Circulating 25-hydroxyvitamin D (25-OHD) is associated with a reduction in risk of some cancers, but its association with prognosis among patients with cancer is poorly understood. In view of the increasing number of cancer survivors in the United States and the high prevalence of vitamin D deficiency among patients with cancer, an evaluation of the role of circulating 25-OHD in prognosis among patients with cancer is essential. We conducted a systematic review of studies published in the following databases—PubMed, OvidSP, BioMed Central, EMBASE, and Scopus till September 2013 using the following search terms: “vitamin D,” “25-hydroxyvitamin D,” “calcidiol,” “cancer,” “survival,” “mortality,” and “prognosis.” Our search yielded 1,397 articles. From the 1,397 articles, we identified 26 studies that evaluated the associations of circulating 25-OHD with prognosis among patients with cancer. Evidence suggests that circulating 25-OHD levels may be associated with better prognosis in patients with breast and colorectal cancer, but there is a paucity of information on its association with prognosis in other cancers. This review highlights the need for further studies evaluating the role of vitamin D in prognosis among patients with cancer. Cancer Epidemiol Biomarkers Prev; 23(6); 917–33. ©2014 AACR.

There is robust evidence that vitamin D is associated with a reduction in cancer risk, particularly breast and colorectal cancers (1–3). Less well known, however, is the impact of vitamin D on prognosis in patients with cancer. Experimental studies have demonstrated that vitamin D can suppress tumor progression and metastasis, via its effect on cellular proliferation, differentiation, and angiogenesis (4)—biologic properties that might be relevant to, and mediate its impact on prognosis in patients with cancer. Vitamin D is converted to 25-hydroxyvitamin D (25-OHD) by cytochrome P450 R21 in the liver (4, 5). Further hydroxylation of 25-OHD to the active form, 1,25-dihydroxyvitamin [1,25-(OH)2D] by cytochrome P450 27B1 occurs in the kidney (4–7). The 1,25-(OH)2D generated in the kidney is secreted into the circulation, bound to vitamin D binding protein (VDBP), and then transported to target organs, where it induces genomic and nongenomic responses through its interaction with the vitamin D receptor (VDR; ref. 4). Many cells and tissues express cytochrome P450 27B1 as well as VDR, which implies that local conversion of 25-OHD to 1,25-(OH)2D, the active form, can take place in such tissues (4).

Nevertheless, experience from the associations of folate with colorectal cancer suggests that bioactive nutrients may have differential effects on tumor initiation and progression, hence, differential effects on cancer incidence and survival (8). Whereas folate deficiency may predispose to colorectal carcinogenesis in normal colorectal epithelial cells, high folate levels seem to promote the growth of an existing cancer (8–10). Hence, understanding the relationship between vitamin and prognosis among patients with cancer is essential, as the impact of vitamin D on cancer risk may differ from its impact on cancer prognosis.

Initial ecological studies indicate a potential inverse association between measures of ultraviolet B (UVB) radiation and cancer mortality (11, 12). Although exposure to UVB is a strong determinant of vitamin D status, it fails to account for differences in vitamin D intake, adiposity, physical activity, and skin pigmentation, which are also important determinants of vitamin D status. Because circulating 25-OHD level is the best indicator of vitamin D status, the associations of vitamin D with prognosis in patients with cancer are best ascertained using circulating 25-OHD concentrations. However, few studies have examined these associations.

An overview of the relationship between 25-OHD concentrations and prognosis in patients with cancer is particularly essential because of the very high number of cancer survivors in the United States (>13 million; ref. 13) and the high prevalence of vitamin D deficiency among these patients (14).

The objectives of this review are to (i) summarize results from studies that have evaluated the associations of circulating 25-OHD concentrations with prognosis among patients with cancer, and (ii) identify gaps and future research needs in this area.

We identified studies published between January 2007 and September 2013 using the following databases: PubMed, OvidSP, BioMed Central, EMBASE, and Scopus. Search terms included the following: “vitamin D,” “25-hydroxyvitamin D,” “calcidiol,” “cancer,” “survival,” “mortality,” “prognosis,” as well as different types of cancer (“breast,” “lung,” “colorectal,” “prostate,” etc.). Search queries in the databases yielded 1,397 articles (Fig. 1). Abstracts were examined for relevance to the topic of study, and full texts were retrieved for applicable abstracts. Reference lists of relevant articles were also examined to identify other studies of interest.

Figure 1.

Flow diagram of the literature search.

Figure 1.

Flow diagram of the literature search.

Close modal

We included studies if they met the following criteria: reported on (i) measurement of circulating 25-OHD, (ii) overall survival, disease-specific survival among patients with cancer or other forms of survival such as distant disease-free survival, disease-free interval, recurrence-free survival, event-free survival, (iii) any other prognosis among patients with cancer, and (iv) published in English. The outcomes were defined as (i) overall survival: time from diagnosis to death as a result of any cause; (ii) cancer-specific survival: time from diagnosis to death from specific cancer; (iii) disease-free survival: time from surgery to the date of the first locoregional recurrence, distant metastasis, detection of a secondary primary tumor, or death from any cause; (iv) disease-free interval: time elapsing between cancer diagnosis and local recurrence and/or lymph node metastasis and/or distant metastasis; (v) distant disease-free survival: time between diagnosis and metastasis at distant sites; (vi) risk of relapse: risk of having local invasive tumor recurrence and/or locoregional lymph node metastasis and/or distant metastasis; (vii) time to progression: time from study entry to disease progression, regardless of the patient's treatment status. Disease progression required 25% increase in measurable tumor or an increase in tumor size in patients whose lesions did not meet criteria for measurable disease; and (vii) time to treatment: the time from diagnosis to disease progression requiring treatment.

Twenty-nine studies met the inclusion criteria. Of these, three articles did not present data on association; hence, data from 26 studies were used in the review. From those 26 articles, we extracted information on study design, age, number of participants and events, types of cancer, effect measures, and confounding factors. Studies were available on the following cancers: breast (N = 7), colorectal (N = 6), lung (N = 4), hematologic (N = 4), prostate (N = 2), skin (N = 2), head-and-neck (N = 2), gastric (N = 1), and pancreatic (N = 1). One study (15) evaluated outcomes across multiple cancer sites (breast, colon, lung, and lymphoma).

Because of the heterogeneity of the studies and the limited data for each cancer type, we performed a systematic review of the effects of circulating 25-OHD levels on prognosis, rather than a meta-analysis.

Breast cancer

Overall survival.

Between January 2009 and September 2013, six studies investigated the associations of circulating 25-OHD levels with overall survival in patients with breast cancer (refs. 15–20; Table 1). Elevated circulating 25-OHD concentrations were associated with statistically significantly better survival in two studies (15, 19), borderline statistically significant better survival in two (16, 18), and no associations in last two (17, 20). In one of the studies, lower circulating 25-OHD concentrations were associated with reduced survival among women who did not have chemotherapy [HR = 1.15; 95% confidence interval (CI), 1.03–1.27 per 25 nmol/L decrease], but not among those who had chemotherapy (HR, 0.91; 95% CI, 0.75–1.08; P-interaction = 0.06; ref. 18).

Table 1.

Association of circulating 25-OHD levels with prognosis among patients with breast cancer

