Background: Cigarette smoking is associated with increased head and neck cancer (HNC) risk. Tobacco-related carcinogens are known to cause bulky DNA adducts. Nucleotide excision repair (NER) genes encode enzymes that remove adducts and may be independently associated with HNC, as well as modifiers of the association between smoking and HNC.

Methods: Using population-based case–control data from the Carolina Head and Neck Cancer Epidemiology (CHANCE) Study (1,227 cases and 1,325 controls), race-stratified (White, African American), conventional, and hierarchical logistic regression models were used to estimate ORs with 95% intervals (I) for the independent and joint effects of cigarette smoking and 84 single-nucleotide polymorphisms (SNP) from 15 NER genes on HNC risk.

Results: The odds of HNC were elevated among ever cigarette smokers and increased with smoking duration and frequency. Among Whites, rs4150403 on ERCC3 was associated with increased HNC odds (AA+AG vs. GG; OR, 1.28; 95% CI, 1.01–1.61). Among African Americans, rs4253132 on ERCC6 was associated with decreased HNC odds (CC+CT vs. TT; OR, 0.62; 95% CI, 0.45–0.86). Interactions between ever cigarette smoking and three SNPs (rs4253132 on ERCC6, rs2291120 on DDB2, and rs744154 on ERCC4) suggested possible departures from additivity among Whites.

Conclusions: We did not find associations between some previously studied NER variants and HNC. We did identify new associations between two SNPs and HNC and three suggestive cigarette–SNP interactions to consider in future studies.

Impact: We conducted one of the most comprehensive evaluations of NER variants, identifying a few SNPs from biologically plausible candidate genes associated with HNC and possibly interacting with cigarette smoking. Cancer Epidemiol Biomarkers Prev; 22(8); 1428–45. ©2013 AACR.

Head and neck cancer (HNC) includes tumors, principally squamous cell carcinomas, of the oral cavity, pharynx, and larynx (1). In the United States, an estimated 52,610 incident HNC cases and 11,500 associated deaths occurred in 2012 (2). Cigarette smoking is a major risk factor for HNC incidence with case–control studies consistently reporting elevated ORs for ever smoking, as well as dose–response gradients with duration and frequency (3). Among nonalcohol drinking HNC cases, 25% of cases are attributed to cigarette smoking (4).

Cigarette smoke contains numerous carcinogens, such as benzo-a-pyrene, that are known to cause DNA damage, including adducts (3, 5–7). Nucleotide excision repair (NER) enzymes are principally responsible for removing bulky DNA adducts, and are therefore hypothesized to be independent risk factors for HNC, as well as important modifiers of the association between smoking and HNC (5–7). Several previous studies have considered associations between variants in NER genes and HNC risk, but studies vary with regard to which specific single-nucleotide polymorphisms (SNP) were investigated and often present inconsistent evidence for analysis of the same SNP (8–49). In general, most previous studies have evaluated only a few SNPs on a single NER gene among a few hundred HNC cases (8–49). Few studies have examined the association of NER SNPs and HNC among African-Americans (16), a group shown to have a stronger association for smoking and HNC (50). Studies of cigarette–SNP joint effects have also been limited by sparse numbers of NER variants and small sample sizes and present varying results, though some studies indicate stronger associations among smokers with polymorphisms in NER genes (8, 10–12, 14, 16, 17, 23, 25, 27–29, 31, 32, 34, 36–40, 44).

To comprehensively assess associations between cigarette smoking, NER genes, and HNC risk, we used data from the Carolina Head and Neck Cancer Epidemiology (CHANCE) Study to estimate main and joint effects of cigarette smoking and 84 SNPs across 15 NER genes on HNC risk among a racially diverse population including Whites (922 cases and 1,074 controls) and African Americans (305 cases and 251 controls).

Study population

The CHANCE Study is a population-based case–control study of 1,389 cases and 1,396 controls from 46 of 100 counties in North Carolina (50–52). Eligible participants were 20 to 80 years of age (50–52). Cases were identified from the North Carolina Central Cancer Registry between January 1, 2002 and February 28, 2006 using rapid case ascertainment (50–52). Tumors were classified according to ICD-O-3 codes: squamous cell carcinomas of the oral cavity (C02.0-C02.3, C03.0-C03.1, C03.9-C04.1, C04.8-C05.0, C06.0-C06.2, and C06.8-C06.9), oropharynx (C01.9, C02.4, C05.1-C05.2, C09.0-C09.1, C09.8-C10.4, and C10.8–C10.9), hypopharynx (C12.9-C13.2 and C13.8-C13.9), larynx (C32.0-C32.3 and C32.8-C32.9), and oral cavity/pharynx not otherwise specified (C02.8-C02.9, C05.8–05.9, C14.0, C14.2, and C14.8) were included in the study, whereas tumors of the salivary glands, nasopharynx, nasal cavity, and nasal sinuses were excluded (50–53). Controls were randomly sampled from the North Carolina Department of Motor Vehicle records and frequency matched to cases within strata of age, race, and sex (50–52).

For this analysis, we excluded cases and controls who did not provide blood or buccal cell samples, whose samples were insufficient for genotyping, or whose samples did not otherwise meet quality control criteria [115 (8.3%) cases and 53 (3.8%) controls] (52). We further excluded individuals who self-reported race other than White or African American because of sparse data [26 (1.9%) cases and 18 (1.3%) controls] and cases with lip cancers because of etiologic differences [21 (1.5%) cases; ref. 52]. Our final sample included 1,227 HNC cases and 1,325 controls.

Cigarette smoking

Self-reported demographic and behavioral information was ascertained through nurse-administered questionnaires (50–52). Information on cigarette smoking included ever/never, current/former, frequency (cigarettes/day), and duration (years). Information on environmental tobacco smoke (ETS) included ever/never and duration (years) of exposure in the home and at work (50).

SNP selection and genotyping

Blood (∼90%) or buccal cell (∼10%) samples were collected from cases and controls at the time of interview for DNA extraction (52). An Illumina GoldenGate assay with Sentrix Array Matrix and 96-well standard microtiter platform was used to genotype 1,536 SNPs, including 129 SNPs in 15 NER genes (52, 54). Seventy-one tag SNPs in NER genes were selected on the basis of a case–control study of HNC at MD Anderson Cancer Center (Houston, TX), which queried National Institute of Environmental Health Sciences–Environmental Genome Project (NIEHS-EGP) and HapMap databases using selection criteria of r2 ≥ 0.80, a minor allele frequency (MAF) ≥ 0.05, 1 to 2 kb flanking regions, and the Utah Residents with Northern and Western European Ancestry (CEU) population (Supplementary Table S1; Q. Wei; personal communication; refs. 55, 56). Another 58 SNPs in NER genes were selected on the basis of several criteria including association in other cancer studies and/or potential function (Supplementary Table S1). We excluded 14 SNPs for which genotyping resulted in poor signal intensity or genotype clustering (52), as well as SNPs with a MAF less than 0.05 (31 SNPs among Whites and 36 SNPs among African Americans; Supplementary Table S1). Most excluded SNPs had been selected on the basis of previous literature and/or function (Supplementary Table S1). Among the remaining SNPs, genotype frequencies for 7 SNPs in Whites and 7 SNPs in African Americans were inconsistent with Hardy–Weinberg equilibrium (HWE; P < 0.05; Supplementary Table S1); however, because genotyping scatter plots showed reasonable genotype clustering, these SNPs were included in analyses but interpreted with caution (57). Our final analysis included 84 SNPs in 14 NER genes among Whites and 79 SNPs in 15 NER genes among African Americans.

Statistical analysis

Cigarette smoking–HNC associations.

Unconditional logistic regression models were used to estimate ORs with 95% intervals (I) for the main effects of cigarette smoking and ETS on HNC risk. Adjusted cigarette smoking and ETS models included matching factors (age, sex, and race), education, and lifetime consumption of alcohol (categorical milliliters of ethanol). ETS ORs were additionally adjusted for duration of cigarette smoking (continuous, years), as well as stratified by ever/never cigarette smoking. Information on human papillomavirus (HPV) infection is not currently available in CHANCE, and was therefore not considered in analyses. Cigarette smoking and ETS models were considered in the overall study population and stratified by race (White and African American).

SNPs–HNC associations.

For SNPs, race-stratified hierarchical unconditional logistic regression was used to estimate ORs and 95% CIs for the main effects of SNPs on HNC risk (as well as tumor site–specific risk) by including a SNP-gene matrix to account for clustering of SNP data by gene (58, 59). Because the conventional logistic regression approach of modeling one SNP at a time with P values corrected for multiple comparisons using the Bonferroni method is overly conservative as it assumes tests are independent, which is not the case with potentially correlated exposures, we selected a hierarchical approach (58, 59). Results from the conventional approach are provided in Supplementary Tables.

We used a two-stage hierarchical model:

where pi represents the probability of case status in the sample, Xij contains indicators of SNPs, and Wi represents important covariates or potential confounders (58, 59).

where βj represents the coefficients for the effects of the SNPs, Zj represents the matrix linking SNPs with their associated genes, and δj represents independent errors, which are normally distributed with a mean of zero and a variance of τ2 (58, 59). To avoid over-parameterization by modeling one large SNP-gene matrix (i.e., including all 84 SNPs across 15 genes) in a single model, 15 models, one for each gene, were used to shrink estimates for SNPs on the same gene toward a common gene effect (i.e., the Z matrix was a single column representing a single gene, with rows of 1′s for each SNP). Because SNPs on the same gene were included in the same model, we excluded some SNPs due to extreme colinearity (estimated correlation ρ > 0.98; 11 SNPs in Whites and 5 SNPs in African Americans). A semi-Bayes approach was used to set τ2 to 0.05, as this corresponded with a plausible range of expected ORs for the association between SNPs and HNC based on previous literature (i.e., 0.6 to 1.6; ref. 58). Sensitivity analyses with τ2 = 0.01, τ2 = 0.10, and τ2 = 1.0 evaluated robustness of this choice.

SNPs were defined using a dominant genetic model given the large portion of SNPs with few cases and controls homozygous for the variant allele (∼7% among Whites and ∼33% among African Americans). The referent allele for both Whites and African Americans was assigned to be the major allele based on controls from the overall study population (which was concurrent with the race-specific major allele for 98% of SNPs in Whites and 92% of SNPs in African Americans). Because genetic exposures were based on germline DNA, which would not reflect the influences of smoking, drinking, or HPV infection, SNP models were only adjusted for matching factors (sex and age) and ancestry (continuous proportion African ancestry), as informed by our directed acyclic graph (DAG) analysis (60). On the basis of previous studies of cancer among Whites and African Americans in North Carolina, 145 ancestral informative markers (AIMS) were selected on the basis of differences in allele frequencies between European and African HapMap populations and used to estimate the proportion of African ancestry in each participant based on Fisher's information criterion (FIC; refs. 52, 61–63).

Joint effects.

ORs and 95% CIs for the joint effects of cigarette smoking and SNPs in NER genes were estimated using conventional and hierarchical logistic regression. Joint effects were modeled using disjoint indicator variables for (i) individuals who smoked and had the referent genotype, (ii) individuals who did not smoke and had the variant genotype, and (iii) individuals who smoked and had the variant genotype (58). As described by Hung and colleagues, hierarchical models included a 3 × 2 gene–environment matrix to account for clustering of disjoint indicator variables by SNP and cigarette effects (i.e., the Z matrix had 2 columns, one representing SNP effects and one representing smoking effects, and 3 rows, each representing the disjoint indicator variables, with 1′s and 0′s entered according to concordance of rows and columns; ref. 58). A τ2 of 0.35 was used to correspond to expected ORs between 0.3 and 3.0 for each indicator variable (58). Sensitivity analyses with τ2 = 0.05 evaluated robustness of this choice. Joint effects models were stratified by self-reported race. Only joint effect estimates among Whites are presented because small cell counts among African Americans prohibited reliable estimation for most SNP–cigarette effects. Joint effects models were adjusted for matching factors (sex and age), education, alcohol drinking, and ancestry as both behavioral and genetic exposures were being modeled. Interactions between SNPs and cigarette smoking were assessed on the additive scale using the relative excess risk due to interaction (RERI), with 95% CIs calculated using the Hosmer and Lemeshow method (64). All statistical analyses were conducted using SAS 9.3 (Cary, NC) (65).

Study population

The study population included 922 cases and 1,074 controls who self-reported race as White and 305 cases and 251 controls who self-reported African American (Table 1). The majority of cases (76.4%) and controls (69.7%) were male. Approximately, one-third of cases (33.6%) and controls (30.2%) were between the ages of 55 and 65 years. Controls were more highly educated than cases with 60.7% of controls attending college compared with 38.6% of cases.

Table 1.

Demographic characteristics of study population, CHANCE study

CharacteristicCases N (%)Controls N (%)
Total 1,227 1,325 
Sex 
 Male 938 (76.4) 924 (69.7) 
 Female 289 (23.6) 401 (30.3) 
Race/ethnicity 
 White 922 (75.1) 1,074 (81.1) 
 African American 305 (24.9) 251 (18.9) 
Age, y 
 20–49 239 (19.5) 151 (11.4) 
 50–54 189 (15.4) 156 (11.8) 
 55–59 207 (16.9) 199 (15.0) 
 60–64 205 (16.7) 202 (15.2) 
 65–69 168 (13.7) 237 (17.9) 
 70–74 135 (11.0) 216 (16.3) 
 75–80 84 (6.8) 164 (12.4) 
Education 
 High school or less 754 (61.5) 520 (39.2) 
 Some college 294 (24.0) 395 (29.8) 
 College or more 179 (14.6) 410 (30.9) 
Tumor site 
 Oral cavity 172 (14.0)  
 Oropharynx 333 (27.1)  
 Hypopharynx 55 (4.5)  
 NOS 224 (18.3)  
 Larynx 443 (36.1)  
CharacteristicCases N (%)Controls N (%)
Total 1,227 1,325 
Sex 
 Male 938 (76.4) 924 (69.7) 
 Female 289 (23.6) 401 (30.3) 
Race/ethnicity 
 White 922 (75.1) 1,074 (81.1) 
 African American 305 (24.9) 251 (18.9) 
Age, y 
 20–49 239 (19.5) 151 (11.4) 
 50–54 189 (15.4) 156 (11.8) 
 55–59 207 (16.9) 199 (15.0) 
 60–64 205 (16.7) 202 (15.2) 
 65–69 168 (13.7) 237 (17.9) 
 70–74 135 (11.0) 216 (16.3) 
 75–80 84 (6.8) 164 (12.4) 
Education 
 High school or less 754 (61.5) 520 (39.2) 
 Some college 294 (24.0) 395 (29.8) 
 College or more 179 (14.6) 410 (30.9) 
Tumor site 
 Oral cavity 172 (14.0)  
 Oropharynx 333 (27.1)  
 Hypopharynx 55 (4.5)  
 NOS 224 (18.3)  
 Larynx 443 (36.1)  

Abbreviation: NOS, not otherwise specified.

