443 1,243 1.24 (0.99–1.55) 1.18 (0.94–1.48) 1.09 (0.84–1.43) 1.08 (0.82–1.42) 1.10 (0.84–1.44) 
Digoxin nonuser 2,560 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 365 dddsd 113 358 1,090 1.30 (1.07–1.56) 1.22 (1.00–1.47) 1.14 (0.90–1.43) 1.14 (0.90–1.45) 1.10 (0.87–1.40) 
 ≥365 dddsd 51 324 933 1.15 (0.87–1.52) 1.12 (0.84–1.49) 1.09 (0.79–1.49) 1.06 (0.76–1.47) 1.10 (0.79–1.52) 
All-cause mortality 
Number of patients    (10,357) (10,357) (8,183) (8,183) (8,183) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
Digoxin userc 374 682 2,023 1.96 (1.76–2.18) 1.53 (1.37–1.71) 1.92 (1.70–2.17) 1.52 (1.34–1.73) 1.52 (1.34–1.73) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 11 digoxin prescriptionsd 157 239 618 1.81 (1.54–2.13) 1.44 (1.22–1.69) 1.78 (1.48–2.15) 1.46 (1.20–1.76) 1.43 (1.18–1.72) 
 ≥12 digoxin prescriptionsd 217 443 1,023 2.09 (1.82–2.40) 1.60 (1.39–1.85) 2.03 (1.73–2.37) 1.58 (1.34–1.86) 1.60 (1.36–1.89) 
Digoxin nonuser 3,613 9,675 36,934 1.00 1.00 1.00 1.00 1.00 
 1 to 365 dddsd 224 358 864 1.91 (1.67–2.19) 1.49 (1.29–1.71) 1.86 (1.59–2.18) 1.50 (1.27–1.76) 1.47 (1.25–1.73) 
 ≥365 dddsd 150 324 777 2.04 (1.73–2.41) 1.60 (1.35–1.89) 2.00 (1.67–2.41) 1.57 (1.30–1.89) 1.61 (1.33–1.95) 

Abbreviation: ddds, defined daily doses.

aModel includes year of diagnosis, age at diagnosis, gender, surgery within 6 months, radiotherapy within 6 months, chemotherapy within 6 months, site (colon or rectum), comorbidities prior to diagnosis (including cerebrovascular disease, chronic pulmonary disease, congestive heart disease, diabetes, diabetes with complications, myocardial infarction, peptic ulcer disease, peripheral vascular disease, and renal disease), and other medication use (after diagnosis, as time varying covariates, specifically low-dose aspirin, statins, metformin, and ACEIs).

bModel includes all variables in footnote a, additionally adjusted for stage and deprivation (in fifths) in individuals with nonmissing values.

cDigoxin use modeled as a time-varying covariate with an individual considered a nonuser prior to 6 months after first digoxin usage and a user after this time, excludes deaths in the year after cancer diagnosis.

dDigoxin use modeled as a time-varying covariate with an individual considered a nonuser prior to 6 months after first medication usage, a user of 0 to 12 prescriptions (or 365th defined daily doses) from 6 months after first prescription to 6 months after 12th prescription (or 365th defined daily dose) and a greater user after this time, excludes deaths in the year after cancer diagnosis.

We observed little evidence of increased colorectal cancer–specific mortality in digoxin users, providing some reassurance that digoxin is safe in colorectal cancer patients, despite recent evidence that digoxin users may have increased colorectal cancer risk (2). Our findings do not support a French study that observed reduced overall mortality with digoxin in 75 colorectal cancer patients (6), nor some preclinical studies suggesting that digoxin could have inhibitory effects on colorectal cancer cell growth (7).