Reference, countryDesignNumber/eventsaAge (y)Type25-OHD, nmol/LRR/ORd (95% CI)P-value/trendConfounders
Overall survival 
Villasenor et al. (17), United States Cohort of cancer patients 585/110 18–64 In situ, stages I–IIIA disease Per 25 nmol/L increase 0.85 (0.68–1.09) 0.20 Age, tumor stage, BMI, race, study site, tamoxifen use, season of blood draw, treatment, smoking, physical activity 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/134 22–94 Early and invasive Per 25 nmol/L increase>74.9 vs. ≤74.9 0.79 (0.65–0.95)0.53 (0.33–0.86) 0.0100.010 BMI, age, tumor size, lymph node involvement, grade, estrogen receptor (ER) status 
Jacobs et al. (20), United States Nested case-control 250 matchedpairs 18–70 Stages I–IIIA <49.9≥ 49.9 1.13 (0.72–1.79)1.0 (Ref.) 0.59 BMI, ethnicity, intervention group, calcium intake, grade 
Tretli et al. (15) Cohort of cancer 251/98 36–75 Unspecified <46 1.0 (Ref.)  Sex, age at diagnosis, season 
Norway patients    46–61 0.55 (0.32–0.95)  of blood sampling 
     62–81 0.41 (0.23–0.74)   
     >81 0.37 (0.21–0.67) <0.01  
Vrieling et al. (18), Germany Cohort of cancer patients 1,265/174 50–74 In situ, stages I–IV Per 10 nmol/L decrease<3535–55>55 1.08 (1.00–1.17)1.55 (1.00–2.39)0.72 (0.45–1.17)1.0 (Ref.) 0.07 Tumor size, nodal status, metastases, tumor grade, ER/PR status, diabetes, detection mode 
Goodwin et al. (16), Canada Cohort of cancer patients 512/106 ≤75 Early stage <50≥50–72>72 1.60 (0.96–2.64)0.98 (0.57–1.69)1.00 (Ref.) 0.05 Age, tumor stage, nodal stage, estrogen receptor status, grade 
Breast cancer–specific survival 
Villasenor et al. (17), United States Cohort of cancer patients 585/48 18–64 In situ, stages I–IIIA disease Per 25 nmol/L increase 1.08 (0.75–1.54) 0.68 Age, tumor stage, BMI, race-ethnicity/study site, tamoxifen use, season of blood draw, treatment used 
     <49.9 1.0 (Ref.)   
     49.9–74.9 1.12 (0.54–2.33)   
     >74.9 1.21 (0.52–2.80)   
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/64 22–94 Early, invasive Per 25nmol/L increase 0.79 (0.62–1.00) 0.049 BMI, age, tumor size, grade, ER status 
   All women  >74.9 vs. ≤74.9 0.49 (0.27–0.89) 0.019  
   Premenopause  >74.9 vs. ≤74.9 0.93 (0.43–2.02) 0.853  
   Postmenopause  >74.9 vs. ≤74.9 0.15 (0.03–0.63) 0.009  
Tretli et al. (15), Norway Cohort of cancer patients 251/82 36–75 Unspecified <5051–6768–86>86 1.0 (Ref.)0.47 (0.26–0.85)0.53 (0.29–0.95)0.42 (0.21–0.82) 0.01 Age, sex, season of blood sampling 
Other outcomes 
Recurrence/relapse 
Jacobs et al. (20), United States Nested case-control 512 matched pairs 18–70 Stages I–IIIA <24.96 ≥24.96, <49.9≥49.9, <74.9≥74.9 1.14 (0.57–2.31)1.00 (0.68–1.48)1.05 (0.76–1.47)1.0 (Ref.) 0.85 BMI, ethnicity, intervention group, calcium intake, tumor grade 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/116c 22–94 Early and invasive >75 vs. ≤75, 1st year>75 vs. ≤75, 3rd year>75 vs. ≤75, 6th year 1.20 (0.63–2.28)0.50 (0.29–0.85)0.25 (0.09–0.70) 0.58520.01030.0082 Age, BMI, tumor size, pN, grade, ER-by-time 
Distant disease-free survival/interval 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/94 Premenopausal Early and invasive >74.9 vs. ≤74.9 Not reported, no association   
Vrieling et al. (18), Germany Cohort of cancer patients 1,074/135b 50–74 Postmenopausal In situ, stages I–IIIA disease Per 10 nmol/L decrease<3535–55>55 1.14 (1.05–1.24)2.09 (1.29–3.41)1.16 (0.70–1.94)1.0 (Ref.) 0.006 Tumor size, nodal status, metastases, tumor grade, ER/PR status, diabetes, detection mode 
Goodwin et al. (16), Canada Cohort of cancer patients 512/116c ≤75 Early stage <50≥50–72>72 1.71 (1.02–2.86)1.25 (0.73–2.14)1.0 (Ref.) 0.09 Age, tumor stage, nodal stage, ER, grade 
Disease-free survival/interval 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/116c Premenopausal Early and invasive Per 25 nmol/L increase Not reported, no association   
   Postmenopausal   0.74 (0.57–0.96) 0.0225 Age, tumor size, pN grade, ER-by-time, # positive lymph nodes, tumor grade 
Kim et al. (21), Korea Cohort of cancer patients 310/31b 48.9 ± 10.3 (mean) Luminal <49.949.9–72.4≥ 74.9 3.97 (1.77–8.91)0.82 (0.28–2.37)1.0 (Ref.) 0.0010.711 Age, LN positivity, ER status, T stage 
Reference, countryDesignNumber/eventsaAge (y)Type25-OHD, nmol/LRR/ORd (95% CI)P-value/trendConfounders
Overall survival 
Villasenor et al. (17), United States Cohort of cancer patients 585/110 18–64 In situ, stages I–IIIA disease Per 25 nmol/L increase 0.85 (0.68–1.09) 0.20 Age, tumor stage, BMI, race, study site, tamoxifen use, season of blood draw, treatment, smoking, physical activity 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/134 22–94 Early and invasive Per 25 nmol/L increase>74.9 vs. ≤74.9 0.79 (0.65–0.95)0.53 (0.33–0.86) 0.0100.010 BMI, age, tumor size, lymph node involvement, grade, estrogen receptor (ER) status 
Jacobs et al. (20), United States Nested case-control 250 matchedpairs 18–70 Stages I–IIIA <49.9≥ 49.9 1.13 (0.72–1.79)1.0 (Ref.) 0.59 BMI, ethnicity, intervention group, calcium intake, grade 
Tretli et al. (15) Cohort of cancer 251/98 36–75 Unspecified <46 1.0 (Ref.)  Sex, age at diagnosis, season 
Norway patients    46–61 0.55 (0.32–0.95)  of blood sampling 
     62–81 0.41 (0.23–0.74)   
     >81 0.37 (0.21–0.67) <0.01  
Vrieling et al. (18), Germany Cohort of cancer patients 1,265/174 50–74 In situ, stages I–IV Per 10 nmol/L decrease<3535–55>55 1.08 (1.00–1.17)1.55 (1.00–2.39)0.72 (0.45–1.17)1.0 (Ref.) 0.07 Tumor size, nodal status, metastases, tumor grade, ER/PR status, diabetes, detection mode 
Goodwin et al. (16), Canada Cohort of cancer patients 512/106 ≤75 Early stage <50≥50–72>72 1.60 (0.96–2.64)0.98 (0.57–1.69)1.00 (Ref.) 0.05 Age, tumor stage, nodal stage, estrogen receptor status, grade 
Breast cancer–specific survival 
Villasenor et al. (17), United States Cohort of cancer patients 585/48 18–64 In situ, stages I–IIIA disease Per 25 nmol/L increase 1.08 (0.75–1.54) 0.68 Age, tumor stage, BMI, race-ethnicity/study site, tamoxifen use, season of blood draw, treatment used 
     <49.9 1.0 (Ref.)   
     49.9–74.9 1.12 (0.54–2.33)   
     >74.9 1.21 (0.52–2.80)   
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/64 22–94 Early, invasive Per 25nmol/L increase 0.79 (0.62–1.00) 0.049 BMI, age, tumor size, grade, ER status 
   All women  >74.9 vs. ≤74.9 0.49 (0.27–0.89) 0.019  
   Premenopause  >74.9 vs. ≤74.9 0.93 (0.43–2.02) 0.853  
   Postmenopause  >74.9 vs. ≤74.9 0.15 (0.03–0.63) 0.009  
Tretli et al. (15), Norway Cohort of cancer patients 251/82 36–75 Unspecified <5051–6768–86>86 1.0 (Ref.)0.47 (0.26–0.85)0.53 (0.29–0.95)0.42 (0.21–0.82) 0.01 Age, sex, season of blood sampling 
Other outcomes 
Recurrence/relapse 
Jacobs et al. (20), United States Nested case-control 512 matched pairs 18–70 Stages I–IIIA <24.96 ≥24.96, <49.9≥49.9, <74.9≥74.9 1.14 (0.57–2.31)1.00 (0.68–1.48)1.05 (0.76–1.47)1.0 (Ref.) 0.85 BMI, ethnicity, intervention group, calcium intake, tumor grade 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/116c 22–94 Early and invasive >75 vs. ≤75, 1st year>75 vs. ≤75, 3rd year>75 vs. ≤75, 6th year 1.20 (0.63–2.28)0.50 (0.29–0.85)0.25 (0.09–0.70) 0.58520.01030.0082 Age, BMI, tumor size, pN, grade, ER-by-time 
Distant disease-free survival/interval 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/94 Premenopausal Early and invasive >74.9 vs. ≤74.9 Not reported, no association   
Vrieling et al. (18), Germany Cohort of cancer patients 1,074/135b 50–74 Postmenopausal In situ, stages I–IIIA disease Per 10 nmol/L decrease<3535–55>55 1.14 (1.05–1.24)2.09 (1.29–3.41)1.16 (0.70–1.94)1.0 (Ref.) 0.006 Tumor size, nodal status, metastases, tumor grade, ER/PR status, diabetes, detection mode 
Goodwin et al. (16), Canada Cohort of cancer patients 512/116c ≤75 Early stage <50≥50–72>72 1.71 (1.02–2.86)1.25 (0.73–2.14)1.0 (Ref.) 0.09 Age, tumor stage, nodal stage, ER, grade 
Disease-free survival/interval 
Hatse et al. (19), Belgium Cohort of cancer patients 1,800/116c Premenopausal Early and invasive Per 25 nmol/L increase Not reported, no association   
   Postmenopausal   0.74 (0.57–0.96) 0.0225 Age, tumor size, pN grade, ER-by-time, # positive lymph nodes, tumor grade 
Kim et al. (21), Korea Cohort of cancer patients 310/31b 48.9 ± 10.3 (mean) Luminal <49.949.9–72.4≥ 74.9 3.97 (1.77–8.91)0.82 (0.28–2.37)1.0 (Ref.) 0.0010.711 Age, LN positivity, ER status, T stage 

aDeaths, unless otherwise stated.

bMetastases.

cRelapse.

dRelative risk/odds ratio.

Breast cancer–specific survival.

Three studies have reported on the associations of circulating 25-OHD with breast cancer survival (15, 17, 19). Circulating 25-OHD was associated with breast cancer survival in two of the other three studies (15, 19), but the effect was limited to postmenopausal (HR, 0.15; 95% CI, 0.03–0.63), and not premenopausal women (HR, 0.93; 95% CI, 0.43–2.02) in one study (19).

Other outcomes.

Other breast cancer outcomes include distant disease-free survival (16, 18, 19), disease-free survival (19, 21), and relapse (19, 20). Circulating 25-OHD concentrations were associated with longer distant disease-free survival (16, 18, 19). Likewise, 25-OHD was inversely associated with relapse after 3 years (HR, 0.50; 95% CI, 0.29–0.85) and 6 years (HR, 0.25; 95% CI, 0.09–0.70; ref. 19) but not during the first year of treatment (19) or with recurrence (20).

Colorectal cancer

Overall survival.

From 2008 till date, five studies have examined the associations of circulating 25-OHD levels with overall survival in patients with colorectal cancer and one study among patients with colon cancer alone (refs. 15, 22–26; Table 2). One of these studies used prediagnostic 25-OHD levels (22), whereas another one used predicted 25-OHD levels (25). Four of the five studies in patients with colorectal cancer reported better overall survival among those with higher 25-OHD levels compared with those with lower 25-OHD levels (22–25), whereas the study in patients with colon cancer did not (15). Elevated prediagnostic 25-OHD levels were associated with better survival among patients with rectal cancer but not among patients with colon cancer (22).

Table 2.

Association of circulating 25-OHD levels with prognosis among patients with colorectal cancer