Cigarette smoking–HNC associations

The adjusted OR for ever compared with never cigarette smoking was elevated in the overall (2.28; 95% CI, 1.81–2.88; Table 2) and race-stratified study populations (1.97; 95% CI, 1.54–2.53 among Whites and 7.75; 95% CI, 3.57–16.83 among African Americans). Furthermore, the risk of HNC increased with increasing frequency and duration of cigarette smoking (Ptrend < 0.0001). In contrast, we did not observe strong associations between ETS and HNC (Supplementary Table S2). Adjusted ORs for ever compared with never ETS exposure were not elevated when stratified by race (0.87; 95% CI, 0.63–1.19 among Whites and 0.91; 95% CI, 0.45–1.82 among African Americans) or by active cigarette smoking (0.84; 95% CI, 0.54–1.33 among never cigarette smokers and 0.92; 95% CI, 0.62–1.37 among ever cigarette smokers). Duration of ETS exposure at work or home was also not associated with HNC risk (Supplementary Table S2).

Table 2.

ORs for cigarette smoking and HNC in the CHANCE study

OverallWhitesAfrican Americans
Cases NControls NOR (95% I)aCases NControls NOR (95% I)bCases NControls NOR (95% I)b
Cigarette smoking 
 Never 163 508  150 409  13 99  
 Ever 1,064 817 2.28 (1.81–2.88) 772 665 1.97 (1.54–2.53) 292 152 7.75 (3.57–16.83) 
 Missing    
Former/current 
 Never 163 508  150 409  13 99  
 Former 361 557 1.51 (1.17–1.94) 292 467 1.32 (1.01–1.73) 69 90 4.98 (2.17–11.43) 
 Current 703 260 3.87 (2.97–5.04) 480 198 3.44 (2.58–4.58) 223 62 10.61 (4.73–23.76) 
 Missing    
Duration, years 
 Never 163 508  150 409  13 99  
 1–19 110 280 0.98 (0.72–1.35) 92 228 0.88 (0.63–1.23) 18 52 2.54 (0.94–6.87) 
 20–39 465 320 2.34 (1.79–3.07) 305 256 1.95 (1.46–2.62) 160 64 7.62 (3.38–17.21) 
 40+ 485 214 5.30 (3.94–7.13) 373 178 4.75 (3.45–6.53) 112 36 16.28 (6.52–40.62) 
 Missing    
Ptrendc   <0.0001   <0.0001   <0.0001 
Frequency, cigarettes/day 
 Never 163 508  150 409  13 99  
 1–19 211 322 1.39 (1.05–1.85) 115 230 1.14 (0.83–1.57) 96 92 4.78 (2.12–10.82) 
 20+ 850 495 2.99 (2.33–3.84) 654 435 2.56 (1.96–3.33) 196 60 13.16 (5.73–30.23) 
 Missing    
Ptrend   <0.0001   <0.0001   <0.0001 
OverallWhitesAfrican Americans
Cases NControls NOR (95% I)aCases NControls NOR (95% I)bCases NControls NOR (95% I)b
Cigarette smoking 
 Never 163 508  150 409  13 99  
 Ever 1,064 817 2.28 (1.81–2.88) 772 665 1.97 (1.54–2.53) 292 152 7.75 (3.57–16.83) 
 Missing    
Former/current 
 Never 163 508  150 409  13 99  
 Former 361 557 1.51 (1.17–1.94) 292 467 1.32 (1.01–1.73) 69 90 4.98 (2.17–11.43) 
 Current 703 260 3.87 (2.97–5.04) 480 198 3.44 (2.58–4.58) 223 62 10.61 (4.73–23.76) 
 Missing    
Duration, years 
 Never 163 508  150 409  13 99  
 1–19 110 280 0.98 (0.72–1.35) 92 228 0.88 (0.63–1.23) 18 52 2.54 (0.94–6.87) 
 20–39 465 320 2.34 (1.79–3.07) 305 256 1.95 (1.46–2.62) 160 64 7.62 (3.38–17.21) 
 40+ 485 214 5.30 (3.94–7.13) 373 178 4.75 (3.45–6.53) 112 36 16.28 (6.52–40.62) 
 Missing    
Ptrendc   <0.0001   <0.0001   <0.0001 
Frequency, cigarettes/day 
 Never 163 508  150 409  13 99  
 1–19 211 322 1.39 (1.05–1.85) 115 230 1.14 (0.83–1.57) 96 92 4.78 (2.12–10.82) 
 20+ 850 495 2.99 (2.33–3.84) 654 435 2.56 (1.96–3.33) 196 60 13.16 (5.73–30.23) 
 Missing    
Ptrend   <0.0001   <0.0001   <0.0001 

aORs adjusted for matching factors (age, sex, and race including pairwise interactions), education, and alcohol drinking. A total of 122 individuals missing alcohol drinking, and therefore dropped from models.

bORs adjusted for matching factors (age and sex including pairwise interactions), education, and alcohol drinking. A total of 122 individuals missing alcohol drinking, and therefore dropped from models.

cP value for linear trend obtained from modeling the continuous forms of the frequency and duration variables.

SNPs–HNC associations

Among Whites, most ORs were close to the null value for associations between SNPs and HNC (Table 3). The SNP rs4150403 on the excision repair cross-complementing 3 (ERCC3) gene, also known as xeroderma pigmentosum B (XPB), however, was statistically significantly associated with elevated HNC risk (AA+AG vs. GG; OR, 1.28; 95% CI, 1.01–1.61). In addition, another SNP on ERCC3 (XPB), rs4150496, suggested a possible reduced HNC risk among Whites (AA+AG vs. GG; OR, 0.80; 95% CI, 0.62–1.02). When we considered associations between these SNPs and each tumor site separately, associations between rs4150403 and oral cavity cancer resulted in the largest magnitude OR (1.32; 95% CI, 1.01–1.71; Supplementary Table S3). For rs4150496, associations with oral cavity and oropharyngeal cancers resulted in the smallest magnitude ORs (OR, 0.79; 95% CI, 0.60–1.04 and OR, 0.77; 95% CI, 0.56–1.06, respectively).

Table 3.

ORs for SNPs in NER genes and HNC using hierarchical logistic regression, the CHANCE study, Whites

Coded alleleCases/controls N
GeneSNPReferent (A)Variant (B)AAAB + BBOR (95% I)aPb
ERCC3 (XPBrs4150496 401 392 518 682 0.80 (0.62–1.02) 0.08 
 rs1011019 462 548 459 526 0.94 (0.72–1.24) 0.68 
 rs4150434 546 670 373 404 1.00 (0.81–1.24) 0.97 
 rs4150416 410 481 509 593 0.89 (0.68–1.17) 0.40 
 rs4150407 318 311 601 763 0.94 (0.72–1.23) 0.65 
 rs4150403 733 904 186 170 1.28 (1.01–1.61) 0.04 
XPC rs2228001 335 375 584 698 0.90 (0.72–1.12) 0.35 
 rs3731143 816 957 103 116 1.05 (0.81–1.36) 0.72 
 rs2228000 524 598 395 475 0.93 (0.70–1.25) 0.64 
 rs3731124 519 598 400 475 0.88 (0.68–1.15) 0.35 
 rs13099160 811 961 108 112 1.03 (0.75–1.40) 0.87 
 rs3731089 775 918 144 155 1.03 (0.75–1.40) 0.86 
 rs2733537 416 480 503 593 0.95 (0.72–1.25) 0.69 
 rs3731068 622 731 297 342 1.05 (0.83–1.33) 0.70 
 rs2607755 242 284 677 789 1.04 (0.82–1.32) 0.75 
ERCC8 rs3117 337 397 585 677 1.02 (0.84–1.22) 0.87 
CDK7 rs2972388 266 335 656 739 1.12 (0.92–1.36) 0.25 
XPA rs3176757 580 684 303 352 0.98 (0.75–1.29) 0.90 
 rs3176748 421 490 462 546 0.89 (0.71–1.12) 0.32 
 rs2808667 781 915 102 121 1.11 (0.84–1.47) 0.46 
 rs2805835 692 817 191 219 0.96 (0.76–1.22) 0.75 
 rs3176689 595 703 288 333 0.92 (0.74–1.15) 0.48 
 rs3176683 784 909 99 127 0.88 (0.68–1.16) 0.37 
 rs3176658 678 762 205 274 0.81 (0.62–1.07) 0.14 
 rs1800975 420 473 463 563 0.99 (0.76–1.29) 0.93 
RAD23B rs1805330 764 870 158 204 0.94 (0.75–1.18) 0.60 
 rs1805329 590 711 332 363 1.10 (0.92–1.33) 0.30 
ERCC6 rs2228529 596 661 313 396 0.87 (0.72–1.05) 0.15 
 rs4253132 714 815 195 242 0.90 (0.73–1.12) 0.36 
 rs2228528 627 733 282 324 0.96 (0.79–1.17) 0.71 
DDB2 (XPErs2029298 425 478 497 596 1.02 (0.82–1.27) 0.85 
 rs4647709 766 902 156 172 1.01 (0.79–1.30) 0.93 
 rs2291120 685 812 237 262 1.00 (0.81–1.22) 0.97 
 rs1685404 418 502 504 572 1.01 (0.83–1.22) 0.95 
 rs2957873 643 711 279 363 1.00 (0.75–1.33) 0.99 
 rs326224 683 761 239 313 1.08 (0.79–1.46) 0.64 
 rs2306353 696 762 226 312 0.81 (0.59–1.13) 0.21 
 rs326222 484 526 438 548 0.96 (0.76–1.21) 0.70 
ERCC5 (XPGrs2296147 279 302 636 764 0.96 (0.76–1.21) 0.73 
 rs4771436 558 652 357 414 0.95 (0.71–1.26) 0.71 
 rs1047768 315 371 600 695 1.01 (0.77–1.34) 0.93 
 rs4150351 591 687 324 379 0.86 (0.67–1.11) 0.24 
 rs4150355 400 427 515 639 0.85 (0.67–1.09) 0.21 
 rs4150360 271 310 644 756 0.89 (0.66–1.19) 0.43 
 rs4150383 624 742 291 324 1.09 (0.84–1.41) 0.52 
 rs4150386 718 831 197 235 1.01 (0.81–1.25) 0.96 
 rs17655 550 651 365 415 1.05 (0.79–1.40) 0.74 
 rs873601 459 532 456 534 0.97 (0.74–1.25) 0.80 
 rs4150393 698 839 227 217 1.16 (0.89–1.52) 0.26 
 rs1051677 729 853 186 213 1.02 (0.83–1.25) 0.87 
 rs1051685 732 824 183 242 0.91 (0.74–1.11) 0.34 
ERCC4 (XPFrs3136038 402 490 520 584 1.00 (0.78–1.28) 1.00 
 rs1799798 757 901 165 173 1.16 (0.93–1.44) 0.20 
 rs744154 480 582 442 492 0.97 (0.70–1.33) 0.83 
 rs1800067 778 920 144 154 1.06 (0.83–1.34) 0.64 
 rs3136172 458 566 464 508 1.15 (0.84–1.55) 0.38 
RAD23A rs2974752 333 424 561 617 1.16 (0.96–1.40) 0.11 
ERCC2 (XPDrs13181 379 435 532 632 1.05 (0.76–1.45) 0.79 
 rs238418 374 420 537 647 0.91 (0.66–1.26) 0.58 
 rs1799787 464 538 447 529 1.06 (0.82–1.35) 0.67 
 rs3916874 471 542 440 525 1.01 (0.83–1.25) 0.90 
 rs238416 364 468 547 599 1.10 (0.88–1.38) 0.39 
 rs50872 525 583 386 484 0.91 (0.76–1.08) 0.27 
 rs50871 239 257 672 810 0.91 (0.75–1.11) 0.36 
 rs238407 261 338 650 729 1.05 (0.82–1.35) 0.71 
 rs3810366 176 232 735 835 1.08 (0.84–1.40) 0.54 
ERCC1 rs735482 688 796 234 277 0.92 (0.74–1.14) 0.44 
 rs3212955 528 607 394 466 0.93 (0.71–1.23) 0.63 
 rs3212948 382 458 540 615 1.17 (0.91–1.50) 0.22 
 rs3212930 576 657 346 416 0.92 (0.73–1.17) 0.50 
LIG1 rs156641 370 440 552 634 1.02 (0.81–1.29) 0.86 
 rs20580 237 293 685 781 1.02 (0.79–1.31) 0.87 
 rs20579 691 826 231 248 1.09 (0.87–1.35) 0.45 
Coded alleleCases/controls N
GeneSNPReferent (A)Variant (B)AAAB + BBOR (95% I)aPb
ERCC3 (XPBrs4150496 401 392 518 682 0.80 (0.62–1.02) 0.08 
 rs1011019 462 548 459 526 0.94 (0.72–1.24) 0.68 
 rs4150434 546 670 373 404 1.00 (0.81–1.24) 0.97 
 rs4150416 410 481 509 593 0.89 (0.68–1.17) 0.40 
 rs4150407 318 311 601 763 0.94 (0.72–1.23) 0.65 
 rs4150403 733 904 186 170 1.28 (1.01–1.61) 0.04 
XPC rs2228001 335 375 584 698 0.90 (0.72–1.12) 0.35 
 rs3731143 816 957 103 116 1.05 (0.81–1.36) 0.72 
 rs2228000 524 598 395 475 0.93 (0.70–1.25) 0.64 
 rs3731124 519 598 400 475 0.88 (0.68–1.15) 0.35 
 rs13099160 811 961 108 112 1.03 (0.75–1.40) 0.87 
 rs3731089 775 918 144 155 1.03 (0.75–1.40) 0.86 
 rs2733537 416 480 503 593 0.95 (0.72–1.25) 0.69 
 rs3731068 622 731 297 342 1.05 (0.83–1.33) 0.70 
 rs2607755 242 284 677 789 1.04 (0.82–1.32) 0.75 
ERCC8 rs3117 337 397 585 677 1.02 (0.84–1.22) 0.87 
CDK7 rs2972388 266 335 656 739 1.12 (0.92–1.36) 0.25 
XPA rs3176757 580 684 303 352 0.98 (0.75–1.29) 0.90 
 rs3176748 421 490 462 546 0.89 (0.71–1.12) 0.32 
 rs2808667 781 915 102 121 1.11 (0.84–1.47) 0.46 
 rs2805835 692 817 191 219 0.96 (0.76–1.22) 0.75 
 rs3176689 595 703 288 333 0.92 (0.74–1.15) 0.48 
 rs3176683 784 909 99 127 0.88 (0.68–1.16) 0.37 
 rs3176658 678 762 205 274 0.81 (0.62–1.07) 0.14 
 rs1800975 420 473 463 563 0.99 (0.76–1.29) 0.93 
RAD23B rs1805330 764 870 158 204 0.94 (0.75–1.18) 0.60 
 rs1805329 590 711 332 363 1.10 (0.92–1.33) 0.30 
ERCC6 rs2228529 596 661 313 396 0.87 (0.72–1.05) 0.15 
 rs4253132 714 815 195 242 0.90 (0.73–1.12) 0.36 
 rs2228528 627 733 282 324 0.96 (0.79–1.17) 0.71 
DDB2 (XPErs2029298 425 478 497 596 1.02 (0.82–1.27) 0.85 
 rs4647709 766 902 156 172 1.01 (0.79–1.30) 0.93 
 rs2291120 685 812 237 262 1.00 (0.81–1.22) 0.97 
 rs1685404 418 502 504 572 1.01 (0.83–1.22) 0.95 
 rs2957873 643 711 279 363 1.00 (0.75–1.33) 0.99 
 rs326224 683 761 239 313 1.08 (0.79–1.46) 0.64 
 rs2306353 696 762 226 312 0.81 (0.59–1.13) 0.21 
 rs326222 484 526 438 548 0.96 (0.76–1.21) 0.70 
ERCC5 (XPGrs2296147 279 302 636 764 0.96 (0.76–1.21) 0.73 
 rs4771436 558 652 357 414 0.95 (0.71–1.26) 0.71 
 rs1047768 315 371 600 695 1.01 (0.77–1.34) 0.93 
 rs4150351 591 687 324 379 0.86 (0.67–1.11) 0.24 
 rs4150355 400 427 515 639 0.85 (0.67–1.09) 0.21 
 rs4150360 271 310 644 756 0.89 (0.66–1.19) 0.43 
 rs4150383 624 742 291 324 1.09 (0.84–1.41) 0.52 
 rs4150386 718 831 197 235 1.01 (0.81–1.25) 0.96 
 rs17655 550 651 365 415 1.05 (0.79–1.40) 0.74 
 rs873601 459 532 456 534 0.97 (0.74–1.25) 0.80 
 rs4150393 698 839 227 217 1.16 (0.89–1.52) 0.26 
 rs1051677 729 853 186 213 1.02 (0.83–1.25) 0.87 
 rs1051685 732 824 183 242 0.91 (0.74–1.11) 0.34 
ERCC4 (XPFrs3136038 402 490 520 584 1.00 (0.78–1.28) 1.00 
 rs1799798 757 901 165 173 1.16 (0.93–1.44) 0.20 
 rs744154 480 582 442 492 0.97 (0.70–1.33) 0.83 
 rs1800067 778 920 144 154 1.06 (0.83–1.34) 0.64 
 rs3136172 458 566 464 508 1.15 (0.84–1.55) 0.38 
RAD23A rs2974752 333 424 561 617 1.16 (0.96–1.40) 0.11 
ERCC2 (XPDrs13181 379 435 532 632 1.05 (0.76–1.45) 0.79 
 rs238418 374 420 537 647 0.91 (0.66–1.26) 0.58 
 rs1799787 464 538 447 529 1.06 (0.82–1.35) 0.67 
 rs3916874 471 542 440 525 1.01 (0.83–1.25) 0.90 
 rs238416 364 468 547 599 1.10 (0.88–1.38) 0.39 
 rs50872 525 583 386 484 0.91 (0.76–1.08) 0.27 
 rs50871 239 257 672 810 0.91 (0.75–1.11) 0.36 
 rs238407 261 338 650 729 1.05 (0.82–1.35) 0.71 
 rs3810366 176 232 735 835 1.08 (0.84–1.40) 0.54 
ERCC1 rs735482 688 796 234 277 0.92 (0.74–1.14) 0.44 
 rs3212955 528 607 394 466 0.93 (0.71–1.23) 0.63 
 rs3212948 382 458 540 615 1.17 (0.91–1.50) 0.22 
 rs3212930 576 657 346 416 0.92 (0.73–1.17) 0.50 
LIG1 rs156641 370 440 552 634 1.02 (0.81–1.29) 0.86 
 rs20580 237 293 685 781 1.02 (0.79–1.31) 0.87 
 rs20579 691 826 231 248 1.09 (0.87–1.35) 0.45 