This study is the first population-based cohort to investigate digoxin use and colorectal cancer–specific mortality. Other strengths include large size and long duration of follow-up, but we cannot rule out the possibility of type 2 error (a power calculation, using Schoenfeld method, based on observed medication use and cancer-specific deaths, indicated that we had approximately 80% power to detect as significant an HR of 1.25 for digoxin). Although verification of cancer diagnosis and death was robust, misclassification of colorectal cancer cause of death is possible; however, methodological studies suggest that comparative risk estimates are unlikely to be greatly affected where misclassification is unlikely to be differential. Recall bias was eliminated by using routinely collected GP-prescribed drug. Confounding by indication, often a problem in pharmacoepidemiology is unlikely to have influenced our main finding for colorectal cancer–specific mortality, but would explain the increase in all-cause mortality due largely to raised cardiovascular mortality in digoxin users (8). Misclassification of digoxin usage is possible because of noncompliance. As with all observational studies, confounding caused by unrecorded or incomplete potential confounders (e.g. stage) cannot be ruled out. In conclusion, there was little evidence of an increase in colorectal cancer–specific mortality with digoxin use after diagnosis.

No potential conflicts of interest were disclosed.

This study is based partly on data from the CPRD obtained under license from the UK Medicines and Healthcare products Regulatory Agency. However, the interpretation and conclusions contained in this study are those of the authors alone. The funders had no role in the study design; collection, analysis, and interpretation of data; writing of the report; or the decision to submit for publication.

Conception and design: L.J. Murray, C.M. Hughes, C.R. Cardwell

Development of methodology: L.J. Murray, C.R. Cardwell

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.J. Murray, C.R. Cardwell

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): R.A. Karasneh, L.J. Murray, C.R. Cardwell

Writing, review, and/or revision of the manuscript: R.A. Karasneh, L.J. Murray, C.M. Hughes, C.R. Cardwell

Study supervision: L.J. Murray, C.R. Cardwell

This work was supported by the Health and Social Care, Research and Development, Public Health Agency, Northern Ireland who funded a UK NIHR Career Development Fellowship (to C.R. Cardwell) and access to the CPRD dataset; and Yarmouk University, Jordon, who funded a PhD studentship (to R.A. Karasneh).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Biggar
RJ
. 
Molecular pathways: digoxin use and estrogen-sensitive cancers–risks and possible therapeutic implications
.
Clin Cancer Res
2012
;
18
:
2133
7
.
2.
Boursi
B
,
Haynes
K
,
Mamtani
R
,
Yang
YX
. 
Digoxin use and the risk for colorectal cancer
.
Pharmacoepidemiol Drug Saf
2014
;
23
:
1147
53
.
3.
Li
Z
,
Zhang
Z
,
Xie
JX
,
Li
X
,
Tian
J
,
Cai
T
, et al
Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells
.
J Biol Chem
2011
;
286
:
32394
403
.
4.
Riganti
C
,
Campia
I
,
Polimeni
M
,
Pescarmona
G
,
Ghigo
D
,
Bosia
A
. 
Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1alpha in human colon cancer cells
.
Toxicol Appl Pharmacol
2009
;
240
:
385
92
.
5.
Cardwell
CR
,
Hicks
BM
,
Hughes
C
,
Murray
LJ
. 
Statin use after colorectal cancer diagnosis and survival: a population-based cohort study
.
J Clin Oncol
2014
;
32
:
1
11
.
6.
Menger
L
,
Vacchelli
E
,
Adjemian
S
,
Martins
I
,
Ma
Y
,
Shen
S
, et al
Cardiac glycosides exert anticancer effects by inducing immunogenic cell death
.
Sci Transl Med
2012
;
4
:
143ra99
.
7.
Felth
J
,
Rickardson
L
,
Rosén
J
,
Wickström
M
,
Fryknäs
M
,
Lindskog
M
, et al
Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs
.
J Nat Prod
2009
;
72
:
1969
74
.
8.
Vidaillet
H
,
Granada
JF
,
Chyou
P
,
Maassen
K
,
Ortiz
M
,
Pulido
JN
, et al
A population-based study of mortality among patients with atrial fibrillation or flutter
.
Am J Med
2002
;
113
:
365
70
.