Reference, countryDesignNumber/eventsaAge (y)Type25-OHD, nmol/LRR/ORf (95% CI)P-value/trendConfounders
Overall survival 
Fedirko et al. (22), Europe Prospective cohort 1,202/541 35–70 CRC <36.3b 1.0 (Ref.)  Age at diagnosis, sex, cancer stage, grade of tumor differentiation, primary tumor location, smoking status, BMI, physical activity, season of blood collection, diagnosis year 
     36.4–48.6 0.82 (0.63–1.07)   
     48.7–60.5 0.91 (0.70–1.18)   
     60.6–76.8 0.78 (0.59–1.03)   
     >76.8 0.67 (0.50–0.88) <0.01  
  1,202/541  CRC <25b 1.0 (Ref.)   
     25–50 0.74 (0.51–1.08)   
     50–75 0.71 (0.49–1.04)   
     75–100 0.57 (0.37–0.89)   
     ≥100 0.53 (0.33–0.87) 0.02  
  759/345  Colon cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.83 (0.59–1.17)   
     48.7–60.5 1.01 (0.73–1.41)   
     60.6–76.8 0.90 (0.64–1.28)   
     >76.8 0.69 (0.48–1.01) 0.16  
  443/196  Rectal cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.78 (0.50–1.21)   
     48.7–60.5 0.69 (0.43–1.13)   
     60.6–76.8 0.60 (0.36–0.99)   
     >76.8 0.55 (0.35–0.88) <0.01  
Ng et al. (26), United States Cohort of cancer patients 515/475 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 0.78 (0.60–1.02)   
     49.9–67.6 1.13 (0.87–1.47)   
     67.9–188.2 0.94 (0.72–1.23) 0.55  
Tretli et al. (15), Norway Cohort of cancer patients 52/36 32–75 Colon <46 1.0 (Ref.)  Sex, age at diagnosis, season of blood sampling 
     46–61 0.48 (0.18–1.29)   
     62–81 0.61 (0.23–1.59)   
     >81 0.40 (0.10–1.60) 0.23  
Mezawa et al. (23), Japan Cohort of cancer patients 257/39 65 (mean) CRC 7.5–17.5 0.50 (0.16–1.54)  Age, gender, month of blood sampling, cancer stage, residual tumor after surgery, time period of surgery, location of tumor, adjuvant chemotherapy, # lymph nodes with metastasis 
     19.96–24.96 0.55 (0.18–1.65)   
     27.5–37.4 1.0 (Ref.)   
     39.9–89.9 0.16 (0.04–0.63) 0.009  
Ng et al. (25), United States Prospective cohort 1,017/283 30–75 CRC Quintile 1c 1.0 (ref.)  Age at diagnosis, gender, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year 
     Quintile 2 1.19 (0.85–1.68)   
     Quintile 3 1.05 (0.74–1.50)   
     Quintile 4 0.63 (0.43–0.94)   
     Quintile 5 0.62 (0.42–0.93) 0.002  
Ng et al. (24), United States Prospective cohort 304/123 30–75 CRC Quartile 1 1.0 (Ref.)  Age at diagnosis, season of blood draw, sex, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year, BMI at diagnosis, postdiagnostic physical activity 
     Quartile 2 0.81 (0.49–1.35)   
     Quartile 3 0.81 (0.48–1.37)   
     Quartile 4 0.52 (0.29–0.94) 0.02  
Colorectal cancer–specific survival 
Fedirko et al. (22), Europe Prospective cohort 1,202/444 35–70 CRC <36.3b 1.0 (Ref.)  Age at diagnosis, sex, cancer stage, grade of tumor differentiation, primary tumor location, smoking status, BMI, physical activity, season of blood collection, diagnosis year 
     36.4–48.6 0.76 (0.56–1.02)   
     48.7–60.5 0.93 (0.69–1.24)   
     60.6–76.8 0.78 (0.58–1.06)   
     >76.8 0.69 (0.50–0.93) 0.04  
  1,202/444  CRC <25b 1.0 (Ref.)   
     25–50 0.73 (0.48–1.11)   
     50–75 0.72 (0.47–1.11)   
     75–100 0.62 (0.38–1.01)   
     ≥100 0.55 (0.32–0.94) 0.04  
  759/279  Colon cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.77 (0.52–1.14)   
     48.7–60.5 1.05 (0.72–1.52)   
     60.6–76.8 0.96 (0.65–1.40)   
     >76.8 0.79 (0.53–1.19) 0.61  
  443/165  Rectal cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.72 (0.45–1.17)   
     48.7–60.5 0.65 (0.38–1.11)   
     60.6–76.8 0.53 (0.31–0.92)   
     >76.8 0.48 (0.29–0.80) <0.01  
Tretli et al. (15), Norway Cohort of cancer patients 52/26 32–75 Colon cancer <44 1.0 (Ref.)  Sex, age at diagnosis, season of blood sampling 
     45–56 0.46 (0.15–1.48)   
     57–77 0.73 (0.25–2.15)   
     >77 0.20 (0.04–1.10) 0.16  
Mezawa et al. (23), Japan Cohort of cancer patients 257/30 65 (mean) CRC Per unit increase 0.98 (0.89–1.08) 0.67 Age at diagnosis, gender, calendar month of blood sampling, cancer stage, residual tumor after surgery, time period of surgery, location of tumor, adjuvant chemotherapy, # lymph nodes with metastasis 
Ng et al. (25), United States Prospective cohort 1,017/119 30–75 CRC Quintile 1c 1.0 (Ref.)  Age at diagnosis, gender, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year 
     Quintile 2 0.99 (0.58–1.68)   
     Quintile 3 1.04 (0.61–1.78)   
     Quintile 4 0.62 (0.34–1.11)   
     Quintile 5 0.50 (0.26–0.95) 0.02  
Ng et al. (24), United States Prospective cohort 304/96 30–75 CRC Quartile 1 1.0 (Ref.)  Age at diagnosis, season of blood draw, sex, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year, BMI at diagnosis, post diagnostic physical activity 
     Quartile 2 0.76 (0.41–1.42)   
     Quartile 3 1.04 (0.58–1.89)   
     Quartile 4 0.61 (0.31–1.19) 0.23  
Other outcomes 
Time to progression 
Ng et al. (26), United States Cohort of cancer patients 515/440d 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 1.14 (0.87–1.49)   
     49.9–67.6 1.23 (0.93–1.62)   
     67.9–188.2 1.07 (0.81–1.42) 0.66  
Confirmed response 
Ng et al. (26), United States Cohort of cancer patients 515/239e 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 1.15 (0.70–1.91)   
     49.9–67.6 0.98 (0.59–1.63)   
     67.9–188.2 1.12 (0.67–1.89) 0.67  
Reference, countryDesignNumber/eventsaAge (y)Type25-OHD, nmol/LRR/ORf (95% CI)P-value/trendConfounders
Overall survival 
Fedirko et al. (22), Europe Prospective cohort 1,202/541 35–70 CRC <36.3b 1.0 (Ref.)  Age at diagnosis, sex, cancer stage, grade of tumor differentiation, primary tumor location, smoking status, BMI, physical activity, season of blood collection, diagnosis year 
     36.4–48.6 0.82 (0.63–1.07)   
     48.7–60.5 0.91 (0.70–1.18)   
     60.6–76.8 0.78 (0.59–1.03)   
     >76.8 0.67 (0.50–0.88) <0.01  
  1,202/541  CRC <25b 1.0 (Ref.)   
     25–50 0.74 (0.51–1.08)   
     50–75 0.71 (0.49–1.04)   
     75–100 0.57 (0.37–0.89)   
     ≥100 0.53 (0.33–0.87) 0.02  
  759/345  Colon cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.83 (0.59–1.17)   
     48.7–60.5 1.01 (0.73–1.41)   
     60.6–76.8 0.90 (0.64–1.28)   
     >76.8 0.69 (0.48–1.01) 0.16  
  443/196  Rectal cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.78 (0.50–1.21)   
     48.7–60.5 0.69 (0.43–1.13)   
     60.6–76.8 0.60 (0.36–0.99)   
     >76.8 0.55 (0.35–0.88) <0.01  
Ng et al. (26), United States Cohort of cancer patients 515/475 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 0.78 (0.60–1.02)   
     49.9–67.6 1.13 (0.87–1.47)   
     67.9–188.2 0.94 (0.72–1.23) 0.55  
Tretli et al. (15), Norway Cohort of cancer patients 52/36 32–75 Colon <46 1.0 (Ref.)  Sex, age at diagnosis, season of blood sampling 
     46–61 0.48 (0.18–1.29)   
     62–81 0.61 (0.23–1.59)   
     >81 0.40 (0.10–1.60) 0.23  
Mezawa et al. (23), Japan Cohort of cancer patients 257/39 65 (mean) CRC 7.5–17.5 0.50 (0.16–1.54)  Age, gender, month of blood sampling, cancer stage, residual tumor after surgery, time period of surgery, location of tumor, adjuvant chemotherapy, # lymph nodes with metastasis 
     19.96–24.96 0.55 (0.18–1.65)   
     27.5–37.4 1.0 (Ref.)   
     39.9–89.9 0.16 (0.04–0.63) 0.009  
Ng et al. (25), United States Prospective cohort 1,017/283 30–75 CRC Quintile 1c 1.0 (ref.)  Age at diagnosis, gender, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year 
     Quintile 2 1.19 (0.85–1.68)   
     Quintile 3 1.05 (0.74–1.50)   
     Quintile 4 0.63 (0.43–0.94)   
     Quintile 5 0.62 (0.42–0.93) 0.002  
Ng et al. (24), United States Prospective cohort 304/123 30–75 CRC Quartile 1 1.0 (Ref.)  Age at diagnosis, season of blood draw, sex, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year, BMI at diagnosis, postdiagnostic physical activity 
     Quartile 2 0.81 (0.49–1.35)   
     Quartile 3 0.81 (0.48–1.37)   
     Quartile 4 0.52 (0.29–0.94) 0.02  
Colorectal cancer–specific survival 
Fedirko et al. (22), Europe Prospective cohort 1,202/444 35–70 CRC <36.3b 1.0 (Ref.)  Age at diagnosis, sex, cancer stage, grade of tumor differentiation, primary tumor location, smoking status, BMI, physical activity, season of blood collection, diagnosis year 
     36.4–48.6 0.76 (0.56–1.02)   
     48.7–60.5 0.93 (0.69–1.24)   
     60.6–76.8 0.78 (0.58–1.06)   
     >76.8 0.69 (0.50–0.93) 0.04  
  1,202/444  CRC <25b 1.0 (Ref.)   
     25–50 0.73 (0.48–1.11)   
     50–75 0.72 (0.47–1.11)   
     75–100 0.62 (0.38–1.01)   
     ≥100 0.55 (0.32–0.94) 0.04  
  759/279  Colon cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.77 (0.52–1.14)   
     48.7–60.5 1.05 (0.72–1.52)   
     60.6–76.8 0.96 (0.65–1.40)   
     >76.8 0.79 (0.53–1.19) 0.61  
  443/165  Rectal cancer <36.3b 1.0 (Ref.)   
     36.4–48.6 0.72 (0.45–1.17)   
     48.7–60.5 0.65 (0.38–1.11)   
     60.6–76.8 0.53 (0.31–0.92)   
     >76.8 0.48 (0.29–0.80) <0.01  
Tretli et al. (15), Norway Cohort of cancer patients 52/26 32–75 Colon cancer <44 1.0 (Ref.)  Sex, age at diagnosis, season of blood sampling 
     45–56 0.46 (0.15–1.48)   
     57–77 0.73 (0.25–2.15)   
     >77 0.20 (0.04–1.10) 0.16  
Mezawa et al. (23), Japan Cohort of cancer patients 257/30 65 (mean) CRC Per unit increase 0.98 (0.89–1.08) 0.67 Age at diagnosis, gender, calendar month of blood sampling, cancer stage, residual tumor after surgery, time period of surgery, location of tumor, adjuvant chemotherapy, # lymph nodes with metastasis 
Ng et al. (25), United States Prospective cohort 1,017/119 30–75 CRC Quintile 1c 1.0 (Ref.)  Age at diagnosis, gender, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year 
     Quintile 2 0.99 (0.58–1.68)   
     Quintile 3 1.04 (0.61–1.78)   
     Quintile 4 0.62 (0.34–1.11)   
     Quintile 5 0.50 (0.26–0.95) 0.02  
Ng et al. (24), United States Prospective cohort 304/96 30–75 CRC Quartile 1 1.0 (Ref.)  Age at diagnosis, season of blood draw, sex, cancer stage, grade of tumor differentiation, primary tumor location, diagnosis year, BMI at diagnosis, post diagnostic physical activity 
     Quartile 2 0.76 (0.41–1.42)   
     Quartile 3 1.04 (0.58–1.89)   
     Quartile 4 0.61 (0.31–1.19) 0.23  
Other outcomes 
Time to progression 
Ng et al. (26), United States Cohort of cancer patients 515/440d 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 1.14 (0.87–1.49)   
     49.9–67.6 1.23 (0.93–1.62)   
     67.9–188.2 1.07 (0.81–1.42) 0.66  
Confirmed response 
Ng et al. (26), United States Cohort of cancer patients 515/239e 26–85 Stage IV CRC 5.7–32.7 1.0 (Ref.)  Age, season of blood collection, sex, baseline performance status, treatment arm, BMI, metastatic sites 
     32.9–49.7 1.15 (0.70–1.91)   
     49.9–67.6 0.98 (0.59–1.63)   
     67.9–188.2 1.12 (0.67–1.89) 0.67  

Abbreviation: CRC, colorectal cancer.

aDeaths, unless otherwise stated.

bPrediagnostic 25-OHD levels.

cPredicted 25-OHD levels.

dProgression.

eConfirmed tumor response.

fRelative risk/odds ratio.