aORs adjusted for matching factors (age and sex including pairwise interactions) and proportion of African ancestry.

bSignificant associations using a dominant genetic model (P < 0.05) highlighted in gray.

Among African Americans, one SNP on ERCC6 (also known as Cockayne Syndrome B, CSB), rs4253132, was significantly associated with reduced HNC risk (CC+CT vs. TT; OR, 0.62; 95% CI, 0.45–0.86; Table 4). Because of low cell counts, we were unable to assess the association between this SNP and all tumor sites among African Americans. We did find, however, that rs4253132 was significantly associated with reduced risk of laryngeal cancer (OR, 0.65; 95% CI, 0.44–0.97; Supplementary Table S4).

Table 4.

ORs for SNPs in NER genes and HNC using hierarchical logistic regression, the CHANCE study, African Americans

Coded AlleleCases/Controls N
GeneSNPReferent (A)Variant (B)AAAB + BBOR (95% I)aPb
ERCC3 (XPBrs4150496 177 136 125 115 0.85 (0.61–1.20) 0.35 
 rs4150459 188 164 114 87 1.04 (0.74–1.48) 0.81 
 rs1011019 180 143 122 108 0.85 (0.60–1.20) 0.35 
 rs4150434 230 186 72 65 0.94 (0.65–1.36) 0.73 
 rs4150416 84 76 218 175 1.04 (0.74–1.47) 0.81 
 rs4150407 83 68 219 183 0.95 (0.68–1.35) 0.79 
XPC rs2228001 180 134 125 117 0.88 (0.63–1.23) 0.46 
 rs2228000 251 205 54 46 0.99 (0.69–1.43) 0.95 
 rs3731124 252 212 53 39 0.97 (0.68–1.37) 0.84 
 rs3731089 263 208 42 43 0.91 (0.62–1.34) 0.64 
 rs2733537 212 164 93 87 0.91 (0.66–1.28) 0.60 
 rs2607755 111 109 194 142 1.15 (0.85–1.56) 0.37 
 rs1902658 53 51 252 200 1.02 (0.71–1.46) 0.93 
ERCC8 rs3117 126 94 179 157 0.82 (0.57–1.17) 0.27 
CDK7 rs2972388 160 132 145 119 1.05 (0.74–1.49) 0.78 
CCNH rs2266691 257 220 48 30 1.35 (0.88–2.09) 0.17 
 rs2266692 237 202 68 48 1.26 (0.85–1.87) 0.25 
XPA rs3176757 227 181 66 53 1.00 (0.69–1.44) 0.99 
 rs3176753 218 173 75 61 0.97 (0.68–1.37) 0.86 
 rs3176748 238 195 55 39 1.05 (0.72–1.52) 0.81 
 rs3176658 249 194 44 40 0.99 (0.67–1.45) 0.95 
 rs1800975 187 141 106 93 0.92 (0.66–1.28) 0.62 
RAD23B rs1805330 183 160 122 91 1.16 (0.81–1.67) 0.43 
ERCC6 rs2228529 233 189 69 60 0.85 (0.58–1.22) 0.37 
 rs2228527 217 175 85 74 0.91 (0.65–1.29) 0.61 
 rs4253132 189 124 113 125 0.62 (0.45–0.86) 0.005 
 rs2228528 210 180 92 69 0.92 (0.65–1.30) 0.62 
DDB2 (XPErs2029298 90 88 214 163 1.16 (0.86–1.56) 0.33 
 rs1685404 164 140 140 111 1.10 (0.82–1.48) 0.51 
 rs2957873 90 82 214 169 1.07 (0.75–1.53) 0.71 
 rs326224 80 63 224 188 0.87 (0.62–1.24) 0.45 
 rs2306353 105 97 199 154 1.14 (0.80–1.61) 0.47 
 rs326222 54 50 250 201 1.09 (0.75–1.59) 0.64 
 rs901746 65 58 239 193 0.97 (0.68–1.40) 0.89 
ERCC5 (XPGrs2296147 192 147 111 100 0.90 (0.65–1.23) 0.51 
 rs2296148 227 189 76 58 1.04 (0.74–1.45) 0.83 
 rs4771436 202 168 101 79 0.95 (0.68–1.33) 0.78 
 rs1047768 114 112 189 135 1.12 (0.81–1.54) 0.49 
 rs2020915 203 140 100 107 0.80 (0.58–1.10) 0.16 
 rs4150355 217 173 86 74 1.02 (0.72–1.44) 0.92 
 rs4150360 18 17 285 230 0.95 (0.64–1.42) 0.80 
 rs4150383 240 196 63 51 0.95 (0.67–1.35) 0.78 
 rs17655 88 68 215 179 0.98 (0.70–1.37) 0.91 
 rs873601 29 30 274 217 1.13 (0.77–1.67) 0.52 
 rs1051677 232 181 71 66 0.89 (0.65–1.23) 0.48 
 rs1051685 136 117 167 130 0.99 (0.73–1.33) 0.93 
ERCC4 (XPFrs3136038 92 84 213 167 1.12 (0.82–1.54) 0.46 
 rs744154 221 174 84 77 0.97 (0.68–1.40) 0.88 
 rs3136085 173 146 132 105 1.08 (0.78–1.49) 0.65 
 rs3136091 255 199 50 52 0.86 (0.59–1.24) 0.41 
 rs3136130 75 65 230 186 0.99 (0.71–1.37) 0.93 
 rs3136172 216 171 89 80 1.01 (0.70–1.44) 0.97 
 rs2020955 193 165 112 86 1.03 (0.75–1.42) 0.86 
RAD23A rs2974752 77 62 216 170 1.06 (0.75–1.50) 0.73 
 rs11558955 245 197 48 35 1.13 (0.76–1.68) 0.54 
ERCC2 (XPDrs13181 171 139 131 108 1.01 (0.75–1.37) 0.93 
 rs238418 294 238 1.09 (0.70–1.69) 0.72 
 rs1799787 232 189 70 58 0.98 (0.71–1.37) 0.92 
 rs3916874 265 223 37 24 1.09 (0.74–1.59) 0.67 
 rs238416 241 206 61 41 1.15 (0.80–1.64) 0.45 
 rs50872 220 156 82 91 0.78 (0.58–1.05) 0.10 
 rs50871 226 193 76 54 1.10 (0.80–1.52) 0.57 
 rs238407 223 189 79 58 0.99 (0.69–1.42) 0.97 
 rs3810366 209 179 93 68 1.06 (0.75–1.49) 0.74 
ERCC1 rs735482 156 120 147 128 0.96 (0.71–1.30) 0.79 
 rs3212964 207 142 96 106 0.78 (0.57–1.07) 0.13 
 rs3212955 157 139 146 109 1.09 (0.80–1.50) 0.58 
 rs3212948 294 242 0.94 (0.60–1.48) 0.79 
 rs3212935 142 124 161 124 1.10 (0.81–1.50) 0.54 
 rs3212930 248 202 55 46 0.94 (0.66–1.34) 0.74 
LIG1 rs156641 233 192 71 59 1.02 (0.72–1.45) 0.91 
 rs20580 62 57 242 194 1.09 (0.77–1.54) 0.62 
 rs20579 150 128 154 123 0.99 (0.72–1.36) 0.96 
 rs439132 172 136 132 115 0.93 (0.67–1.30) 0.68 
Coded AlleleCases/Controls N
GeneSNPReferent (A)Variant (B)AAAB + BBOR (95% I)aPb
ERCC3 (XPBrs4150496 177 136 125 115 0.85 (0.61–1.20) 0.35 
 rs4150459 188 164 114 87 1.04 (0.74–1.48) 0.81 
 rs1011019 180 143 122 108 0.85 (0.60–1.20) 0.35 
 rs4150434 230 186 72 65 0.94 (0.65–1.36) 0.73 
 rs4150416 84 76 218 175 1.04 (0.74–1.47) 0.81 
 rs4150407 83 68 219 183 0.95 (0.68–1.35) 0.79 
XPC rs2228001 180 134 125 117 0.88 (0.63–1.23) 0.46 
 rs2228000 251 205 54 46 0.99 (0.69–1.43) 0.95 
 rs3731124 252 212 53 39 0.97 (0.68–1.37) 0.84 
 rs3731089 263 208 42 43 0.91 (0.62–1.34) 0.64 
 rs2733537 212 164 93 87 0.91 (0.66–1.28) 0.60 
 rs2607755 111 109 194 142 1.15 (0.85–1.56) 0.37 
 rs1902658 53 51 252 200 1.02 (0.71–1.46) 0.93 
ERCC8 rs3117 126 94 179 157 0.82 (0.57–1.17) 0.27 
CDK7 rs2972388 160 132 145 119 1.05 (0.74–1.49) 0.78 
CCNH rs2266691 257 220 48 30 1.35 (0.88–2.09) 0.17 
 rs2266692 237 202 68 48 1.26 (0.85–1.87) 0.25 
XPA rs3176757 227 181 66 53 1.00 (0.69–1.44) 0.99 
 rs3176753 218 173 75 61 0.97 (0.68–1.37) 0.86 
 rs3176748 238 195 55 39 1.05 (0.72–1.52) 0.81 
 rs3176658 249 194 44 40 0.99 (0.67–1.45) 0.95 
 rs1800975 187 141 106 93 0.92 (0.66–1.28) 0.62 
RAD23B rs1805330 183 160 122 91 1.16 (0.81–1.67) 0.43 
ERCC6 rs2228529 233 189 69 60 0.85 (0.58–1.22) 0.37 
 rs2228527 217 175 85 74 0.91 (0.65–1.29) 0.61 
 rs4253132 189 124 113 125 0.62 (0.45–0.86) 0.005 
 rs2228528 210 180 92 69 0.92 (0.65–1.30) 0.62 
DDB2 (XPErs2029298 90 88 214 163 1.16 (0.86–1.56) 0.33 
 rs1685404 164 140 140 111 1.10 (0.82–1.48) 0.51 
 rs2957873 90 82 214 169 1.07 (0.75–1.53) 0.71 
 rs326224 80 63 224 188 0.87 (0.62–1.24) 0.45 
 rs2306353 105 97 199 154 1.14 (0.80–1.61) 0.47 
 rs326222 54 50 250 201 1.09 (0.75–1.59) 0.64 
 rs901746 65 58 239 193 0.97 (0.68–1.40) 0.89 
ERCC5 (XPGrs2296147 192 147 111 100 0.90 (0.65–1.23) 0.51 
 rs2296148 227 189 76 58 1.04 (0.74–1.45) 0.83 
 rs4771436 202 168 101 79 0.95 (0.68–1.33) 0.78 
 rs1047768 114 112 189 135 1.12 (0.81–1.54) 0.49 
 rs2020915 203 140 100 107 0.80 (0.58–1.10) 0.16 
 rs4150355 217 173 86 74 1.02 (0.72–1.44) 0.92 
 rs4150360 18 17 285 230 0.95 (0.64–1.42) 0.80 
 rs4150383 240 196 63 51 0.95 (0.67–1.35) 0.78 
 rs17655 88 68 215 179 0.98 (0.70–1.37) 0.91 
 rs873601 29 30 274 217 1.13 (0.77–1.67) 0.52 
 rs1051677 232 181 71 66 0.89 (0.65–1.23) 0.48 
 rs1051685 136 117 167 130 0.99 (0.73–1.33) 0.93 
ERCC4 (XPFrs3136038 92 84 213 167 1.12 (0.82–1.54) 0.46 
 rs744154 221 174 84 77 0.97 (0.68–1.40) 0.88 
 rs3136085 173 146 132 105 1.08 (0.78–1.49) 0.65 
 rs3136091 255 199 50 52 0.86 (0.59–1.24) 0.41 
 rs3136130 75 65 230 186 0.99 (0.71–1.37) 0.93 
 rs3136172 216 171 89 80 1.01 (0.70–1.44) 0.97 
 rs2020955 193 165 112 86 1.03 (0.75–1.42) 0.86 
RAD23A rs2974752 77 62 216 170 1.06 (0.75–1.50) 0.73 
 rs11558955 245 197 48 35 1.13 (0.76–1.68) 0.54 
ERCC2 (XPDrs13181 171 139 131 108 1.01 (0.75–1.37) 0.93 
 rs238418 294 238 1.09 (0.70–1.69) 0.72 
 rs1799787 232 189 70 58 0.98 (0.71–1.37) 0.92 
 rs3916874 265 223 37 24 1.09 (0.74–1.59) 0.67 
 rs238416 241 206 61 41 1.15 (0.80–1.64) 0.45 
 rs50872 220 156 82 91 0.78 (0.58–1.05) 0.10 
 rs50871 226 193 76 54 1.10 (0.80–1.52) 0.57 
 rs238407 223 189 79 58 0.99 (0.69–1.42) 0.97 
 rs3810366 209 179 93 68 1.06 (0.75–1.49) 0.74 
ERCC1 rs735482 156 120 147 128 0.96 (0.71–1.30) 0.79 
 rs3212964 207 142 96 106 0.78 (0.57–1.07) 0.13 
 rs3212955 157 139 146 109 1.09 (0.80–1.50) 0.58 
 rs3212948 294 242 0.94 (0.60–1.48) 0.79 
 rs3212935 142 124 161 124 1.10 (0.81–1.50) 0.54 
 rs3212930 248 202 55 46 0.94 (0.66–1.34) 0.74 
LIG1 rs156641 233 192 71 59 1.02 (0.72–1.45) 0.91 
 rs20580 62 57 242 194 1.09 (0.77–1.54) 0.62 
 rs20579 150 128 154 123 0.99 (0.72–1.36) 0.96 
 rs439132 172 136 132 115 0.93 (0.67–1.30) 0.68 

aORs adjusted for matching factors (age and sex including pairwise interactions) and proportion of African ancestry.

bSignificant associations using a dominant genetic model (P < 0.05) highlighted in gray.

No other significant SNP–HNC associations were detected, including none of the extensively studied associations between SNPs in ERCC2 (also known as XPD), ERCC1, or ligase 1 (LIG1) and HNC risk. In particular, we did not find an association between rs13181 in ERCC2 (XPD) and HNC among Whites (GG+TG vs. TT; OR, 1.05; 95% CI, 0.76–1.45; Table 3) nor among African Americans (OR, 1.01; 95% CI, 0.75–1.37; Table 4). In sensitivity analyses, results from Tables 3 and 4 were robust to further adjustment for cigarette smoking and alcohol drinking and variation of τ2 (i.e., results were similar when adjusting for cigarette smoking and alcohol drinking or when τ2 = 0.01, 0.10, and 1.0 rather than 0.05, though the OR for rs4150403 among Whites was nonsignificantly elevated when adjusting for cigarette smoking and alcohol drinking or when τ2 = 0.01; data not shown). Compared with the hierarchical model, ORs (95% CIs) for the conventional model were similar though less stable, with a few additional SNP–HNC associations implicated at 0.05 α level but none at a Bonferroni-corrected significance level of 0.0006 (Supplementary Tables S5 and S6).

Joint effects

Using the conventional method (Table 5), interactions between ever cigarette smoking and 3 SNPs suggested possible departures from the null on the additive scale at an uncorrected 0.05 α level among Whites. Specifically, the interaction between cigarette smoking and rs4253132 on ERCC6 (CSB, RERI = 0.70; 95% CI, 0.14–1.26) and rs2291120 on DDB2 (XPE, RERI = 0.68; 95% CI, 0.11–1.26) seemed to be more than additive, whereas the interaction between cigarette smoking and rs744154 on ERCC4 (XPF, RERI = −1.02; 95% CI, −2.02 to −0.02) seemed to be less than additive. However, RERI estimates were generally imprecise and none were significant at a Bonferroni-corrected significance level (Table 5). Furthermore, genotype frequencies for rs4253132 on ERCC6 among Whites seemed inconsistent with HWE at a 0.05 α level, although the genotype-clustering plot seemed reasonable, and should therefore be cautiously interpreted. ORs (95% CIs) for joint effects from the hierarchical model (Table 6) were similar to estimates from the conventional method. RERI point estimates were also similar between the two methods, but we were unable to estimate 95% CIs for RERI estimates using hierarchical regression. Joint effects of SNPs and former/current cigarette smoking as well as SNPs and ETS among Whites are provided in Supplementary Tables S7 and S8, respectively, and highlight a few other potential gene–environment interactions. Among African Americans, no significant ever cigarette–SNP interactions were noted; however, estimates were unreliable due to relatively low cell counts and are therefore not presented.

Table 5.

ORs and relative excess risk due to interaction estimates for joint effects of SNPs in NER genes and ever cigarette smoking on HNC risk using conventional logistic regression, the CHANCE study, Whites