Colorectal cancer–specific survival.

Five studies reported on the associations of circulating 25-OHD with colorectal cancer–specific survival (one on colon cancer–specific survival; refs. 15, 22–25). Elevated 25-OHD concentrations were associated with better colorectal cancer–specific survival in two studies (22, 25).

Other outcomes.

Circulating 25-OHD concentrations were not associated with time to progression, confirmed response, and disease-free survival in patients with colorectal cancer (23, 26).

Lung cancer

Overall survival.

Four studies have investigated the associations of 25-OHD with overall survival (refs. 15, 27–29; Table 3). Elevated 25-OHD concentrations were associated with better survival in a Norwegian study (HR, 0.19; 95% CI, 0.12–0.30; ref. 15) and worse survival in a Chinese study (HR, 2.54; 95% CI, 1.01–6.41; ref. 27). Zhou and colleagues reported a beneficial effect of 25-OHD on survival among patients with stages IB and IIB non–small cell lung cancer (NSCLC) but not among those with stage IA tumors (29). Heist and colleagues observed no associations between 25-OHD concentrations and survival in patients with stages III and IV NSCLC as well as among patients with adenocarcinoma and squamous cell carcinoma (28).

Table 3.

Association of circulating 25-OHD levels with prognosis among patients with lung cancer

Reference, countryDesignNumber/eventsaAge (y)Cancer type25-OHD, nmol/LRR/ORc (95% CI)P-value/trendConfounders
Overall survival 
Liu et al. (27), China Cohort of cancer patients 568/87 25–83 NSCLC <25.36 1.0 (Ref.)  Age, gender, smoking status, stage, histology, surgical operation, chemotherapy or radiation treatment 
     25.36–37.72 1.47 (0.58–3.73)   
     37.72–56.54 1.59 (0.75–3.39)   
     ≥ 56.54 2.54 (1.01–6.41) 0.048  
     Trend 1.31 (1.00–1.72) 0.048  
Tretli et al. (15), Norway Cohort of cancer patients 210/190 42–82 Not specified <46 1.0 (Ref.)  Age at diagnosis, sex, season of blood sampling 
     46–61 0.40 (0.28–0.59)   
     62–81 0.34 (0.22–0.52)   
     >81 0.19 (0.12–0.30) <0.01  
Heist et al. (28), United States Cohort of cancer patients 294/233 33–85 Advanced stage NSCLC <31.4 1.0 (Ref.)  Sex, stage, performance status 
     31.4–50.4 1.09 (0.75–1.57)   
     50.7–68.9 1.03 (0.71–1.50)   
     ≥69.1 1.08 (0.75–1.57) 0.76  
  156/125  Adenocarcinoma <31.4 1.0 (Ref.)   
     31.4–50.4 1.13 (0.67–1.91)   
     50.7–68.9 0.82 (0.49–1.37)   
     ≥ 69.1 1.34 (0.81–2.19) 0.51  
  51/37  Squamous <31.4 1.0 (Ref.)   
     31.4–50.4 1.67 (0.65–4.28)   
     50.7–68.9 3.04 (1.05–8.84) 0.14  
     ≥69.1 1.60 (0.55–4.66)   
  128/101  Stage III <31.4 1.0 (Ref.)   
     31.4–50.4 0.87 (0.50–1.52)   
     50.7–68.9 1.17 (0.70–1.96)   
     ≥69.1 0.88 (0.49–1.57) 0.98  
  166/132  Stage IV <31.4 1.0 (Ref.)   
     31.4–50.4 1.32 (0.79–2.21)   
     50.7–68.9 0.99 (0.58–1.72) 0.56  
     ≥69.1 1.29 (0.78–2.15)   
Zhou et al. (29), United States Cohort of cancer patients 447/234 31–89 Early-stage NSCLC <25.5 1.0 (Ref.)  Age, sex, stage, pack-years of smoking, chemotherapy/radiotherapy, surgery season 
     25.2–39.2 1.07 (0.74–1.53)   
     39.4–53.7 0.80 (0.55–1.18)   
     >53.7 0.74 (0.50–1.10) 0.07  
  232/111  Stage IA <25.5 1.0 (Ref.)   
     25.2–39.2 1.02 (0.56–1.87)   
     39.4–53.7 1.33 (0.77–2.31)   
     >53.7 1.10 (0.62–1.96) 0.53  
  215/123  Stage IB–IIB <25.5 1.0 (Ref.)   
     25.2–39.2 1.01 (0.63–1.61)   
     39.4–53.7 0.51 (0.29–0.89)   
     >53.7 0.45 (0.24–0.82) 0.02  
Other outcomes 
Recurrence-free survival 
Zhou et al. (29), United States Cohort of cancer patients 447/269b 31–89 Early-stage NSCLC <25.5 1.0 (Ref.)  Age, sex, stage, pack-years of smoking, surgery season chemotherapy/radiotherapy 
     25.2–39.2 1.21 (0.86–1.71)   
     39.4–53.7 0.90 (0.62–1.29)   
     >53.7 0.92 (0.64–1.33) 0.37  
  232/111  Stage IA <25.5 1.0 (Ref.)   
     25.2–39.2 1.21 (0.70–2.09)   
     39.4–53.7 1.43 (0.86–2.39)   
     >53.7 1.25 (0.75–2.08) 0.32  
  215/123  Stage IB–IIB <25.5 1.0 (Ref.)   
     25.2–39.2 1.30 (0.85–2.00)   
     39.4–53.7 0.72 (0.45–1.15)   
     >53.7 0.75 (0.45–1.23) 0.06  
Reference, countryDesignNumber/eventsaAge (y)Cancer type25-OHD, nmol/LRR/ORc (95% CI)P-value/trendConfounders
Overall survival 
Liu et al. (27), China Cohort of cancer patients 568/87 25–83 NSCLC <25.36 1.0 (Ref.)  Age, gender, smoking status, stage, histology, surgical operation, chemotherapy or radiation treatment 
     25.36–37.72 1.47 (0.58–3.73)   
     37.72–56.54 1.59 (0.75–3.39)   
     ≥ 56.54 2.54 (1.01–6.41) 0.048  
     Trend 1.31 (1.00–1.72) 0.048  
Tretli et al. (15), Norway Cohort of cancer patients 210/190 42–82 Not specified <46 1.0 (Ref.)  Age at diagnosis, sex, season of blood sampling 
     46–61 0.40 (0.28–0.59)   
     62–81 0.34 (0.22–0.52)   
     >81 0.19 (0.12–0.30) <0.01  
Heist et al. (28), United States Cohort of cancer patients 294/233 33–85 Advanced stage NSCLC <31.4 1.0 (Ref.)  Sex, stage, performance status 
     31.4–50.4 1.09 (0.75–1.57)   
     50.7–68.9 1.03 (0.71–1.50)   
     ≥69.1 1.08 (0.75–1.57) 0.76  
  156/125  Adenocarcinoma <31.4 1.0 (Ref.)   
     31.4–50.4 1.13 (0.67–1.91)   
     50.7–68.9 0.82 (0.49–1.37)   
     ≥ 69.1 1.34 (0.81–2.19) 0.51  
  51/37  Squamous <31.4 1.0 (Ref.)   
     31.4–50.4 1.67 (0.65–4.28)   
     50.7–68.9 3.04 (1.05–8.84) 0.14  
     ≥69.1 1.60 (0.55–4.66)   
  128/101  Stage III <31.4 1.0 (Ref.)   
     31.4–50.4 0.87 (0.50–1.52)   
     50.7–68.9 1.17 (0.70–1.96)   
     ≥69.1 0.88 (0.49–1.57) 0.98  
  166/132  Stage IV <31.4 1.0 (Ref.)   
     31.4–50.4 1.32 (0.79–2.21)   
     50.7–68.9 0.99 (0.58–1.72) 0.56  
     ≥69.1 1.29 (0.78–2.15)   
Zhou et al. (29), United States Cohort of cancer patients 447/234 31–89 Early-stage NSCLC <25.5 1.0 (Ref.)  Age, sex, stage, pack-years of smoking, chemotherapy/radiotherapy, surgery season 
     25.2–39.2 1.07 (0.74–1.53)   
     39.4–53.7 0.80 (0.55–1.18)   
     >53.7 0.74 (0.50–1.10) 0.07  
  232/111  Stage IA <25.5 1.0 (Ref.)   
     25.2–39.2 1.02 (0.56–1.87)   
     39.4–53.7 1.33 (0.77–2.31)   
     >53.7 1.10 (0.62–1.96) 0.53  
  215/123  Stage IB–IIB <25.5 1.0 (Ref.)   
     25.2–39.2 1.01 (0.63–1.61)   
     39.4–53.7 0.51 (0.29–0.89)   
     >53.7 0.45 (0.24–0.82) 0.02  
Other outcomes 
Recurrence-free survival 
Zhou et al. (29), United States Cohort of cancer patients 447/269b 31–89 Early-stage NSCLC <25.5 1.0 (Ref.)  Age, sex, stage, pack-years of smoking, surgery season chemotherapy/radiotherapy 
     25.2–39.2 1.21 (0.86–1.71)   
     39.4–53.7 0.90 (0.62–1.29)   
     >53.7 0.92 (0.64–1.33) 0.37  
  232/111  Stage IA <25.5 1.0 (Ref.)   
     25.2–39.2 1.21 (0.70–2.09)   
     39.4–53.7 1.43 (0.86–2.39)   
     >53.7 1.25 (0.75–2.08) 0.32  
  215/123  Stage IB–IIB <25.5 1.0 (Ref.)   
     25.2–39.2 1.30 (0.85–2.00)   
     39.4–53.7 0.72 (0.45–1.15)   
     >53.7 0.75 (0.45–1.23) 0.06  

aDeaths, unless otherwise stated.

bRecurrence.

cRelative risk/odds ratio.

Other outcomes.

Recurrence-free survival.

Circulating 25-OHD was not associated with recurrence-free survival in the overall analysis but suggestion of an association among patients with stages IB and IIB in a study conducted in Boston, MA (HR, 0.75; 95% CI, 0.45–1.23; P-trend = 0.06; ref. 29).

Other cancers

A few other studies have investigated the associations of circulating 25-OHD levels with prognosis in patients with other cancers, including lymphoma (15, 30), leukemia (31, 32), skin (33, 34), head-and-neck (35, 36), gastric (37), pancreatic (38), and prostate cancers (39, 40) with varying results (Table 4). Elevated 25-OHD levels were associated with better overall survival in patients with gastric cancer and lymphoma. Although elevated 25-OHD was not associated with statistically significant better overall survival among patients with skin cancer, it was associated with better recurrence-free survival (HR, 0.79; 95 %CI, 0.64–0.96; ref. 33). The associations of 25-OHD levels with overall survival in prostate and head-and-neck cancers seem equivocal. Of the two studies each conducted among patients with these cancers, one each reported survival advantage with elevated 25-OHD levels, whereas the other did not. For pancreatic cancer, elevated 25-OHD levels were associated with improved survival among patients with stages III and IV pancreatic cancer but not in the overall analysis.