Coded alleleCases/controls NaOR (95% I)b
GeneSNPReferent (A)Variant (B)Never cigarette, referent SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPRERI (95% I)c
ERCC3 (XPBrs4150496 70 154 79 255 331 238 441 427 0.66 (0.44–0.98) 1.83 (1.27–2.64) 1.40 (0.99–1.98) −0.08 (−0.63–0.46) 
 rs1011019 66 201 84 208 396 347 376 318 1.26 (0.85–1.87) 2.18 (1.54–3.08) 2.28 (1.61–3.23) −0.16 (−0.86–0.54) 
 rs4150434 89 264 61 145 459 406 313 259 1.20 (0.80–1.80) 2.13 (1.56–2.89) 2.09 (1.51–2.90) −0.24 (−0.94–0.45) 
 rs4150416 56 176 93 233 354 305 416 360 1.27 (0.84–1.90) 2.27 (1.57–3.30) 2.27 (1.57–3.27) −0.27 (−1.01–0.46) 
 rs4150407 55 129 95 280 263 182 509 483 0.77 (0.51–1.16) 2.00 (1.33–3.00) 1.53 (1.05–2.21) −0.24 (−0.90–0.41) 
 rs4150403 118 338 32 71 618 566 154 99 1.26 (0.77–2.06) 1.95 (1.49–2.56) 2.60 (1.80–3.74) 0.39 (−0.57–1.34) 
 rs4150402 66 201 84 208 396 347 376 317 1.26 (0.85–1.87) 2.19 (1.55–3.09) 2.29 (1.62–3.26) −0.15 (−0.85–0.55) 
XPC rs2228001 56 135 94 274 281 240 490 425 0.86 (0.57–1.29) 1.91 (1.29–2.83) 1.70 (1.17–2.48) −0.06 (−0.66–0.54) 
 rs3731143 135 361 15 48 683 596 89 69 0.90 (0.48–1.70) 1.88 (1.45–2.44) 2.51 (1.66–3.82) 0.73 (−0.33–1.80) 
 rs2228000 91 222 59 187 433 376 337 288 0.77 (0.51–1.14) 1.74 (1.27–2.39) 1.78 (1.28–2.47) 0.27 (−0.23–0.78) 
 rs3731124 81 228 69 181 440 371 332 294 1.10 (0.74–1.64) 2.11 (1.53–2.90) 1.98 (1.42–2.76) −0.23 (−0.89–0.43) 
 rs13099160 127 366 23 43 687 596 85 69 1.60 (0.90–2.83) 2.07 (1.59–2.69) 2.24 (1.47–3.43) −0.43 (−1.65–0.80) 
 rs3731093 120 350 27 56 656 569 111 90 1.52 (0.89–2.58) 2.10 (1.60–2.75) 2.47 (1.68–3.64) −0.15 (−1.26–0.96) 
 rs3731089 121 350 29 59 657 569 115 96 1.53 (0.92–2.57) 2.07 (1.58–2.71) 2.35 (1.61–3.44) −0.25 (−1.32–0.82) 
 rs2733537 70 175 80 234 346 305 426 360 0.88 (0.59–1.31) 1.75 (1.23–2.50) 1.91 (1.35–2.70) 0.28 (−0.25–0.81) 
 rs3731068 99 275 51 134 525 457 247 208 1.03 (0.68–1.56) 1.97 (1.47–2.65) 2.01 (1.44–2.79) 0.01 (−0.65–0.66) 
 rs2607755 39 110 111 299 203 174 569 491 1.11 (0.71–1.73) 2.12 (1.35–3.34) 2.12 (1.39–3.22) −0.11 (−0.86–0.63) 
 rs1902658 37 107 113 302 198 173 573 492 1.12 (0.71–1.76) 2.10 (1.32–3.33) 2.15 (1.40–3.29) −0.07 (−0.81–0.67) 
ERCC8 rs3117 60 144 90 265 277 253 495 412 0.81 (0.54–1.22) 1.70 (1.16–2.49) 1.75 (1.22–2.51) 0.23 (−0.28–0.75) 
CDK7 rs2972388 42 122 108 287 224 213 548 452 1.06 (0.69–1.63) 1.81 (1.17–2.79) 2.16 (1.45–3.23) 0.29 (−0.31–0.89) 
XPA rs3176757 98 268 52 141 511 442 261 223 1.03 (0.68–1.56) 1.94 (1.44–2.62) 2.08 (1.50–2.89) 0.11 (−0.53–0.75) 
 rs3176748 74 185 76 224 366 325 406 340 0.84 (0.57–1.25) 1.76 (1.25–2.48) 1.82 (1.30–2.57) 0.22 (−0.30–0.74) 
 rs2808667 133 352 17 57 681 598 89 67 0.87 (0.47–1.60) 1.86 (1.43–2.42) 2.44 (1.61–3.71) 0.71 (−0.31–1.73) 
 rs2805835 119 328 31 81 608 520 164 145 1.12 (0.69–1.82) 2.03 (1.54–2.68) 1.95 (1.38–2.76) −0.20 (−0.98–0.58) 
 rs3176689 94 279 56 130 528 449 244 216 1.14 (0.76–1.72) 2.15 (1.60–2.90) 1.88 (1.34–2.63) −0.41 (−1.12–0.29) 
 rs3176683 134 353 16 56 684 591 88 74 0.76 (0.41–1.40) 1.88 (1.45–2.45) 2.05 (1.35–3.10) 0.41 (−0.46–1.28) 
 rs3176658 114 297 36 112 585 495 187 170 0.85 (0.54–1.35) 1.91 (1.44–2.52) 1.86 (1.32–2.60) 0.10 (−0.54–0.73) 
 rs1800975 72 180 75 215 348 293 390 348 0.90 (0.61–1.35) 1.83 (1.29–2.60) 1.86 (1.32–2.63) 0.13 (−0.43–0.69) 
RAD23B rs1805330 125 321 25 88 639 549 133 116 0.68 (0.41–1.13) 1.85 (1.41–2.43) 1.68 (1.16–2.43) 0.15 (−0.49–0.79) 
 rs1805329 101 277 49 132 489 434 283 231 1.13 (0.74–1.72) 2.01 (1.50–2.70) 2.12 (1.53–2.93) −0.02 (−0.70–0.66) 
ERCC6 rs2228529 96 258 52 146 501 403 261 250 1.08 (0.71–1.63) 2.13 (1.57–2.89) 1.85 (1.33–2.56) −0.37 (−1.05–0.32) 
 rs2228527 97 260 53 149 501 405 271 260 1.07 (0.71–1.61) 2.13 (1.57–2.87) 1.84 (1.33–2.55) −0.35 (−1.03–0.32) 
 rs4253132 126 303 24 106 597 526 175 139 0.50 (0.30–0.84) 1.65 (1.26–2.18) 1.86 (1.32–2.62) 0.70 (0.14–1.26) 
 rs2228528 104 287 46 122 533 459 238 206 1.05 (0.69–1.62) 2.01 (1.50–2.68) 1.97 (1.42–2.74) −0.09 (−0.76–0.58) 
DDB2 (XPErs2029298 69 195 81 214 356 283 416 382 1.22 (0.82–1.81) 2.39 (1.69–3.38) 2.03 (1.44–2.86) −0.58 (−1.34–0.18) 
 rs4647709 123 342 27 67 643 560 129 105 1.17 (0.70–1.96) 2.01 (1.53–2.63) 2.12 (1.46–3.07) −0.06 (−0.94–0.82) 
 rs2291120 123 296 27 113 562 516 210 149 0.59 (0.36–0.96) 1.68 (1.28–2.22) 1.95 (1.39–2.74) 0.68 (0.11–1.26) 
 rs1685404 72 180 78 229 346 322 426 343 0.88 (0.59–1.30) 1.66 (1.17–2.35) 2.01 (1.43–2.83) 0.47 (−0.03–0.98) 
 rs2957873 101 275 49 134 542 436 230 229 1.16 (0.76–1.75) 2.22 (1.65–2.98) 1.77 (1.28–2.46) −0.60 (−1.33–0.13) 
 rs326224 105 288 45 121 578 473 194 192 1.18 (0.77–1.80) 2.14 (1.61–2.86) 1.87 (1.33–2.62) −0.45 (−1.19–0.29) 
 rs2306353 109 292 41 117 587 470 185 195 1.12 (0.72–1.74) 2.18 (1.64–2.90) 1.66 (1.19–2.33) −0.64 (−1.38–0.10) 
 rs326222 76 209 74 200 408 317 364 348 1.17 (0.79–1.73) 2.39 (1.71–3.34) 1.88 (1.34–2.63) −0.68 (−1.43–0.08) 
 rs901746 76 210 74 199 409 318 363 347 1.19 (0.80–1.77) 2.41 (1.73–3.37) 1.89 (1.35–2.65) −0.71 (−1.48–0.05) 
ERCC5 (XPGrs2296147 41 114 109 291 239 189 528 474 1.00 (0.64–1.55) 2.14 (1.38–3.33) 1.88 (1.24–2.83) −0.27 (−1.01–0.48) 
 rs4771436 97 259 53 150 466 400 306 265 0.98 (0.65–1.48) 1.98 (1.46–2.68) 1.92 (1.39–2.65) −0.05 (−0.66–0.57) 
 rs1047768 57 142 93 267 262 235 510 429 0.84 (0.56–1.26) 1.71 (1.16–2.52) 1.79 (1.24–2.59) 0.25 (−0.28–0.78) 
 rs3818356 97 259 53 149 466 400 304 264 0.99 (0.66–1.5) 1.97 (1.46–2.67) 1.91 (1.38–2.64) −0.06 (−0.67–0.56) 
 rs4150351 97 258 53 151 498 434 274 231 0.94 (0.63–1.42) 1.92 (1.42–2.60) 1.94 (1.40–2.69) 0.07 (−0.53–0.68) 
 rs4150355 57 159 93 250 345 269 427 396 1.06 (0.70–1.58) 2.28 (1.57–3.32) 1.87 (1.29–2.69) −0.47 (−1.20–0.26) 
 rs4150360 50 119 100 290 225 197 547 468 0.81 (0.53–1.24) 1.70 (1.12–2.58) 1.71 (1.16–2.51) 0.19 (−0.36–0.74) 
 rs4150383 106 296 44 113 524 453 248 212 1.08 (0.70–1.67) 2.02 (1.51–2.70) 2.00 (1.44–2.78) −0.10 (−0.78–0.58) 
 rs4150386 113 317 37 92 611 519 161 145 1.03 (0.65–1.63) 2.03 (1.53–2.68) 1.84 (1.29–2.61) −0.22 (−0.95–0.51) 
 rs17655 89 238 61 171 466 420 306 245 0.88 (0.59–1.32) 1.78 (1.30–2.42) 2.04 (1.46–2.84) 0.38 (−0.18–0.94) 
 rs873601 73 190 77 219 391 349 381 316 0.82 (0.55–1.21) 1.72 (1.22–2.41) 1.83 (1.30–2.58) 0.30 (−0.21–0.80) 
 rs4150393 114 317 36 92 588 527 184 138 1.14 (0.72–1.81) 1.94 (1.47–2.57) 2.35 (1.67–3.32) 0.27 (−0.53–1.06) 
 rs876430 73 190 77 219 392 350 380 315 0.82 (0.55–1.21) 1.72 (1.22–2.41) 1.83 (1.30–2.58) 0.30 (−0.21–0.80) 
 rs1051677 126 331 23 78 609 527 163 138 0.80 (0.47–1.36) 1.88 (1.43–2.46) 2.01 (1.42–2.85) 0.34 (−0.36–1.03) 
 rs1051685 117 323 33 86 619 509 152 156 1.12 (0.70–1.80) 2.10 (1.59–2.76) 1.67 (1.17–2.38) −0.55 (−1.31–0.22) 
ERCC4 (XPFrs3136038 51 195 99 214 351 295 421 370 1.77 (1.17–2.66) 2.88 (1.97–4.21) 2.67 (1.84–3.87) −0.97 (−1.99–0.04) 
 rs1799798 126 331 24 78 631 570 141 95 0.80 (0.47–1.34) 1.82 (1.39–2.39) 2.32 (1.59–3.40) 0.70 (−0.11–1.52) 
 rs744154 59 224 91 185 421 358 351 307 1.85 (1.24–2.76) 2.81 (1.98–3.99) 2.63 (1.84–3.77) −1.02 (−2.02–−0.02) 
 rs3136085 59 220 91 189 416 356 356 309 1.80 (1.21–2.69) 2.75 (1.93–3.92) 2.63 (1.84–3.77) −0.92 (−1.89–0.05) 
 rs3136130 51 193 99 216 349 292 423 373 1.73 (1.15–2.61) 2.85 (1.95–4.16) 2.65 (1.83–3.83) −0.93 (−1.93–0.06) 
 rs1800067 125 355 25 54 653 565 119 100 1.26 (0.73–2.17) 2.03 (1.55–2.64) 2.11 (1.45–3.07) −0.18 (−1.13–0.77) 
 rs3136172 59 216 91 193 399 350 373 315 1.71 (1.14–2.55) 2.63 (1.85–3.76) 2.63 (1.84–3.76) −0.71 (−1.63–0.20) 
RAD23A rs2974752 56 180 92 216 277 244 469 401 1.43 (0.95–2.16) 2.38 (1.63–3.46) 2.41 (1.68–3.44) −0.40 (−1.22–0.42) 
ERCC2 (XPDrs13181 55 155 95 252 326 282 439 381 1.06 (0.71–1.60) 2.08 (1.42–3.05) 1.97 (1.36–2.85) −0.18 (−0.84–0.49) 
 rs238418 54 155 96 254 328 271 444 394 1.10 (0.73–1.65) 2.21 (1.50–3.24) 2.01 (1.38–2.91) −0.30 (−1.00–0.41) 
 rs1799787 68 203 82 206 404 342 368 323 1.17 (0.79–1.74) 2.19 (1.56–3.09) 2.08 (1.47–2.94) −0.29 (−0.98–0.40) 
 rs3916874 81 201 69 208 396 344 376 321 0.75 (0.50–1.11) 1.69 (1.21–2.35) 1.72 (1.23–2.40) 0.28 (−0.20–0.77) 
 rs238416 62 193 88 216 307 275 464 388 1.34 (0.90–1.99) 2.17 (1.51–3.12) 2.40 (1.69–3.41) −0.11 (−0.83–0.61) 
 rs50872 80 221 70 187 451 363 319 301 1.06 (0.71–1.57) 2.15 (1.55–2.97) 1.85 (1.32–2.59) −0.36 (−1.02–0.31) 
 rs50871 43 89 107 320 199 169 573 495 0.66 (0.42–1.03) 1.37 (0.86–2.16) 1.47 (0.96–2.23) 0.44 (−0.01–0.89) 
 rs238407 43 136 107 273 220 202 551 463 1.40 (0.91–2.16) 2.36 (1.54–3.62) 2.53 (1.71–3.76) −0.23 (−1.05–0.59) 
 rs3810366 32 95 118 314 146 137 625 528 1.29 (0.80–2.09) 2.29 (1.38–3.77) 2.42 (1.54–3.80) −0.16 (−1.03–0.72) 
ERCC1 rs735482 117 302 33 107 571 495 201 170 0.81 (0.51–1.30) 1.87 (1.41–2.47) 1.90 (1.36–2.65) 0.22 (−0.40–0.84) 
 rs2336219 117 302 33 107 571 495 201 170 0.81 (0.51–1.30) 1.87 (1.41–2.47) 1.90 (1.36–2.65) 0.22 (−0.40–0.84) 
 rs3212964 118 302 32 107 574 492 198 173 0.78 (0.49–1.24) 1.86 (1.41–2.46) 1.84 (1.32–2.56) 0.20 (−0.40–0.80) 
 rs3212955 82 229 68 180 446 378 326 286 1.10 (0.74–1.63) 2.08 (1.51–2.86) 2.02 (1.45–2.81) −0.16 (−0.81–0.49) 
 rs3212948 60 171 90 238 322 287 450 378 1.10 (0.74–1.64) 2.01 (1.39–2.90) 2.14 (1.50–3.05) 0.03 (−0.60–0.66) 
 rs3212930 92 248 58 161 484 409 288 256 0.99 (0.66–1.48) 1.95 (1.43–2.65) 1.98 (1.43–2.75) 0.04 (−0.57–0.65) 
LIG1 rs156641 56 166 94 243 314 274 458 391 1.22 (0.81–1.82) 2.14 (1.46–3.13) 2.27 (1.58–3.27) −0.09 (−0.77–0.60) 
 rs20580 30 109 120 300 207 184 565 481 1.54 (0.95–2.48) 2.52 (1.55–4.12) 2.83 (1.79–4.47) −0.23 (−1.15–0.69) 
 rs20579 105 305 45 104 586 521 186 144 1.34 (0.87–2.08) 2.06 (1.55–2.73) 2.43 (1.71–3.45) 0.03 (−0.81–0.87) 
Coded alleleCases/controls NaOR (95% I)b
GeneSNPReferent (A)Variant (B)Never cigarette, referent SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPRERI (95% I)c
ERCC3 (XPBrs4150496 70 154 79 255 331 238 441 427 0.66 (0.44–0.98) 1.83 (1.27–2.64) 1.40 (0.99–1.98) −0.08 (−0.63–0.46) 
 rs1011019 66 201 84 208 396 347 376 318 1.26 (0.85–1.87) 2.18 (1.54–3.08) 2.28 (1.61–3.23) −0.16 (−0.86–0.54) 
 rs4150434 89 264 61 145 459 406 313 259 1.20 (0.80–1.80) 2.13 (1.56–2.89) 2.09 (1.51–2.90) −0.24 (−0.94–0.45) 
 rs4150416 56 176 93 233 354 305 416 360 1.27 (0.84–1.90) 2.27 (1.57–3.30) 2.27 (1.57–3.27) −0.27 (−1.01–0.46) 
 rs4150407 55 129 95 280 263 182 509 483 0.77 (0.51–1.16) 2.00 (1.33–3.00) 1.53 (1.05–2.21) −0.24 (−0.90–0.41) 
 rs4150403 118 338 32 71 618 566 154 99 1.26 (0.77–2.06) 1.95 (1.49–2.56) 2.60 (1.80–3.74) 0.39 (−0.57–1.34) 
 rs4150402 66 201 84 208 396 347 376 317 1.26 (0.85–1.87) 2.19 (1.55–3.09) 2.29 (1.62–3.26) −0.15 (−0.85–0.55) 
XPC rs2228001 56 135 94 274 281 240 490 425 0.86 (0.57–1.29) 1.91 (1.29–2.83) 1.70 (1.17–2.48) −0.06 (−0.66–0.54) 
 rs3731143 135 361 15 48 683 596 89 69 0.90 (0.48–1.70) 1.88 (1.45–2.44) 2.51 (1.66–3.82) 0.73 (−0.33–1.80) 
 rs2228000 91 222 59 187 433 376 337 288 0.77 (0.51–1.14) 1.74 (1.27–2.39) 1.78 (1.28–2.47) 0.27 (−0.23–0.78) 
 rs3731124 81 228 69 181 440 371 332 294 1.10 (0.74–1.64) 2.11 (1.53–2.90) 1.98 (1.42–2.76) −0.23 (−0.89–0.43) 
 rs13099160 127 366 23 43 687 596 85 69 1.60 (0.90–2.83) 2.07 (1.59–2.69) 2.24 (1.47–3.43) −0.43 (−1.65–0.80) 
 rs3731093 120 350 27 56 656 569 111 90 1.52 (0.89–2.58) 2.10 (1.60–2.75) 2.47 (1.68–3.64) −0.15 (−1.26–0.96) 
 rs3731089 121 350 29 59 657 569 115 96 1.53 (0.92–2.57) 2.07 (1.58–2.71) 2.35 (1.61–3.44) −0.25 (−1.32–0.82) 
 rs2733537 70 175 80 234 346 305 426 360 0.88 (0.59–1.31) 1.75 (1.23–2.50) 1.91 (1.35–2.70) 0.28 (−0.25–0.81) 
 rs3731068 99 275 51 134 525 457 247 208 1.03 (0.68–1.56) 1.97 (1.47–2.65) 2.01 (1.44–2.79) 0.01 (−0.65–0.66) 
 rs2607755 39 110 111 299 203 174 569 491 1.11 (0.71–1.73) 2.12 (1.35–3.34) 2.12 (1.39–3.22) −0.11 (−0.86–0.63) 
 rs1902658 37 107 113 302 198 173 573 492 1.12 (0.71–1.76) 2.10 (1.32–3.33) 2.15 (1.40–3.29) −0.07 (−0.81–0.67) 
ERCC8 rs3117 60 144 90 265 277 253 495 412 0.81 (0.54–1.22) 1.70 (1.16–2.49) 1.75 (1.22–2.51) 0.23 (−0.28–0.75) 
CDK7 rs2972388 42 122 108 287 224 213 548 452 1.06 (0.69–1.63) 1.81 (1.17–2.79) 2.16 (1.45–3.23) 0.29 (−0.31–0.89) 
XPA rs3176757 98 268 52 141 511 442 261 223 1.03 (0.68–1.56) 1.94 (1.44–2.62) 2.08 (1.50–2.89) 0.11 (−0.53–0.75) 
 rs3176748 74 185 76 224 366 325 406 340 0.84 (0.57–1.25) 1.76 (1.25–2.48) 1.82 (1.30–2.57) 0.22 (−0.30–0.74) 
 rs2808667 133 352 17 57 681 598 89 67 0.87 (0.47–1.60) 1.86 (1.43–2.42) 2.44 (1.61–3.71) 0.71 (−0.31–1.73) 
 rs2805835 119 328 31 81 608 520 164 145 1.12 (0.69–1.82) 2.03 (1.54–2.68) 1.95 (1.38–2.76) −0.20 (−0.98–0.58) 
 rs3176689 94 279 56 130 528 449 244 216 1.14 (0.76–1.72) 2.15 (1.60–2.90) 1.88 (1.34–2.63) −0.41 (−1.12–0.29) 
 rs3176683 134 353 16 56 684 591 88 74 0.76 (0.41–1.40) 1.88 (1.45–2.45) 2.05 (1.35–3.10) 0.41 (−0.46–1.28) 
 rs3176658 114 297 36 112 585 495 187 170 0.85 (0.54–1.35) 1.91 (1.44–2.52) 1.86 (1.32–2.60) 0.10 (−0.54–0.73) 
 rs1800975 72 180 75 215 348 293 390 348 0.90 (0.61–1.35) 1.83 (1.29–2.60) 1.86 (1.32–2.63) 0.13 (−0.43–0.69) 
RAD23B rs1805330 125 321 25 88 639 549 133 116 0.68 (0.41–1.13) 1.85 (1.41–2.43) 1.68 (1.16–2.43) 0.15 (−0.49–0.79) 
 rs1805329 101 277 49 132 489 434 283 231 1.13 (0.74–1.72) 2.01 (1.50–2.70) 2.12 (1.53–2.93) −0.02 (−0.70–0.66) 
ERCC6 rs2228529 96 258 52 146 501 403 261 250 1.08 (0.71–1.63) 2.13 (1.57–2.89) 1.85 (1.33–2.56) −0.37 (−1.05–0.32) 
 rs2228527 97 260 53 149 501 405 271 260 1.07 (0.71–1.61) 2.13 (1.57–2.87) 1.84 (1.33–2.55) −0.35 (−1.03–0.32) 
 rs4253132 126 303 24 106 597 526 175 139 0.50 (0.30–0.84) 1.65 (1.26–2.18) 1.86 (1.32–2.62) 0.70 (0.14–1.26) 
 rs2228528 104 287 46 122 533 459 238 206 1.05 (0.69–1.62) 2.01 (1.50–2.68) 1.97 (1.42–2.74) −0.09 (−0.76–0.58) 
DDB2 (XPErs2029298 69 195 81 214 356 283 416 382 1.22 (0.82–1.81) 2.39 (1.69–3.38) 2.03 (1.44–2.86) −0.58 (−1.34–0.18) 
 rs4647709 123 342 27 67 643 560 129 105 1.17 (0.70–1.96) 2.01 (1.53–2.63) 2.12 (1.46–3.07) −0.06 (−0.94–0.82) 
 rs2291120 123 296 27 113 562 516 210 149 0.59 (0.36–0.96) 1.68 (1.28–2.22) 1.95 (1.39–2.74) 0.68 (0.11–1.26) 
 rs1685404 72 180 78 229 346 322 426 343 0.88 (0.59–1.30) 1.66 (1.17–2.35) 2.01 (1.43–2.83) 0.47 (−0.03–0.98) 
 rs2957873 101 275 49 134 542 436 230 229 1.16 (0.76–1.75) 2.22 (1.65–2.98) 1.77 (1.28–2.46) −0.60 (−1.33–0.13) 
 rs326224 105 288 45 121 578 473 194 192 1.18 (0.77–1.80) 2.14 (1.61–2.86) 1.87 (1.33–2.62) −0.45 (−1.19–0.29) 
 rs2306353 109 292 41 117 587 470 185 195 1.12 (0.72–1.74) 2.18 (1.64–2.90) 1.66 (1.19–2.33) −0.64 (−1.38–0.10) 
 rs326222 76 209 74 200 408 317 364 348 1.17 (0.79–1.73) 2.39 (1.71–3.34) 1.88 (1.34–2.63) −0.68 (−1.43–0.08) 
 rs901746 76 210 74 199 409 318 363 347 1.19 (0.80–1.77) 2.41 (1.73–3.37) 1.89 (1.35–2.65) −0.71 (−1.48–0.05) 
ERCC5 (XPGrs2296147 41 114 109 291 239 189 528 474 1.00 (0.64–1.55) 2.14 (1.38–3.33) 1.88 (1.24–2.83) −0.27 (−1.01–0.48) 
 rs4771436 97 259 53 150 466 400 306 265 0.98 (0.65–1.48) 1.98 (1.46–2.68) 1.92 (1.39–2.65) −0.05 (−0.66–0.57) 
 rs1047768 57 142 93 267 262 235 510 429 0.84 (0.56–1.26) 1.71 (1.16–2.52) 1.79 (1.24–2.59) 0.25 (−0.28–0.78) 
 rs3818356 97 259 53 149 466 400 304 264 0.99 (0.66–1.5) 1.97 (1.46–2.67) 1.91 (1.38–2.64) −0.06 (−0.67–0.56) 
 rs4150351 97 258 53 151 498 434 274 231 0.94 (0.63–1.42) 1.92 (1.42–2.60) 1.94 (1.40–2.69) 0.07 (−0.53–0.68) 
 rs4150355 57 159 93 250 345 269 427 396 1.06 (0.70–1.58) 2.28 (1.57–3.32) 1.87 (1.29–2.69) −0.47 (−1.20–0.26) 
 rs4150360 50 119 100 290 225 197 547 468 0.81 (0.53–1.24) 1.70 (1.12–2.58) 1.71 (1.16–2.51) 0.19 (−0.36–0.74) 
 rs4150383 106 296 44 113 524 453 248 212 1.08 (0.70–1.67) 2.02 (1.51–2.70) 2.00 (1.44–2.78) −0.10 (−0.78–0.58) 
 rs4150386 113 317 37 92 611 519 161 145 1.03 (0.65–1.63) 2.03 (1.53–2.68) 1.84 (1.29–2.61) −0.22 (−0.95–0.51) 
 rs17655 89 238 61 171 466 420 306 245 0.88 (0.59–1.32) 1.78 (1.30–2.42) 2.04 (1.46–2.84) 0.38 (−0.18–0.94) 
 rs873601 73 190 77 219 391 349 381 316 0.82 (0.55–1.21) 1.72 (1.22–2.41) 1.83 (1.30–2.58) 0.30 (−0.21–0.80) 
 rs4150393 114 317 36 92 588 527 184 138 1.14 (0.72–1.81) 1.94 (1.47–2.57) 2.35 (1.67–3.32) 0.27 (−0.53–1.06) 
 rs876430 73 190 77 219 392 350 380 315 0.82 (0.55–1.21) 1.72 (1.22–2.41) 1.83 (1.30–2.58) 0.30 (−0.21–0.80) 
 rs1051677 126 331 23 78 609 527 163 138 0.80 (0.47–1.36) 1.88 (1.43–2.46) 2.01 (1.42–2.85) 0.34 (−0.36–1.03) 
 rs1051685 117 323 33 86 619 509 152 156 1.12 (0.70–1.80) 2.10 (1.59–2.76) 1.67 (1.17–2.38) −0.55 (−1.31–0.22) 
ERCC4 (XPFrs3136038 51 195 99 214 351 295 421 370 1.77 (1.17–2.66) 2.88 (1.97–4.21) 2.67 (1.84–3.87) −0.97 (−1.99–0.04) 
 rs1799798 126 331 24 78 631 570 141 95 0.80 (0.47–1.34) 1.82 (1.39–2.39) 2.32 (1.59–3.40) 0.70 (−0.11–1.52) 
 rs744154 59 224 91 185 421 358 351 307 1.85 (1.24–2.76) 2.81 (1.98–3.99) 2.63 (1.84–3.77) −1.02 (−2.02–−0.02) 
 rs3136085 59 220 91 189 416 356 356 309 1.80 (1.21–2.69) 2.75 (1.93–3.92) 2.63 (1.84–3.77) −0.92 (−1.89–0.05) 
 rs3136130 51 193 99 216 349 292 423 373 1.73 (1.15–2.61) 2.85 (1.95–4.16) 2.65 (1.83–3.83) −0.93 (−1.93–0.06) 
 rs1800067 125 355 25 54 653 565 119 100 1.26 (0.73–2.17) 2.03 (1.55–2.64) 2.11 (1.45–3.07) −0.18 (−1.13–0.77) 
 rs3136172 59 216 91 193 399 350 373 315 1.71 (1.14–2.55) 2.63 (1.85–3.76) 2.63 (1.84–3.76) −0.71 (−1.63–0.20) 
RAD23A rs2974752 56 180 92 216 277 244 469 401 1.43 (0.95–2.16) 2.38 (1.63–3.46) 2.41 (1.68–3.44) −0.40 (−1.22–0.42) 
ERCC2 (XPDrs13181 55 155 95 252 326 282 439 381 1.06 (0.71–1.60) 2.08 (1.42–3.05) 1.97 (1.36–2.85) −0.18 (−0.84–0.49) 
 rs238418 54 155 96 254 328 271 444 394 1.10 (0.73–1.65) 2.21 (1.50–3.24) 2.01 (1.38–2.91) −0.30 (−1.00–0.41) 
 rs1799787 68 203 82 206 404 342 368 323 1.17 (0.79–1.74) 2.19 (1.56–3.09) 2.08 (1.47–2.94) −0.29 (−0.98–0.40) 
 rs3916874 81 201 69 208 396 344 376 321 0.75 (0.50–1.11) 1.69 (1.21–2.35) 1.72 (1.23–2.40) 0.28 (−0.20–0.77) 
 rs238416 62 193 88 216 307 275 464 388 1.34 (0.90–1.99) 2.17 (1.51–3.12) 2.40 (1.69–3.41) −0.11 (−0.83–0.61) 
 rs50872 80 221 70 187 451 363 319 301 1.06 (0.71–1.57) 2.15 (1.55–2.97) 1.85 (1.32–2.59) −0.36 (−1.02–0.31) 
 rs50871 43 89 107 320 199 169 573 495 0.66 (0.42–1.03) 1.37 (0.86–2.16) 1.47 (0.96–2.23) 0.44 (−0.01–0.89) 
 rs238407 43 136 107 273 220 202 551 463 1.40 (0.91–2.16) 2.36 (1.54–3.62) 2.53 (1.71–3.76) −0.23 (−1.05–0.59) 
 rs3810366 32 95 118 314 146 137 625 528 1.29 (0.80–2.09) 2.29 (1.38–3.77) 2.42 (1.54–3.80) −0.16 (−1.03–0.72) 
ERCC1 rs735482 117 302 33 107 571 495 201 170 0.81 (0.51–1.30) 1.87 (1.41–2.47) 1.90 (1.36–2.65) 0.22 (−0.40–0.84) 
 rs2336219 117 302 33 107 571 495 201 170 0.81 (0.51–1.30) 1.87 (1.41–2.47) 1.90 (1.36–2.65) 0.22 (−0.40–0.84) 
 rs3212964 118 302 32 107 574 492 198 173 0.78 (0.49–1.24) 1.86 (1.41–2.46) 1.84 (1.32–2.56) 0.20 (−0.40–0.80) 
 rs3212955 82 229 68 180 446 378 326 286 1.10 (0.74–1.63) 2.08 (1.51–2.86) 2.02 (1.45–2.81) −0.16 (−0.81–0.49) 
 rs3212948 60 171 90 238 322 287 450 378 1.10 (0.74–1.64) 2.01 (1.39–2.90) 2.14 (1.50–3.05) 0.03 (−0.60–0.66) 
 rs3212930 92 248 58 161 484 409 288 256 0.99 (0.66–1.48) 1.95 (1.43–2.65) 1.98 (1.43–2.75) 0.04 (−0.57–0.65) 
LIG1 rs156641 56 166 94 243 314 274 458 391 1.22 (0.81–1.82) 2.14 (1.46–3.13) 2.27 (1.58–3.27) −0.09 (−0.77–0.60) 
 rs20580 30 109 120 300 207 184 565 481 1.54 (0.95–2.48) 2.52 (1.55–4.12) 2.83 (1.79–4.47) −0.23 (−1.15–0.69) 
 rs20579 105 305 45 104 586 521 186 144 1.34 (0.87–2.08) 2.06 (1.55–2.73) 2.43 (1.71–3.45) 0.03 (−0.81–0.87) 