Table 4.

Association of circulating 25-OHD levels with prognosis among patients with other cancer types

Reference, countryDesignNumber/eventsaAge (y)Cancer type25-OHD, nmol/LRR/ORd (95% CI)P-value/trendConfounders
Gastric cancer 
Overall survival 
Ren et al. (37), China Retrospective cohort of cancer patients 197/106 60 (mean) Gastric carcinoma <50 1.0 (ref) 0.019 Clinical stage, season of blood draw 
     ≥50 0.59 (0.37–0.91)   
Pancreatic cancer 
Overall survival 
Cho et al. (38), United States Cohort of cancer patients 178/NA NA All patients <50 Not statistically significant, NA NA NA 
     ≥50    
    Stages III and IV cancer <50 1.99 (1.16–3.43) 0.013 NA 
     ≥50 1.0 (ref)   
Skin cancer 
Overall survival 
Newton-Bishop et al. (33), United Kingdom Cohort of cancer patients 872/141 NA Melanoma Per 20 nmol/L increase 0.83 (0.68–1.02) NA Age, sex, Townsend score, tumor site, Breslow thickness, BMI 
Skin cancer–specific survival 
Samimi et al. (34), France Cohort of cancer patients 89/19 31–98 Merkel cell carcinoma <50 5.28 (0.75–36.95) 0.093 Age, tumor size, time to vitamin D assessment, impaired immune function, metastasis at presentation, period of sampling 
     >50 1.0 (ref)   
Recurrence-free survival 
Newton-Bishop et al. (33), United Kingdom Cohort of cancer patients 872/173b NA Melanoma Per 20 nmol/L increase 0.79 (0.64–0.96) NA Age, sex, Townsend score, tumor site, Breslow thickness, BMI 
     ≤41.3 1.0 (ref)   
     41.3–61.4 0.70 (0.42–1.14)   
     > 61.4 0.57 (0.33–0.97)   
Nodal and/or distant metastasis 
Samimi et al. (34), France Cohort of cancer patients 89/33 31–98 Merkel cell carcinoma <50 2.89 (1.03–8.13) 0.043 Age, tumor size, time to vitamin D assessment, impaired immune function, metastasis at presentation, period of sampling 
     ≥50 1.0 (ref)   
Head-and-neck cancers 
Overall survival 
Gugatschka et al. (35), Austria Cancer patients 88 cases/NA 63 (mean) Squamous cell carcinoma (SCC) NA 0.89 (0.83–0.97) 0.006 Univariable analysis 
Meyer et al. (36), Canada Cohort of cancer patients 522/223 62.5 (mean) Overall (Stage I–II) <48 1.0 (ref) 0.65 Season of blood collection, stage, site, age, smoking, alcohol consumption, BMI 
     49–63 0.75 (0.51–1.10)   
     64–78 0.93 (0.64–1.36)   
     >78 0.85 (0.57–1.28)   
Recurrence 
Meyer et al. (36), Canada Cohort of cancer patients 522/119b 62.5 (mean) Overall (Stage I–II) <48 1.0 (ref) 0.56 Season of blood collection, stage, site 
     49–63 0.99 (0.58–1.69)   
     64–78 1.20 (0.71–2.05)   
     >78 1.12 (0.65–1.93)   
Disease-free survival 
Gugatschka et al. (35), Austria Cohort of cancer patients 88 cases/NA 63 (mean) SCC NA 0.85 (0.75–0.96) 0.01 Univariable analysis 
Prostate cancer 
Overall survival 
Fang et al. (39), United States Cohort of cancer patients 1,822/595 NA Overall Quartile 1 1.10 (0.87–1.39) 0.46 Age at diagnosis, BMI, physical activity, smoking, Gleason score, TNM stage, 1,25(OH)2
     Quartile 2 1.05 (0.83–1.34)   
     Quartile 3 1.06 (0.83–1.34)   
     Quartile 4 1.0 (ref)   
Tretli et al. (40), Norway Cohort of cancer patients 160/61 52–82 Overall <50 1.0 (ref) NA Patient group, age, tumor differentiation grade, patient functional status at time of blood collection 
     50–80 0.40 (0.20–0.78)   
     >80 0.24 (0.11–0.53)   
  97/45  Among patients receiving hormone therapy <50 1.0 (ref)   
     50–80 0.18 (0.07–0.46)   
     >80 0.09 (0.03–0.27)   
Prostate cancer–specific survival 
Fang et al. (39), United States Cohort of cancer patients 1,822/202c NA Overall Quartile 1 1.31 (0.86–1.99) 0.14 Age at diagnosis, BMI, physical activity, smoking, Gleason score, TNM stage, 1,25(OH)2
     Quartile 2 1.32 (0.87–2.00)   
     Quartile 3 1.09 (0.70–1.70)   
     Quartile 4 1.0 (ref)   
Tretli et al. (40), Norway Cohort of cancer patients 160/52 52–82 Overall <50 1.0 (ref) NA Patient group, age, tumor differentiation grade, patient functional status at time of blood collection 
     50–80 0.33 (0.14–0.77)   
     >80 0.16 (0.05–0.43)   
Hematologic cancers 
Overall survival 
Lymphoma 
Tretli et al. (15), Norway Cohort of cancer patients 145/75 37–79 Overall <46 1.0 (ref) <0.01 Sex, age at diagnosis, season of blood sampling 
     46–61 0.59 (0.32–1.11)   
     62–81 0.46 (0.25–0.86)   
     >81 0.33 (0.16–0.69)   
Drake et al. (30), United States Cohort of cancer patients 370/100 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.003 International Prognostic Index (IPI), immunochemotherapy vs. all other therapy 
     <62.5 1.99 (1.27–3.13)   
  70/29  T-cell lymphoma >62.5 1.0 (ref) 0.04 International Prognostic Index 
     <62.5 2.38 (1.04–5.41)   
  71/19  Mantle cell lymphoma >62.5 1.0 (ref) 0.53 Mantle Cell International Prognostic Index (MCIPI) 
     <62.5 1.35 (0.53–3.39)   
  285/19  Follicular lymphoma (FL) >62.5 1.0 (ref) 0.38 FLIPI, FL grade 3, rituximab-based therapy, chemotherapy vs. none 
     <62.5 1.52 (0.60–3.88)   
  109/8  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.2 Stage, performance status 
     <62.5 2.76 (0.58–13.1)   
  78/18  Others >62.5 1.0 (ref) 0.14 Stage, performance status 
     <62.5 2.08 (0.79–5.49)   
Leukemia 
Pardanani et al. (31), United States Cohort of cancer patients 247/129 14–83 Primary myelofibrosis <62.4 1.2 (0.8–1.6) (NA) Disease-specific prognostic variables 
     <24.96 1.2 (0.7–2.1)   
  74/42 44–89 De novo myelodysplastic syndromes <62.4 1.4 (0.7–2.7) NA Disease-specific prognostic variables 
Shanafelt et al. (32), United States Discovery cohort 390/34 63 (median) Chronic lymphocytic leukemia (CLL) <62.4 2.39 (1.21–4.70) 0.01 NA 
 Confirmation cohort 153/62 67 (median) CLL <62.4 1.63 (0.99–2.69) 0.06 NA 
 Combined cohorts 543/96  CLL <62.4 1.47 (0.97–2.23) 0.07 Age, sex, Rai stage, CD38, ZAP-70, IGHV, CD49d, cytogenetic abnormalities (FISH) 
Cancer-specific survival 
Tretli et al. (15), Norway Cohort of cancer patients 145/62 37–79 Overall <44 1.0 (ref) 0.01 Sex, age at diagnosis, season of blood sampling 
     44–60 0.71 (0.36–1.40)   
     61–77 0.45 (0.21–94)   
     >77 0.39 (0.18–0.83)   
Drake et al. (30), United States Cohort of cancer patients 370/90 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.002 IPI, immunochemotherapy vs. all other therapy 
     <62.5 2.16 (1.33–3.51)   
  70/28  T-cell lymphoma >62.5 1.0 (ref) 0.05 IPI 
     <62.5 2.26 (0.99–5.17)   
  71/19  Mantle cell lymphoma >62.5 1.0 (ref) 0.53 MCIPI 
     <62.5 1.35 (0.53–3.39)   
  285/9  FL >62.5 1.0 (ref) 0.88 IPI, FL grade 3, rituximab-based therapy, all other chemotherapy vs. observation 
     <62.5 0.90 (0.23–3.49)   
  109/8  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.2 Stage, performance status 
     <62.5 2.76 (0.58–13.1)   
  78/14  Others >62.5 1.0 (ref) 0.33 Stage, performance status 
     <62.5 1.73 (0.58–5.17)   
Event-free survival (lymphoma) 
Drake et al. (30), United States Cohort of cancer patients 370/132 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.07 IPI, immunochemotherapy vs. all other therapy 
     <62.5 1.41 (0.98–2.04)   
  70/49  T-cell lymphoma >62.5 1.0 (ref) 0.04 IPI 
     <62.5 1.94 (1.04–3.61)   
  71/45  Mantle cell lymphoma >62.5 1.0 (ref) 0.78 MCIPI 
     <62.5 1.09 (0.59–2.01)   
  285/104  FL >62.5 1.0 (ref) 0.75 FLIPI, FL grade 3, rituximab-based therapy, all other chemotherapy vs. observation 
     <62.5 1.07 (0.71–1.62)   
  109/39  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.95 Stage, performance status 
     <62.5 0.98 (0.51–1.89)   
  78/35  Others >62.5 1.0 (ref) 0.71 Stage, performance status 
     <62.5 1.15 (0.57–2.32)   
Time to treatment (leukemia) 
Shanafelt et al. (32), United States Discovery cohort 390/131 63 (median) CLL <62.4 1.66 (1.16–2.37) 0.005 NA 
 Confirmation cohort 152/70 67 (median) CLL <62.4 1.59 (0.99–2.56) 0.05 NA 
 Combined cohorts 542/201  CLL <62.4 1.47 (1.11–1.96) 0.008 Age, sex, Rai stage, CD38, ZAP-70, IGHV, CD49d, cytogenetic abnormalities (FISH) 
Leukemia-free survival 
Pardanani et al. (31), United States Cohort of cancer patients 247/NA 14–83 Primary myelofibrosis <62.4 1.8 (0.8–4.4) NA NA 
     <24.96 1.2 (0.2–4.1)   
  74/NA 44–89 De novo myelodysplastic syndromes <62.4 1.3 (0.3–4.0) NA NA 
Reference, countryDesignNumber/eventsaAge (y)Cancer type25-OHD, nmol/LRR/ORd (95% CI)P-value/trendConfounders
Gastric cancer 
Overall survival 
Ren et al. (37), China Retrospective cohort of cancer patients 197/106 60 (mean) Gastric carcinoma <50 1.0 (ref) 0.019 Clinical stage, season of blood draw 
     ≥50 0.59 (0.37–0.91)   
Pancreatic cancer 
Overall survival 
Cho et al. (38), United States Cohort of cancer patients 178/NA NA All patients <50 Not statistically significant, NA NA NA 
     ≥50    
    Stages III and IV cancer <50 1.99 (1.16–3.43) 0.013 NA 
     ≥50 1.0 (ref)   
Skin cancer 
Overall survival 
Newton-Bishop et al. (33), United Kingdom Cohort of cancer patients 872/141 NA Melanoma Per 20 nmol/L increase 0.83 (0.68–1.02) NA Age, sex, Townsend score, tumor site, Breslow thickness, BMI 
Skin cancer–specific survival 
Samimi et al. (34), France Cohort of cancer patients 89/19 31–98 Merkel cell carcinoma <50 5.28 (0.75–36.95) 0.093 Age, tumor size, time to vitamin D assessment, impaired immune function, metastasis at presentation, period of sampling 
     >50 1.0 (ref)   
Recurrence-free survival 
Newton-Bishop et al. (33), United Kingdom Cohort of cancer patients 872/173b NA Melanoma Per 20 nmol/L increase 0.79 (0.64–0.96) NA Age, sex, Townsend score, tumor site, Breslow thickness, BMI 
     ≤41.3 1.0 (ref)   
     41.3–61.4 0.70 (0.42–1.14)   
     > 61.4 0.57 (0.33–0.97)   
Nodal and/or distant metastasis 
Samimi et al. (34), France Cohort of cancer patients 89/33 31–98 Merkel cell carcinoma <50 2.89 (1.03–8.13) 0.043 Age, tumor size, time to vitamin D assessment, impaired immune function, metastasis at presentation, period of sampling 
     ≥50 1.0 (ref)   
Head-and-neck cancers 
Overall survival 
Gugatschka et al. (35), Austria Cancer patients 88 cases/NA 63 (mean) Squamous cell carcinoma (SCC) NA 0.89 (0.83–0.97) 0.006 Univariable analysis 
Meyer et al. (36), Canada Cohort of cancer patients 522/223 62.5 (mean) Overall (Stage I–II) <48 1.0 (ref) 0.65 Season of blood collection, stage, site, age, smoking, alcohol consumption, BMI 
     49–63 0.75 (0.51–1.10)   
     64–78 0.93 (0.64–1.36)   
     >78 0.85 (0.57–1.28)   
Recurrence 
Meyer et al. (36), Canada Cohort of cancer patients 522/119b 62.5 (mean) Overall (Stage I–II) <48 1.0 (ref) 0.56 Season of blood collection, stage, site 
     49–63 0.99 (0.58–1.69)   
     64–78 1.20 (0.71–2.05)   
     >78 1.12 (0.65–1.93)   
Disease-free survival 
Gugatschka et al. (35), Austria Cohort of cancer patients 88 cases/NA 63 (mean) SCC NA 0.85 (0.75–0.96) 0.01 Univariable analysis 
Prostate cancer 
Overall survival 
Fang et al. (39), United States Cohort of cancer patients 1,822/595 NA Overall Quartile 1 1.10 (0.87–1.39) 0.46 Age at diagnosis, BMI, physical activity, smoking, Gleason score, TNM stage, 1,25(OH)2
     Quartile 2 1.05 (0.83–1.34)   
     Quartile 3 1.06 (0.83–1.34)   
     Quartile 4 1.0 (ref)   
Tretli et al. (40), Norway Cohort of cancer patients 160/61 52–82 Overall <50 1.0 (ref) NA Patient group, age, tumor differentiation grade, patient functional status at time of blood collection 
     50–80 0.40 (0.20–0.78)   
     >80 0.24 (0.11–0.53)   
  97/45  Among patients receiving hormone therapy <50 1.0 (ref)   
     50–80 0.18 (0.07–0.46)   
     >80 0.09 (0.03–0.27)   
Prostate cancer–specific survival 
Fang et al. (39), United States Cohort of cancer patients 1,822/202c NA Overall Quartile 1 1.31 (0.86–1.99) 0.14 Age at diagnosis, BMI, physical activity, smoking, Gleason score, TNM stage, 1,25(OH)2
     Quartile 2 1.32 (0.87–2.00)   
     Quartile 3 1.09 (0.70–1.70)   
     Quartile 4 1.0 (ref)   
Tretli et al. (40), Norway Cohort of cancer patients 160/52 52–82 Overall <50 1.0 (ref) NA Patient group, age, tumor differentiation grade, patient functional status at time of blood collection 
     50–80 0.33 (0.14–0.77)   
     >80 0.16 (0.05–0.43)   
Hematologic cancers 
Overall survival 
Lymphoma 
Tretli et al. (15), Norway Cohort of cancer patients 145/75 37–79 Overall <46 1.0 (ref) <0.01 Sex, age at diagnosis, season of blood sampling 
     46–61 0.59 (0.32–1.11)   
     62–81 0.46 (0.25–0.86)   
     >81 0.33 (0.16–0.69)   
Drake et al. (30), United States Cohort of cancer patients 370/100 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.003 International Prognostic Index (IPI), immunochemotherapy vs. all other therapy 
     <62.5 1.99 (1.27–3.13)   
  70/29  T-cell lymphoma >62.5 1.0 (ref) 0.04 International Prognostic Index 
     <62.5 2.38 (1.04–5.41)   
  71/19  Mantle cell lymphoma >62.5 1.0 (ref) 0.53 Mantle Cell International Prognostic Index (MCIPI) 
     <62.5 1.35 (0.53–3.39)   
  285/19  Follicular lymphoma (FL) >62.5 1.0 (ref) 0.38 FLIPI, FL grade 3, rituximab-based therapy, chemotherapy vs. none 
     <62.5 1.52 (0.60–3.88)   
  109/8  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.2 Stage, performance status 
     <62.5 2.76 (0.58–13.1)   
  78/18  Others >62.5 1.0 (ref) 0.14 Stage, performance status 
     <62.5 2.08 (0.79–5.49)   
Leukemia 
Pardanani et al. (31), United States Cohort of cancer patients 247/129 14–83 Primary myelofibrosis <62.4 1.2 (0.8–1.6) (NA) Disease-specific prognostic variables 
     <24.96 1.2 (0.7–2.1)   
  74/42 44–89 De novo myelodysplastic syndromes <62.4 1.4 (0.7–2.7) NA Disease-specific prognostic variables 
Shanafelt et al. (32), United States Discovery cohort 390/34 63 (median) Chronic lymphocytic leukemia (CLL) <62.4 2.39 (1.21–4.70) 0.01 NA 
 Confirmation cohort 153/62 67 (median) CLL <62.4 1.63 (0.99–2.69) 0.06 NA 
 Combined cohorts 543/96  CLL <62.4 1.47 (0.97–2.23) 0.07 Age, sex, Rai stage, CD38, ZAP-70, IGHV, CD49d, cytogenetic abnormalities (FISH) 
Cancer-specific survival 
Tretli et al. (15), Norway Cohort of cancer patients 145/62 37–79 Overall <44 1.0 (ref) 0.01 Sex, age at diagnosis, season of blood sampling 
     44–60 0.71 (0.36–1.40)   
     61–77 0.45 (0.21–94)   
     >77 0.39 (0.18–0.83)   
Drake et al. (30), United States Cohort of cancer patients 370/90 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.002 IPI, immunochemotherapy vs. all other therapy 
     <62.5 2.16 (1.33–3.51)   
  70/28  T-cell lymphoma >62.5 1.0 (ref) 0.05 IPI 
     <62.5 2.26 (0.99–5.17)   
  71/19  Mantle cell lymphoma >62.5 1.0 (ref) 0.53 MCIPI 
     <62.5 1.35 (0.53–3.39)   
  285/9  FL >62.5 1.0 (ref) 0.88 IPI, FL grade 3, rituximab-based therapy, all other chemotherapy vs. observation 
     <62.5 0.90 (0.23–3.49)   
  109/8  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.2 Stage, performance status 
     <62.5 2.76 (0.58–13.1)   
  78/14  Others >62.5 1.0 (ref) 0.33 Stage, performance status 
     <62.5 1.73 (0.58–5.17)   
Event-free survival (lymphoma) 
Drake et al. (30), United States Cohort of cancer patients 370/132 19–94 Diffuse large B-cell lymphoma >62.5 1.0 (ref) 0.07 IPI, immunochemotherapy vs. all other therapy 
     <62.5 1.41 (0.98–2.04)   
  70/49  T-cell lymphoma >62.5 1.0 (ref) 0.04 IPI 
     <62.5 1.94 (1.04–3.61)   
  71/45  Mantle cell lymphoma >62.5 1.0 (ref) 0.78 MCIPI 
     <62.5 1.09 (0.59–2.01)   
  285/104  FL >62.5 1.0 (ref) 0.75 FLIPI, FL grade 3, rituximab-based therapy, all other chemotherapy vs. observation 
     <62.5 1.07 (0.71–1.62)   
  109/39  Post-FL (marginal zone and lymphoplasmacytic lymphoma) >62.5 1.0 (ref) 0.95 Stage, performance status 
     <62.5 0.98 (0.51–1.89)   
  78/35  Others >62.5 1.0 (ref) 0.71 Stage, performance status 
     <62.5 1.15 (0.57–2.32)   
Time to treatment (leukemia) 
Shanafelt et al. (32), United States Discovery cohort 390/131 63 (median) CLL <62.4 1.66 (1.16–2.37) 0.005 NA 
 Confirmation cohort 152/70 67 (median) CLL <62.4 1.59 (0.99–2.56) 0.05 NA 
 Combined cohorts 542/201  CLL <62.4 1.47 (1.11–1.96) 0.008 Age, sex, Rai stage, CD38, ZAP-70, IGHV, CD49d, cytogenetic abnormalities (FISH) 
Leukemia-free survival 
Pardanani et al. (31), United States Cohort of cancer patients 247/NA 14–83 Primary myelofibrosis <62.4 1.8 (0.8–4.4) NA NA 
     <24.96 1.2 (0.2–4.1)   
  74/NA 44–89 De novo myelodysplastic syndromes <62.4 1.3 (0.3–4.0) NA NA 