NOTE: I estimates presented not corrected for multiple comparisons.

aReferent SNP defined as heterozygote for referent (major) allele (denoted AA) and variant SNP defined as heterozygote or homozygote for the variant (minor) allele (denoted as AB and BB).

bORs adjusted for matching factors (age and sex including pairwise interactions), education, alcohol drinking, and proportion African ancestry. A total of 122 individuals missing alcohol drinking, and therefore dropped from models.

cSignificant associations using a dominant genetic model (P < 0.05) highlighted in gray. No associations significant at Bonferroni-corrected level (P < 0.0006).

Table 6.

ORs and relative excess risk due to interaction estimates for joint effects of SNPs in NER genes and ever cigarette smoking on HNC risk using hierarchical logistic regression, the CHANCE study, Whites

Coded alleleCases/controls NaOR (95% I)b
GeneSNPReferent (A)Variant (B)Never cigarette, referent SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPRERI
ERCC3 (XPBrs4150496 70 154 79 255 331 238 441 427 0.66 (0.45–0.98) 1.84 (1.28–2.64) 1.41 (1.00–1.99) −0.09 
 rs1011019 66 201 84 208 396 347 376 318 1.25 (0.85–1.85) 2.17 (1.54–3.05) 2.27 (1.60–3.22) −0.15 
 rs4150434 89 264 61 145 459 406 313 259 1.19 (0.80–1.77) 2.12 (1.56–2.87) 2.09 (1.50–2.90) −0.23 
 rs4150416 56 176 93 233 354 305 416 360 1.25 (0.84–1.87) 2.26 (1.57–3.26) 2.26 (1.57–3.25) −0.26 
 rs4150407 55 129 95 280 263 182 509 483 0.77 (0.51–1.15) 2.00 (1.34–2.98) 1.53 (1.05–2.21) −0.24 
 rs4150403 118 338 32 71 618 566 154 99 1.26 (0.78–2.04) 1.96 (1.49–2.56) 2.60 (1.80–3.74) 0.38 
 rs4150402 66 201 84 208 396 347 376 317 1.25 (0.85–1.85) 2.18 (1.54–3.06) 2.29 (1.61–3.24) −0.14 
XPC rs2228001 56 135 94 274 281 240 490 425 0.86 (0.57–1.28) 1.91 (1.30–2.82) 1.70 (1.17–2.48) −0.06 
 rs3731143 135 361 15 48 683 596 89 69 0.93 (0.51–1.70) 1.89 (1.46–2.45) 2.50 (1.65–3.78) 0.67 
 rs2228000 91 222 59 187 433 376 337 288 0.77 (0.52–1.15) 1.75 (1.28–2.39) 1.78 (1.29–2.48) 0.26 
 rs3731124 81 228 69 181 440 371 332 294 1.10 (0.74–1.62) 2.10 (1.53–2.88) 1.98 (1.42–2.75) −0.22 
 rs13099160 127 366 23 43 687 596 85 69 1.56 (0.90–2.70) 2.06 (1.59–2.68) 2.26 (1.48–3.45) −0.36 
 rs3731093 120 350 27 56 656 569 111 90 1.50 (0.89–2.50) 2.09 (1.60–2.74) 2.48 (1.68–3.65) −0.11 
 rs3731089 121 350 29 59 657 569 115 96 1.51 (0.91–2.49) 2.06 (1.58–2.69) 2.36 (1.61–3.45) −0.21 
 rs2733537 70 175 80 234 346 305 426 360 0.89 (0.60–1.31) 1.76 (1.24–2.50) 1.92 (1.36–2.71) 0.26 
 rs3731068 99 275 51 134 525 457 247 208 1.02 (0.68–1.54) 1.97 (1.48–2.64) 2.01 (1.44–2.79) 0.01 
 rs2607755 39 110 111 299 203 174 569 491 1.10 (0.71–1.71) 2.11 (1.36–3.29) 2.11 (1.40–3.19) −0.10 
 rs1902658 37 107 113 302 198 173 573 492 1.11 (0.71–1.74) 2.09 (1.33–3.29) 2.14 (1.40–3.27) −0.06 
ERCC8 rs3117 60 144 90 265 277 253 495 412 0.82 (0.55–1.22) 1.71 (1.18–2.50) 1.76 (1.23–2.52) 0.22 
CDK7 rs2972388 42 122 108 287 224 213 548 452 1.06 (0.70–1.63) 1.82 (1.19–2.78) 2.17 (1.46–3.23) 0.29 
XPA rs3176757 98 268 52 141 511 442 261 223 1.03 (0.69–1.55) 1.94 (1.44–2.61) 2.09 (1.50–2.89) 0.11 
 rs3176748 74 185 76 224 366 325 406 340 0.85 (0.57–1.25) 1.77 (1.26–2.49) 1.83 (1.30–2.57) 0.21 
 rs2808667 133 352 17 57 681 598 89 67 0.90 (0.50–1.61) 1.87 (1.44–2.43) 2.42 (1.60–3.68) 0.65 
 rs2805835 119 328 31 81 608 520 164 145 1.11 (0.69–1.78) 2.03 (1.54–2.67) 1.95 (1.38–2.76) −0.19 
 rs3176689 94 279 56 130 528 449 244 216 1.13 (0.75–1.69) 2.14 (1.59–2.88) 1.87 (1.34–2.62) −0.39 
 rs3176683 134 353 16 56 684 591 88 74 0.78 (0.43–1.40) 1.89 (1.46–2.45) 2.04 (1.35–3.08) 0.37 
 rs3176658 114 297 36 112 585 495 187 170 0.86 (0.55–1.34) 1.91 (1.45–2.52) 1.86 (1.32–2.60) 0.09 
 rs1800975 72 180 75 215 348 293 390 348 0.91 (0.61–1.34) 1.84 (1.30–2.60) 1.87 (1.32–2.63) 0.12 
RAD23B rs1805330 125 321 25 88 639 549 133 116 0.69 (0.42–1.14) 1.86 (1.42–2.43) 1.68 (1.16–2.43) 0.13 
 rs1805329 101 277 49 132 489 434 283 231 1.13 (0.75–1.70) 2.01 (1.50–2.69) 2.12 (1.53–2.93) −0.02 
ERCC6 rs2228529 96 258 52 146 501 403 261 250 1.07 (0.71–1.61) 2.12 (1.57–2.87) 1.84 (1.33–2.56) −0.35 
 rs2228527 97 260 53 149 501 405 271 260 1.06 (0.71–1.58) 2.12 (1.57–2.86) 1.84 (1.33–2.54) −0.34 
 rs4253132 126 303 24 106 597 526 175 139 0.53 (0.32–0.86) 1.67 (1.27–2.20) 1.86 (1.32–2.62) 0.65 
 rs2228528 104 287 46 122 533 459 238 206 1.05 (0.69–1.60) 2.01 (1.51–2.68) 1.97 (1.42–2.74) −0.08 
DDB2 (XPE) rs2029298 69 195 81 214 356 283 416 382 1.20 (0.82–1.77) 2.37 (1.68–3.34) 2.02 (1.44–2.84) −0.55 
 rs4647709 123 342 27 67 643 560 129 105 1.16 (0.71–1.92) 2.00 (1.53–2.62) 2.12 (1.46–3.07) −0.05 
 rs2291120 123 296 27 113 562 516 210 149 0.61 (0.38–0.98) 1.70 (1.29–2.24) 1.95 (1.39–2.74) 0.64 
 rs1685404 72 180 78 229 346 322 426 343 0.89 (0.60–1.31) 1.67 (1.19–2.36) 2.02 (1.43–2.84) 0.46 
 rs2957873 101 275 49 134 542 436 230 229 1.14 (0.76–1.71) 2.20 (1.64–2.95) 1.77 (1.27–2.46) −0.57 
 rs326224 105 288 45 121 578 473 194 192 1.16 (0.76–1.77) 2.13 (1.60–2.84) 1.87 (1.33–2.62) −0.43 
 rs2306353 109 292 41 117 587 470 185 195 1.10 (0.72–1.69) 2.17 (1.64–2.87) 1.66 (1.19–2.33) −0.61 
 rs326222 76 209 74 200 408 317 364 348 1.15 (0.78–1.70) 2.37 (1.70–3.29) 1.87 (1.34–2.62) −0.65 
 rs901746 76 210 74 199 409 318 363 347 1.17 (0.80–1.73) 2.39 (1.72–3.32) 1.88 (1.35–2.63) −0.68 
ERCC5 (XPG) rs2296147 41 114 109 291 239 189 528 474 0.99 (0.65–1.53) 2.13 (1.38–3.28) 1.87 (1.24–2.81) −0.26 
 rs4771436 97 259 53 150 466 400 306 265 0.98 (0.66–1.47) 1.98 (1.47–2.68) 1.92 (1.39–2.65) −0.05 
 rs1047768 57 142 93 267 262 235 510 429 0.85 (0.57–1.26) 1.72 (1.17–2.52) 1.80 (1.25–2.60) 0.24 
 rs3818356 97 259 53 149 466 400 304 264 0.99 (0.66–1.48) 1.97 (1.46–2.66) 1.91 (1.38–2.64) −0.06 
 rs4150351 97 258 53 151 498 434 274 231 0.95 (0.63–1.42) 1.92 (1.43–2.59) 1.94 (1.40–2.69) 0.07 
 rs4150355 57 159 93 250 345 269 427 396 1.05 (0.70–1.56) 2.26 (1.56–3.27) 1.86 (1.29–2.67) −0.45 
 rs4150360 50 119 100 290 225 197 547 468 0.82 (0.54–1.24) 1.71 (1.14–2.59) 1.71 (1.17–2.52) 0.18 
 rs4150383 106 296 44 113 524 453 248 212 1.08 (0.70–1.65) 2.02 (1.51–2.69) 2.00 (1.44–2.78) −0.09 
 rs4150386 113 317 37 92 611 519 161 145 1.02 (0.65–1.60) 2.02 (1.53–2.67) 1.84 (1.29–2.61) −0.21 
 rs17655 89 238 61 171 466 420 306 245 0.89 (0.60–1.32) 1.78 (1.31–2.43) 2.04 (1.46–2.84) 0.36 
 rs873601 73 190 77 219 391 349 381 316 0.83 (0.56–1.21) 1.73 (1.24–2.42) 1.84 (1.31–2.58) 0.28 
 rs4150393 114 317 36 92 588 527 184 138 1.15 (0.73–1.80) 1.94 (1.47–2.56) 2.35 (1.67–3.32) 0.26 
 rs876430 73 190 77 219 392 350 380 315 0.83 (0.56–1.21) 1.73 (1.24–2.41) 1.84 (1.31–2.59) 0.29 
 rs1051677 126 331 23 78 609 527 163 138 0.81 (0.49–1.36) 1.89 (1.44–2.47) 2.01 (1.42–2.85) 0.31 
 rs1051685 117 323 33 86 619 509 152 156 1.10 (0.70–1.75) 2.09 (1.59–2.74) 1.67 (1.18–2.38) −0.52 
ERCC4 (XPF) rs3136038 51 195 99 214 351 295 421 370 1.72 (1.16–2.57) 2.82 (1.94–4.10) 2.64 (1.83–3.81) −0.91 
 rs1799798 126 331 24 78 631 570 141 95 0.82 (0.50–1.36) 1.83 (1.40–2.40) 2.32 (1.58–3.39) 0.66 
 rs744154 59 224 91 185 421 358 351 307 1.80 (1.22–2.66) 2.76 (1.95–3.90) 2.61 (1.82–3.73) −0.95 
 rs3136085 59 220 91 189 416 356 356 309 1.76 (1.19–2.60) 2.71 (1.91–3.83) 2.61 (1.82–3.73) −0.86 
 rs3136130 51 193 99 216 349 292 423 373 1.69 (1.13–2.52) 2.79 (1.92–4.05) 2.61 (1.81–3.78) −0.87 
 rs1800067 125 355 25 54 653 565 119 100 1.24 (0.73–2.11) 2.02 (1.55–2.63) 2.11 (1.45–3.07) −0.15 
 rs3136172 59 216 91 193 399 350 373 315 1.67 (1.13–2.48) 2.60 (1.83–3.68) 2.61 (1.82–3.73) −0.66 
RAD23A rs2974752 56 180 92 216 277 244 469 401 1.42 (0.95–2.11) 2.35 (1.62–3.41) 2.39 (1.67–3.42) −0.37 
ERCC2 (XPD) rs13181 55 155 95 252 326 282 439 381 1.06 (0.71–1.58) 2.08 (1.43–3.02) 1.96 (1.36–2.84) −0.17 
 rs238418 54 155 96 254 328 271 444 394 1.09 (0.73–1.63) 2.19 (1.50–3.20) 2.00 (1.38–2.89) −0.28 
 rs1799787 68 203 82 206 404 342 368 323 1.16 (0.79–1.71) 2.18 (1.56–3.06) 2.07 (1.47–2.93) −0.27 
 rs3916874 81 201 69 208 396 344 376 321 0.76 (0.51–1.11) 1.70 (1.22–2.36) 1.73 (1.24–2.41) 0.27 
 rs238416 62 193 88 216 307 275 464 388 1.33 (0.90–1.96) 2.16 (1.51–3.09) 2.40 (1.69–3.39) −0.09 
 rs50872 80 221 70 187 451 363 319 301 1.05 (0.71–1.55) 2.14 (1.55–2.95) 1.85 (1.32–2.58) −0.34 
 rs50871 43 89 107 320 199 169 573 495 0.67 (0.44–1.05) 1.40 (0.89–2.19) 1.49 (0.98–2.25) 0.41 
 rs238407 43 136 107 273 220 202 551 463 1.39 (0.91–2.11) 2.33 (1.53–3.55) 2.51 (1.70–3.72) −0.21 
 rs3810366 32 95 118 314 146 137 625 528 1.28 (0.81–2.04) 2.26 (1.39–3.68) 2.41 (1.54–3.75) −0.14 
ERCC1 rs735482 117 302 33 107 571 495 201 170 0.82 (0.52–1.30) 1.87 (1.42–2.47) 1.90 (1.36–2.65) 0.20 
 rs2336219 117 302 33 107 571 495 201 170 0.82 (0.52–1.30) 1.87 (1.42–2.47) 1.90 (1.36–2.65) 0.20 
 rs3212964 118 302 32 107 574 492 198 173 0.79 (0.50–1.24) 1.87 (1.42–2.46) 1.84 (1.32–2.56) 0.18 
 rs3212955 82 229 68 180 446 378 326 286 1.09 (0.74–1.61) 2.08 (1.51–2.85) 2.02 (1.45–2.81) −0.15 
 rs3212948 60 171 90 238 322 287 450 378 1.10 (0.74–1.63) 2.01 (1.40–2.88) 2.14 (1.50–3.05) 0.03 
 rs3212930 92 248 58 161 484 409 288 256 0.99 (0.67–1.47) 1.95 (1.44–2.64) 1.98 (1.43–2.75) 0.04 
LIG1 rs156641 56 166 94 243 314 274 458 391 1.21 (0.81–1.80) 2.13 (1.47–3.10) 2.26 (1.57–3.26) −0.08 
 rs20580 30 109 120 300 207 184 565 481 1.51 (0.95–2.41) 2.48 (1.54–4.00) 2.80 (1.78–4.38) −0.20 
 rs20579 105 305 45 104 586 521 186 144 1.34 (0.87–2.05) 2.05 (1.55–2.72) 2.43 (1.71–3.45) 0.04 
Coded alleleCases/controls NaOR (95% I)b
GeneSNPReferent (A)Variant (B)Never cigarette, referent SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPNever cigarette, variant SNPEver cigarette, referent SNPEver cigarette, variant SNPRERI
ERCC3 (XPBrs4150496 70 154 79 255 331 238 441 427 0.66 (0.45–0.98) 1.84 (1.28–2.64) 1.41 (1.00–1.99) −0.09 
 rs1011019 66 201 84 208 396 347 376 318 1.25 (0.85–1.85) 2.17 (1.54–3.05) 2.27 (1.60–3.22) −0.15 
 rs4150434 89 264 61 145 459 406 313 259 1.19 (0.80–1.77) 2.12 (1.56–2.87) 2.09 (1.50–2.90) −0.23 
 rs4150416 56 176 93 233 354 305 416 360 1.25 (0.84–1.87) 2.26 (1.57–3.26) 2.26 (1.57–3.25) −0.26 
 rs4150407 55 129 95 280 263 182 509 483 0.77 (0.51–1.15) 2.00 (1.34–2.98) 1.53 (1.05–2.21) −0.24 
 rs4150403 118 338 32 71 618 566 154 99 1.26 (0.78–2.04) 1.96 (1.49–2.56) 2.60 (1.80–3.74) 0.38 
 rs4150402 66 201 84 208 396 347 376 317 1.25 (0.85–1.85) 2.18 (1.54–3.06) 2.29 (1.61–3.24) −0.14 
XPC rs2228001 56 135 94 274 281 240 490 425 0.86 (0.57–1.28) 1.91 (1.30–2.82) 1.70 (1.17–2.48) −0.06 
 rs3731143 135 361 15 48 683 596 89 69 0.93 (0.51–1.70) 1.89 (1.46–2.45) 2.50 (1.65–3.78) 0.67 
 rs2228000 91 222 59 187 433 376 337 288 0.77 (0.52–1.15) 1.75 (1.28–2.39) 1.78 (1.29–2.48) 0.26 
 rs3731124 81 228 69 181 440 371 332 294 1.10 (0.74–1.62) 2.10 (1.53–2.88) 1.98 (1.42–2.75) −0.22 
 rs13099160 127 366 23 43 687 596 85 69 1.56 (0.90–2.70) 2.06 (1.59–2.68) 2.26 (1.48–3.45) −0.36 
 rs3731093 120 350 27 56 656 569 111 90 1.50 (0.89–2.50) 2.09 (1.60–2.74) 2.48 (1.68–3.65) −0.11 
 rs3731089 121 350 29 59 657 569 115 96 1.51 (0.91–2.49) 2.06 (1.58–2.69) 2.36 (1.61–3.45) −0.21 
 rs2733537 70 175 80 234 346 305 426 360 0.89 (0.60–1.31) 1.76 (1.24–2.50) 1.92 (1.36–2.71) 0.26 
 rs3731068 99 275 51 134 525 457 247 208 1.02 (0.68–1.54) 1.97 (1.48–2.64) 2.01 (1.44–2.79) 0.01 
 rs2607755 39 110 111 299 203 174 569 491 1.10 (0.71–1.71) 2.11 (1.36–3.29) 2.11 (1.40–3.19) −0.10 
 rs1902658 37 107 113 302 198 173 573 492 1.11 (0.71–1.74) 2.09 (1.33–3.29) 2.14 (1.40–3.27) −0.06 
ERCC8 rs3117 60 144 90 265 277 253 495 412 0.82 (0.55–1.22) 1.71 (1.18–2.50) 1.76 (1.23–2.52) 0.22 
CDK7 rs2972388 42 122 108 287 224 213 548 452 1.06 (0.70–1.63) 1.82 (1.19–2.78) 2.17 (1.46–3.23) 0.29 
XPA rs3176757 98 268 52 141 511 442 261 223 1.03 (0.69–1.55) 1.94 (1.44–2.61) 2.09 (1.50–2.89) 0.11 
 rs3176748 74 185 76 224 366 325 406 340 0.85 (0.57–1.25) 1.77 (1.26–2.49) 1.83 (1.30–2.57) 0.21 
 rs2808667 133 352 17 57 681 598 89 67 0.90 (0.50–1.61) 1.87 (1.44–2.43) 2.42 (1.60–3.68) 0.65 
 rs2805835 119 328 31 81 608 520 164 145 1.11 (0.69–1.78) 2.03 (1.54–2.67) 1.95 (1.38–2.76) −0.19 
 rs3176689 94 279 56 130 528 449 244 216 1.13 (0.75–1.69) 2.14 (1.59–2.88) 1.87 (1.34–2.62) −0.39 
 rs3176683 134 353 16 56 684 591 88 74 0.78 (0.43–1.40) 1.89 (1.46–2.45) 2.04 (1.35–3.08) 0.37 
 rs3176658 114 297 36 112 585 495 187 170 0.86 (0.55–1.34) 1.91 (1.45–2.52) 1.86 (1.32–2.60) 0.09 
 rs1800975 72 180 75 215 348 293 390 348 0.91 (0.61–1.34) 1.84 (1.30–2.60) 1.87 (1.32–2.63) 0.12 
RAD23B rs1805330 125 321 25 88 639 549 133 116 0.69 (0.42–1.14) 1.86 (1.42–2.43) 1.68 (1.16–2.43) 0.13 
 rs1805329 101 277 49 132 489 434 283 231 1.13 (0.75–1.70) 2.01 (1.50–2.69) 2.12 (1.53–2.93) −0.02 
ERCC6 rs2228529 96 258 52 146 501 403 261 250 1.07 (0.71–1.61) 2.12 (1.57–2.87) 1.84 (1.33–2.56) −0.35 
 rs2228527 97 260 53 149 501 405 271 260 1.06 (0.71–1.58) 2.12 (1.57–2.86) 1.84 (1.33–2.54) −0.34 
 rs4253132 126 303 24 106 597 526 175 139 0.53 (0.32–0.86) 1.67 (1.27–2.20) 1.86 (1.32–2.62) 0.65 
 rs2228528 104 287 46 122 533 459 238 206 1.05 (0.69–1.60) 2.01 (1.51–2.68) 1.97 (1.42–2.74) −0.08 
DDB2 (XPE) rs2029298 69 195 81 214 356 283 416 382 1.20 (0.82–1.77) 2.37 (1.68–3.34) 2.02 (1.44–2.84) −0.55 
 rs4647709 123 342 27 67 643 560 129 105 1.16 (0.71–1.92) 2.00 (1.53–2.62) 2.12 (1.46–3.07) −0.05 
 rs2291120 123 296 27 113 562 516 210 149 0.61 (0.38–0.98) 1.70 (1.29–2.24) 1.95 (1.39–2.74) 0.64 
 rs1685404 72 180 78 229 346 322 426 343 0.89 (0.60–1.31) 1.67 (1.19–2.36) 2.02 (1.43–2.84) 0.46 
 rs2957873 101 275 49 134 542 436 230 229 1.14 (0.76–1.71) 2.20 (1.64–2.95) 1.77 (1.27–2.46) −0.57 
 rs326224 105 288 45 121 578 473 194 192 1.16 (0.76–1.77) 2.13 (1.60–2.84) 1.87 (1.33–2.62) −0.43 
 rs2306353 109 292 41 117 587 470 185 195 1.10 (0.72–1.69) 2.17 (1.64–2.87) 1.66 (1.19–2.33) −0.61 
 rs326222 76 209 74 200 408 317 364 348 1.15 (0.78–1.70) 2.37 (1.70–3.29) 1.87 (1.34–2.62) −0.65 
 rs901746 76 210 74 199 409 318 363 347 1.17 (0.80–1.73) 2.39 (1.72–3.32) 1.88 (1.35–2.63) −0.68 
ERCC5 (XPG) rs2296147 41 114 109 291 239 189 528 474 0.99 (0.65–1.53) 2.13 (1.38–3.28) 1.87 (1.24–2.81) −0.26 
 rs4771436 97 259 53 150 466 400 306 265 0.98 (0.66–1.47) 1.98 (1.47–2.68) 1.92 (1.39–2.65) −0.05 
 rs1047768 57 142 93 267 262 235 510 429 0.85 (0.57–1.26) 1.72 (1.17–2.52) 1.80 (1.25–2.60) 0.24 
 rs3818356 97 259 53 149 466 400 304 264 0.99 (0.66–1.48) 1.97 (1.46–2.66) 1.91 (1.38–2.64) −0.06 
 rs4150351 97 258 53 151 498 434 274 231 0.95 (0.63–1.42) 1.92 (1.43–2.59) 1.94 (1.40–2.69) 0.07 
 rs4150355 57 159 93 250 345 269 427 396 1.05 (0.70–1.56) 2.26 (1.56–3.27) 1.86 (1.29–2.67) −0.45 
 rs4150360 50 119 100 290 225 197 547 468 0.82 (0.54–1.24) 1.71 (1.14–2.59) 1.71 (1.17–2.52) 0.18 
 rs4150383 106 296 44 113 524 453 248 212 1.08 (0.70–1.65) 2.02 (1.51–2.69) 2.00 (1.44–2.78) −0.09 
 rs4150386 113 317 37 92 611 519 161 145 1.02 (0.65–1.60) 2.02 (1.53–2.67) 1.84 (1.29–2.61) −0.21 
 rs17655 89 238 61 171 466 420 306 245 0.89 (0.60–1.32) 1.78 (1.31–2.43) 2.04 (1.46–2.84) 0.36 
 rs873601 73 190 77 219 391 349 381 316 0.83 (0.56–1.21) 1.73 (1.24–2.42) 1.84 (1.31–2.58) 0.28 
 rs4150393 114 317 36 92 588 527 184 138 1.15 (0.73–1.80) 1.94 (1.47–2.56) 2.35 (1.67–3.32) 0.26 
 rs876430 73 190 77 219 392 350 380 315 0.83 (0.56–1.21) 1.73 (1.24–2.41) 1.84 (1.31–2.59) 0.29 
 rs1051677 126 331 23 78 609 527 163 138 0.81 (0.49–1.36) 1.89 (1.44–2.47) 2.01 (1.42–2.85) 0.31 
 rs1051685 117 323 33 86 619 509 152 156 1.10 (0.70–1.75) 2.09 (1.59–2.74) 1.67 (1.18–2.38) −0.52 
ERCC4 (XPF) rs3136038 51 195 99 214 351 295 421 370 1.72 (1.16–2.57) 2.82 (1.94–4.10) 2.64 (1.83–3.81) −0.91 
 rs1799798 126 331 24 78 631 570 141 95 0.82 (0.50–1.36) 1.83 (1.40–2.40) 2.32 (1.58–3.39) 0.66 
 rs744154 59 224 91 185 421 358 351 307 1.80 (1.22–2.66) 2.76 (1.95–3.90) 2.61 (1.82–3.73) −0.95 
 rs3136085 59 220 91 189 416 356 356 309 1.76 (1.19–2.60) 2.71 (1.91–3.83) 2.61 (1.82–3.73) −0.86 
 rs3136130 51 193 99 216 349 292 423 373 1.69 (1.13–2.52) 2.79 (1.92–4.05) 2.61 (1.81–3.78) −0.87 
 rs1800067 125 355 25 54 653 565 119 100 1.24 (0.73–2.11) 2.02 (1.55–2.63) 2.11 (1.45–3.07) −0.15 
 rs3136172 59 216 91 193 399 350 373 315 1.67 (1.13–2.48) 2.60 (1.83–3.68) 2.61 (1.82–3.73) −0.66 
RAD23A rs2974752 56 180 92 216 277 244 469 401 1.42 (0.95–2.11) 2.35 (1.62–3.41) 2.39 (1.67–3.42) −0.37 
ERCC2 (XPD) rs13181 55 155 95 252 326 282 439 381 1.06 (0.71–1.58) 2.08 (1.43–3.02) 1.96 (1.36–2.84) −0.17 
 rs238418 54 155 96 254 328 271 444 394 1.09 (0.73–1.63) 2.19 (1.50–3.20) 2.00 (1.38–2.89) −0.28 
 rs1799787 68 203 82 206 404 342 368 323 1.16 (0.79–1.71) 2.18 (1.56–3.06) 2.07 (1.47–2.93) −0.27 
 rs3916874 81 201 69 208 396 344 376 321 0.76 (0.51–1.11) 1.70 (1.22–2.36) 1.73 (1.24–2.41) 0.27 
 rs238416 62 193 88 216 307 275 464 388 1.33 (0.90–1.96) 2.16 (1.51–3.09) 2.40 (1.69–3.39) −0.09 
 rs50872 80 221 70 187 451 363 319 301 1.05 (0.71–1.55) 2.14 (1.55–2.95) 1.85 (1.32–2.58) −0.34 
 rs50871 43 89 107 320 199 169 573 495 0.67 (0.44–1.05) 1.40 (0.89–2.19) 1.49 (0.98–2.25) 0.41 
 rs238407 43 136 107 273 220 202 551 463 1.39 (0.91–2.11) 2.33 (1.53–3.55) 2.51 (1.70–3.72) −0.21 
 rs3810366 32 95 118 314 146 137 625 528 1.28 (0.81–2.04) 2.26 (1.39–3.68) 2.41 (1.54–3.75) −0.14 
ERCC1 rs735482 117 302 33 107 571 495 201 170 0.82 (0.52–1.30) 1.87 (1.42–2.47) 1.90 (1.36–2.65) 0.20 
 rs2336219 117 302 33 107 571 495 201 170 0.82 (0.52–1.30) 1.87 (1.42–2.47) 1.90 (1.36–2.65) 0.20 
 rs3212964 118 302 32 107 574 492 198 173 0.79 (0.50–1.24) 1.87 (1.42–2.46) 1.84 (1.32–2.56) 0.18 
 rs3212955 82 229 68 180 446 378 326 286 1.09 (0.74–1.61) 2.08 (1.51–2.85) 2.02 (1.45–2.81) −0.15 
 rs3212948 60 171 90 238 322 287 450 378 1.10 (0.74–1.63) 2.01 (1.40–2.88) 2.14 (1.50–3.05) 0.03 
 rs3212930 92 248 58 161 484 409 288 256 0.99 (0.67–1.47) 1.95 (1.44–2.64) 1.98 (1.43–2.75) 0.04 
LIG1 rs156641 56 166 94 243 314 274 458 391 1.21 (0.81–1.80) 2.13 (1.47–3.10) 2.26 (1.57–3.26) −0.08 
 rs20580 30 109 120 300 207 184 565 481 1.51 (0.95–2.41) 2.48 (1.54–4.00) 2.80 (1.78–4.38) −0.20 
 rs20579 105 305 45 104 586 521 186 144 1.34 (0.87–2.05) 2.05 (1.55–2.72) 2.43 (1.71–3.45) 0.04 