aDeaths, unless otherwise stated.

bRecurrence.

cDeath from prostate cancer or development of bone metastases.

dRelative risk/odds ratio.

In this review, we identified 26 studies published between January 2007 and September 2013 that evaluated the associations of circulating 25-OHD levels with prognosis among patients with cancer. Our review suggests that elevated circulating 25-OHD levels may be associated with better overall survival in patients with breast and colorectal cancers. However, the associations of circulating 25-OHD levels with prognosis in patients with other cancer types are less clear due to the few studies that have investigated these associations.

Although the association of circulating 25-OHD levels with cancer risk has been explored in many studies, its association with prognosis among patients with cancer is poorly understood. A previous review of eight studies published in 2011 had provided an initial summary of the role of circulating 25-OHD levels in prognosis among patients with cancer (41). The review included two studies each on breast, colorectal, and lung cancers and one study each on melanoma and prostate cancer. In addition to the eight studies in that review, our review included 18 newly published studies, which is an indication of the strong emerging interest on the role of vitamin D in prognosis among patients with cancer. Because of the increasing number of people living with cancer, the importance of evaluating the associations of vitamin D with outcomes among patients with cancer cannot be overemphasized. Currently, close to 14 million Americans are living with a diagnosis of cancer and the number is expected to increase to 18 million by 2022 (13). At the same time, studies have reported a high prevalence of vitamin D deficiency among patients with cancer. In a recent review of 37 studies, 67% of the patients with cancer had vitamin D insufficiency (25-OHD levels between 25–50 nmol/L; ref. 14). If vitamin D is associated with prognosis among patients with cancer, the potential public health and translational importance could be enormous. Nevertheless, this research area is still in its infancy and more work needs to be done to tease out the effects of vitamin D on prognosis in patients with cancer. Below, we highlight a few areas in this emerging field that deserve more attention if this potential is to be realized.

The role of tumor characteristics and lifestyle factors

Only a few studies evaluated the associations of vitamin D with prognosis stratified by tumor characteristics and lifestyle factors; hence, there is paucity of information on factors that modify the associations of 25-OHD with prognosis in patients with cancer. Race, body mass index (BMI), tumor subsite, molecular subtype, as well as stage-stratified analyses are essential as they are important determinants of survival and circulating 25-OHD levels. For instance, non-Caucasian patients with breast cancer have a 2-fold increased risk of vitamin D deficiency compared with Caucasian patients with breast cancer, and obese patients with breast cancer have a 3-fold increased risk of vitamin D deficiency compared with normal-weight patients with breast cancer (42). Circulating 25-OHD levels are lower in patients with localized or regional disease than women with in situ disease (43) and in women with triple-negative breast cancer than women with other breast cancer subtypes (44). The EPIC study demonstrated survival advantage among patients with rectal cancer with elevated 25-OHD levels, but not among patients with colon cancer, which is in line with the null effect reported in a study limited to patients with colon cancer (15). Drake and colleagues demonstrated better survival associated with higher 25-OHD levels among patients with diffuse large B-cell, and T-cell lymphoma but not among other lymphoma subtypes (30). Hence, an in-depth investigation of how tumor characteristics and lifestyle factors modify the associations of vitamin D with prognosis is needed. Only two of the six breast cancer studies reported analyses stratified by stage at diagnosis and hormone receptor status (18, 21), one with BMI (18), and none with race. Of particular importance and interest is to determine whether part of the racial and obesity-related differences in cancer survival can be explained by differences in the 25-OHD levels. It has also been suggested that circulating 25-OHD levels may be a biologic marker for health status among patients with cancer, especially physical activity (45, 46). Patients with cancer with better health status may be more physically active and have a greater exposure to sun, which is an important determinant of circulating 25-OHD levels. Thus, physical activity may confound the association of 25-OHD levels with survival in patients with cancer (45).

Impact of time of blood draw

Patients with cancer change their lifestyle and eating habits after a diagnosis of cancer, hence, postdiagnostic 25-OHD levels may not be representative of usual levels before cancer diagnosis.

Although nothing is known about individual longitudinal changes in 25-OHD levels after a diagnosis of cancer, the prevalence of vitamin D insufficiency (<50 nmol/L) in patients with cancer can be as high as 67%, compared with 35% within the general population (14, 47, 48). In a study, 74% of patients with breast cancer had vitamin D insufficiency (49), suggesting that prevalence of vitamin D insufficiency is higher among patients with cancer compared with the general population. Furthermore, patients with cancer have been reported to have a 2.5-fold increased odd of having vitamin D insufficiency compared with non-cancer patients within the same geographic area (50).

Likewise, chemotherapy might influence 25-OHD levels (51, 52). Patients with colorectal cancer receiving chemotherapy were three-times more likely to have vitamin D deficiency than those not receiving chemotherapy (52). Similarly, patients with early-stage breast cancer treated with adjuvant chemotherapy had a 32% reduction in 25-OHD levels at day 147 of treatment compared with prechemotherapy levels (51). Although most studies measured 25-OHD levels in pretreatment blood samples, some did not, and in some studies, circulating 25-OHD levels in blood samples collected more than 2 years after diagnosis were related to prognosis. To highlight the importance of timing of blood collection, Vrieling and colleagues reported a statistically significant association between circulating 25-OHD levels and breast cancer survival in analysis conducted using samples taken before initiation of chemotherapy but not in samples taken after initiation of therapy (18). Thus, studies evaluating the associations of circulating 25-OHD with cancer prognosis should consider using pretreatment blood samples, rather than posttreatment samples. In addition, a sizeable number of studies did not take into consideration, or correct for, season of blood draw in their analyses despite the well-documented seasonal differences associated with 25-OHD levels.

Vitamin D sufficiency

There is a wide variability in 25-OHD cutoff points related to prognosis in the studies. Some studies derived their cutoff points based on the distribution within their study population, whereas others used median splits and other categories based on sufficient and insufficient 25-OHD levels. Because of the emerging role of vitamin D in many health outcomes, the definition of vitamin D deficiency has extended beyond its relationship with skeletal health alone. Vitamin D deficiency has been traditionally defined as circulating 25-OHD levels <25 nmol/L because clinical evidence of skeletal diseases such as rickets become manifest below this level (53). Because of emerging evidence of the role of vitamin D in other health outcomes, the concept of vitamin D sufficiency based on 25-OHD levels required to maximize intestinal calcium absorption, prevent secondary hyperparathyroidism, as well as maintain optimal health in at-risk groups has gained a lot of traction over the last decade (4, 54, 55). Circulating 25-OHD levels needed for maximal suppression of parathyroid hormone has been estimated to be between 70 and 80 nmol/L; hence, an expert consensus has adopted 25-OHD levels of 75 nmol/L to indicate vitamin D sufficiency, whereas levels <50 nmol/L indicate insufficiency and intermediate levels indicate relative insufficiency (4, 55–57). Many studies have reported protective effect of 25-OHD on cancer risk at levels indicative of sufficiency (≥75 nmol/L). While some of the studies in our review investigated the associations of 25-OHD with prognosis using sufficient versus insufficient levels, many others did not. Since there is a biologic rationale, future studies on 25-OHD and prognosis among patients with cancer should consider evaluating the associations of vitamin D with prognosis based on sufficient 25-OHD levels. In addition, future studies should consider reporting how a unit increase in circulating 25-OHD (preferably 25 nmol/L) might affect prognosis.

This review suggests that vitamin D may be associated with prognosis in patients with breast and colorectal cancer. Importantly, because low 25-OHD levels among patients with cancer can be corrected, this might pave way for studies evaluating the utility of correcting vitamin D deficiency in the management of patients with cancer. This is especially important given the recent review showing that although circulating 25-OHD levels are associated with improved outcomes in observational studies, results from intervention studies have not confirmed these associations (46). Although vitamin D replacement therapy successfully corrected deficient and suboptimal 25-OHD levels among patients with cancer (58), the impact of this correction on prognosis is unknown. Hence, more observational studies, as well as randomized clinical trials, are needed to further evaluate the associations of vitamin D with prognosis among patients with cancer before vitamin D supplementation among patients with cancer can be considered.

No potential conflicts of interest were disclosed.

A.T. Toriola is supported by the Washington University School of Medicine, Barnes-Jewish Hospital Foundation, and Siteman Cancer Center.

1.
Lee
JE
,
Li
H
,
Chan
AT
,
Hollis
BW
,
Lee
IM
,
Stampfer
MJ
, et al
Circulating levels of vitamin D and colon and rectal cancer: the Physicians' Health Study and a meta-analysis of prospective studies
.
Cancer Prev Res
2011
;
4
:
735
43
.
2.
Ma
Y
,
Zhang
P
,
Wang
F
,
Yang
J
,
Liu
Z
,
Qin
H
. 
Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies
.
J Clin Oncol
2011
;
29
:
3775
82
.
3.
Yin
L
,
Grandi
N
,
Raum
E
,
Haug
U
,
Arndt
V
,
Brenner
H
. 
Meta-analysis: serum vitamin D and breast cancer risk
.
Eur J Cancer
2010
;
46
:
2196
205
.
4.
Holick
MF
. 
Vitamin D deficiency
.
N Engl J Med
2007
;
357
:
266
81
.
5.
DeLuca
HF
. 
Overview of general physiologic features and functions of vitamin D.
Am J Clin Nutr
2004
;
80
:
1689S
96S
.
6.
IARC Working group on Vitamin D
. 
Vitamin D and cancer
.
Lyon, France
:
IARC Press
; 
2008
.
7.
Deeb
KK
,
Trump
DL
,
Johnson
CS
. 
Vitamin D signalling pathways in cancer: potential for anticancer therapeutics
.
Nat Rev Cancer
2007
;
7
:
684
700
.
8.
Kim
YI
. 
Folate: a magic bullet or a double edged sword for colorectal cancer prevention?
Int J Gastroenterol Hepatol
2006
;
55
:
1387
9
.
9.
Ulrich
CM
,
Potter
JD
. 
Folate and cancer–timing is everything
.
JAMA
2007
;
297
:
2408
9
.
10.
Song
J
,
Medline
A
,
Mason
JB
,
Gallinger
S
,
Kim
YI
. 
Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse
.
Cancer Res
2000
;
60
:
5434
40
.
11.
Grant
WB
. 
The likely role of vitamin D from solar ultraviolet-B irradiance in increasing cancer survival
.
Anticancer Res
2006
;
26
:
2605
14
.
12.
Grant
WB
. 
An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar ultraviolet-B radiation
.
Cancer
2002
;
94
:
1867
75
.
13.
Siegel
R
,
DeSantis
C
,
Virgo
K
,
Stein
K
,
Mariotto
A
,
Smith
T
, et al
Cancer treatment and survivorship statistics, 2012
.
CA Cancer J Clin
2012
;
62
:
220
41
.
14.
Teleni
L
,
Baker
J
,
Koczwara
B
,
Kimlin
MG
,
Walpole
E
,
Tsai
K
, et al
Clinical outcomes of vitamin D deficiency and supplementation in cancer patients
.
Nutr Rev
2013
;
71
:
611
21
.
15.
Tretli
S
,
Schwartz
GG
,
Torjesen
PA
,
Robsahm
TE
. 
Serum levels of 25-hydroxyvitamin D and survival in Norwegian patients with cancer of breast, colon, lung, and lymphoma: a population-based study
.
Cancer Causes Control
2012
;
23
:
363
70
.
16.
Goodwin
PJ
,
Ennis
M
,
Pritchard
KI
,
Koo
J
,
Hood
N
. 
Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer
.
J Clin Oncol
2009
;
27
:
3757
63
.
17.
Villasenor
A
,
Ballard-Barbash
R
,
Ambs
A
,
Bernstein
L
,
Baumgartner
K
,
Baumgartner
R
, et al
Associations of serum 25-hydroxyvitamin D with overall and breast cancer-specific mortality in a multiethnic cohort of breast cancer survivors
.
Cancer Causes Control
2013
;
24
:
759
67
.
18.
Vrieling
A
,
Hein
R
,
Abbas
S
,
Schneeweiss
A
,
Flesch-Janys
D
,
Chang-Claude
J
. 
Serum 25-hydroxyvitamin D and postmenopausal breast cancer survival: a prospective patient cohort study
.
Breast Cancer Res
2011
;
13
:
R74
.
19.
Hatse
S
,
Lambrechts
D
,
Verstuyf
A
,
Smeets
A
,
Brouwers
B
,
Vandorpe
T
, et al
Vitamin D status at breast cancer diagnosis: correlation with tumor characteristics, disease outcome, and genetic determinants of vitamin D insufficiency
.
Carcinogenesis
2012
;
33
:
1319
26
.
20.
Jacobs
ET
,
Thomson
CA
,
Flatt
SW
,
Al-Delaimy
WK
,
Hibler
EA
,
Jones
LA
, et al
Vitamin D and breast cancer recurrence in the Women's Healthy Eating and Living (WHEL) Study
.
Am J Clin Nutr
2011
;
93
:
108
17
.
21.
Kim
HJ
,
Lee
YM
,
Ko
BS
,
Lee
JW
,
Yu
JH
,
Son
BH
, et al
Vitamin D deficiency is correlated with poor outcomes in patients with luminal-type breast cancer
.
Ann Surg Oncol
2011
;
18
:
1830
6
.
22.
Fedirko
V
,
Riboli
E
,
Tjonneland
A
,
Ferrari
P
,
Olsen
A
,
Bueno-de-Mesquita
HB
, et al
Prediagnostic 25-hydroxyvitamin D, VDR and CASR polymorphisms, and survival in patients with colorectal cancer in western European ppulations
.
Cancer Epidemiol Biomarkers Prev
2012
;
21
:
582
93
.
23.
Mezawa
H
,
Sugiura
T
,
Watanabe
M
,
Norizoe
C
,
Takahashi
D
,
Shimojima
A
, et al
Serum vitamin D levels and survival of patients with colorectal cancer: post-hoc analysis of a prospective cohort study
.
BMC cancer
2010
;
10
:
347
.
24.
Ng
K
,
Meyerhardt
JA
,
Wu
K
,
Feskanich
D
,
Hollis
BW
,
Giovannucci
EL
, et al
Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer
.
J Clin Oncol
2008
;
26
:
2984
91
.
25.
Ng
K
,
Wolpin
BM
,
Meyerhardt
JA
,
Wu
K
,
Chan
AT
,
Hollis
BW
, et al
Prospective study of predictors of vitamin D status and survival in patients with colorectal cancer
.
Br J Cancer
2009
;
101
:
916
23
.
26.
Ng
K
,
Sargent
DJ
,
Goldberg
RM
,
Meyerhardt
JA
,
Green
EM
,
Pitot
HC
, et al
Vitamin D status in patients with stage IV colorectal cancer: findings from Intergroup trial N9741
.
J Clin Oncol
2011
;
29
:
1599
606
.
27.
Liu
Y
,
Chen
W
,
Hu
ZB
,
Xu
L
,
Shu
YQ
,
Pan
SY
, et al
Plasma Vitamin D Levels And Vitamin D Receptor Polymorphisms Are Associated with Survival of Non-small Cell Lung Cancer
.
Chin J Cancer Res
2011
;
23
:
33
7
.
28.
Heist
RS
,
Zhou
W
,
Wang
Z
,
Liu
G
,
Neuberg
D
,
Su
L
, et al
Circulating 25-hydroxyvitamin D, VDR polymorphisms, and survival in advanced non-small-cell lung cancer
.
J Clin Oncol
2008
;
26
:
5596
602
.
29.
Zhou
W
,
Heist
RS
,
Liu
G
,
Asomaning
K
,
Neuberg
DS
,
Hollis
BW
, et al
Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients
.
J Clin Oncol
2007
;
25
:
479
85
.
30.
Drake
MT
,
Maurer
MJ
,
Link
BK
,
Habermann
TM
,
Ansell
SM
,
Micallef
IN
, et al
Vitamin D insufficiency and prognosis in non-Hodgkin's lymphoma
.
J Clin Oncol
2010
;
28
:
4191
8
.
31.
Pardanani
A
,
Drake
MT
,
Finke
C
,
Lasho
TL
,
Rozell
SA
,
Jimma
T
, et al
Vitamin D insufficiency in myeloproliferative neoplasms and myelodysplastic syndromes: clinical correlates and prognostic studies
.
Am J Hematol
2011
;
86
:
1013
6
.
32.
Shanafelt
TD
,
Drake
MT
,
Maurer
MJ
,
Allmer
C
,
Rabe
KG
,
Slager
SL
, et al
Vitamin D insufficiency and prognosis in chronic lymphocytic leukemia
.
Blood
2011
;
117
:
1492
8
.
33.
Newton-Bishop
JA
,
Beswick
S
,
Randerson-Moor
J
,
Chang
YM
,
Affleck
P
,
Elliott
F
, et al
Serum 25-hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma
.
J Clin Oncol
2009
;
27
:
5439
44
.
34.
Samimi
M
,
Touze
A
,
Laude
H
,
Le Bidre
E
,
Arnold
F
,
Carpentier
A
, et al
Vitamin D deficiency is associated with greater tumor size and poorer outcome in Merkel cell carcinoma patients
.
J Eur Acad Dermatol Venereol
2014
;
28
:
298
308
.
35.
Gugatschka
M
,
Kiesler
K
,
Obermayer-Pietsch
B
,
Groselj-Strele
A
,
Griesbacher
A
,
Friedrich
G
. 
Vitamin D status is associated with disease-free survival and overall survival time in patients with squamous cell carcinoma of the upper aerodigestive tract
.
Eur Arch Otorhinolaryngol
2011
;
268
:
1201
4
.
36.
Meyer
F
,
Liu
G
,
Douville
P
,
Samson
E
,
Xu
W
,
Adjei
A
, et al
Dietary vitamin D intake and serum 25-hydroxyvitamin D level in relation to disease outcomes in head and neck cancer patients
.
Int J Cancer
2011
;
128
:
1741
6
.
37.
Ren
C
,
Qiu
MZ
,
Wang
DS
,
Luo
HY
,
Zhang
DS
,
Wang
ZQ
, et al
Prognostic effects of 25-hydroxyvitamin D levels in gastric cancer
.
J Transl Med
2012
;
10
:
16
.
38.
Cho
M
,
Peddi
PF
,
Ding
K
,
Chen
L
,
Thomas
D
,
Wang
J
, et al
Vitamin D deficiency and prognostics among patients with pancreatic adenocarcinoma
.
J Transl Med
2013
;
11
:
206
.
39.
Fang
F
,
Kasperzyk
JL
,
Shui
I
,
Hendrickson
W
,
Hollis
BW
,
Fall
K
, et al
Prediagnostic plasma vitamin D metabolites and mortality among patients with prostate cancer
.
PLoS ONE
2011
;
6
:
e18625
.
40.
Tretli
S
,
Hernes
E
,
Berg
JP
,
Hestvik
UE
,
Robsahm
TE
. 
Association between serum 25(OH)D and death from prostate cancer
.
Br J Cancer
2009
;
100
:
450
4
.
41.
Buttigliero
C
,
Monagheddu
C
,
Petroni
P
,
Saini
A
,
Dogliotti
L
,
Ciccone
G
, et al
Prognostic role of vitamin d status and efficacy of vitamin D supplementation in cancer patients: a systematic review
.
Oncologist
2011
;
16
:
1215
27
.
42.
Friedman
CF
,
DeMichele
A
,
Su
HI
,
Feng
R
,
Kapoor
S
,
Desai
K
, et al
Vitamin d deficiency in postmenopausal breast cancer survivors
.
J Womens Health
2012
;
21
:
456
62
.
43.
Neuhouser
ML
,
Sorensen
B
,
Hollis
BW
,
Ambs
A
,
Ulrich
CM
,
McTiernan
A
, et al
Vitamin D insufficiency in a multiethnic cohort of breast cancer survivors
.
Am J Clin Nutr
2008
;
88
:
133
9
.
44.
Peppone
LJ
,
Rickles
AS
,
Janelsins
MC
,
Insalaco
MR
,
Skinner
KA
. 
The association between breast cancer prognostic indicators and serum 25-OH vitamin D levels
.
Ann Surg Oncol
2012
;
19
:
2590
9
.
45.
Ulrich
CM
,
Holmes
RS
. 
Shedding light on colorectal cancer prognosis: vitamin d and beyond
.
J Clin Oncol
2008
;
26
:
2937
9
.
46.
Autier
P
,
Boniol
M
,
Pizot
C
,
Mullie
P
. 
Vitamin D status and ill health: a systematic review
.
Lancet Diabetes Endocrinol
2014
;
2
:
76
89
.
47.
Centers for Disease and Control
. 
Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S Population
.
Atlanta (GA)
:
National Center for Environmental Health
; 
2012
.
48.
Khan
QJ
,
Reddy
PS
,
Kimler
BF
,
Sharma
P
,
Baxa
SE
,
O'Dea
AP
, et al
Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer
.
Breast Cancer Res Treat
2010
;
119
:
111
8
.
49.
Crew
KD
,
Shane
E
,
Cremers
S
,
McMahon
DJ
,
Irani
D
,
Hershman
DL
. 
High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy
.
J Clin Oncol
2009
;
27
:
2151
6
.
50.
Churilla
TM
,
Lesko
SL
,
Brereton
HD
,
Klem
M
,
Donnelly
PE
,
Peters
CA
. 
Serum vitamin D levels among patients in a clinical oncology practice compared to primary care patients in the same community: a case-control study
.
BMJ Open
2011
;
1
:
e000397
.
51.
Santini
D
,
Galluzzo
S
,
Vincenzi
B
,
Zoccoli
A
,
Ferraro
E
,
Lippi
C
, et al
Longitudinal evaluation of vitamin D plasma levels during anthracycline- and docetaxel-based adjuvant chemotherapy in early-stage breast cancer patients
.
Ann Oncol
2010
;
21
:
185
6
.
52.
Fakih
MG
,
Trump
DL
,
Johnson
CS
,
Tian
L
,
Muindi
J
,
Sunga
AY
. 
Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancer
.
Int J Colorectal Dis
2009
;
24
:
219
24
.
53.
Wolpowitz
D
,
Gilchrest
BA
. 
The vitamin D questions: how much do you need and how should you get it?
J Am Acad Dermatol
2006
;
54
:
301
17
.
54.
Malabanan
A
,
Veronikis
IE
,
Holick
MF
. 
Redefining vitamin D insufficiency
.
Lancet
1998
;
351
:
805
6
.
55.
Bischoff-Ferrari
HA
,
Giovannucci
E
,
Willett
WC
,
Dietrich
T
,
Dawson-Hughes
B
. 
Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes
.
Am J Clin Nutr
2006
;
84
:
18
28
.
56.
Dawson-Hughes
B
,
Heaney
RP
,
Holick
MF
,
Lips
P
,
Meunier
PJ
,
Vieth
R
. 
Estimates of optimal vitamin D status
.
Osteoporos Int
2005
;
16
:
713
6
.
57.
Chapuy
MC
,
Preziosi
P
,
Maamer
M
,
Arnaud
S
,
Galan
P
,
Hercberg
S
, et al
Prevalence of vitamin D insufficiency in an adult normal population
.
Osteoporos Int
1997
;
7
:
439
43
.
58.
Vashi
PG
,
Trukova
K
,
Lammersfeld
CA
,
Braun
DP
,
Gupta
D
. 
Impact of oral vitamin D supplementation on serum 25-hydroxyvitamin D levels in oncology
.
Nutr J
2010
;
9
:
60
.