NOTE: I estimates presented not corrected for multiple comparisons.

aReferent SNP defined as heterozygote for referent (major) allele (denoted AA) and variant SNP defined as heterozygote or homozygote for the variant (minor) allele (denoted as AB and BB).

bORs adjusted for matching factors (age and sex including pairwise interactions), education, alcohol drinking, and proportion African ancestry. A total of 122 individuals missing alcohol drinking, and therefore dropped from models.

Consistent with extensive literature, we found a positive association between cigarette smoking and HNC risk (3). In particular, we found noticeably larger ORs among African Americans compared with Whites. A detailed analysis of smoking–HNC associations by race using CHANCE data has been previously published (50). Briefly, elevated HNC ORs among African American cigarette smokers were noted even when accounting for frequency and duration of smoking, mentholated versus nonmentholated cigarettes, and tumor site (50). Racial differences in carcinogen metabolism and smoking cessation patterns may be contributing factors (50).

Our study identified associations between 2 SNPs in the same NER gene and HNC among Whites. Specifically, we detected elevated HNC risk associated with rs4150403 and possibly reduced HNC risk with rs4150496. These SNPs are in intron 3 and 11, respectively, of ERCC3 (XPB), responsible for encoding a component of the transcription factor II H (TFIIH) subunit which unwinds the double helix surrounding a DNA adduct, and are not in linkage disequilibrium with each other, but are in linkage disequilibrium with untyped SNPs near or in introns or the 3′-untranslated region (UTR) of the gene (r2 > 0.80, CEU population; refs. 6, 66–69). Previous epidemiologic studies of HNC have not considered these SNPs. Only one previous study has examined the effects of any variant in ERCC3 (XPB), finding reduced HNC risk associated with rs4233583 (AA vs. CC; OR, 0.37; 95% CI, 0.15–0.90), a 3′-UTR SNP, which is correlated with rs4150496 (r2 = 0.96; CEU population; refs. 32, 67, 68).

An association between rs4253132 and reduced HNC risk was detected among African Americans in our study. This SNP occurs in intron 10 of ERCC6, which operates in transcription-coupled NER, and is in linkage disequilibrium with about a dozen other untyped intronic SNPs (r2 > 0.80; Yoruba in Ibadan, Nigeria (YRI) population; refs. 6, 66–69). Two previous studies have collectively reported on associations between 5 SNPs in ERCC6 and HNC risk; however, neither study evaluated rs4253132 nor considered an African American population. One study reported reduced HNC risk associated with rs4253211 (Arg/Pro+Pro/Pro vs. Arg/Arg; OR, 0.53; 95% CI, 0.34–0.85) and no association with rs2228527 (Arg/Gly+Gly/Gly vs. Arg/Arg; OR, 0.87; 95% CI, 0.61–1.20; ref. 8). Another study found elevated HNC risk associated with rs2228528 (GA+AA vs. GG; OR, 1.43; 95% CI, 1.02–2.01) and no association with rs2228526 (AG+GG vs. AA; OR, 0.82; 95% CI, 0.50–1.34) and rs2228529 (AG+GG vs. AA; OR, 0.79; 95% CI, 0.49–1.26; ref. 14). Our study also evaluated rs2228527, rs2228528, and rs2228529 finding near null associations among Whites and African Americans (ORs, ∼0.9). Although rs2228526, rs2228527, and rs2228529 are correlated (r2 = 1.0; CEU population), rs4253132, rs4253211, or rs2228528 are not (68).

Among all previous studies of NER variants and HNC, SNPs in ERCC2 (XPD) have been the most commonly investigated, particularly rs13181. ERCC2 (XPD) encodes a protein component of the TFIIH subunit, which denatures the double helix of DNA in preparation for excision of bulky DNA adducts (6, 66). More than 20 previous case–control studies have studied rs13181 and HNC risk, with the majority finding null associations (8–12, 15, 17, 18, 20–23, 25, 26, 30, 31, 33–35, 37, 38, 45, 48). The largest study, based on data from the International Head and Neck Cancer Epidemiology Consortium, found no association between rs13181 and HNC risk (Gln/Gln vs. Lys/Lys; OR, 1.03; 95% CI, 0.88–1.21; ref. 15). Likewise, we did not find strong evidence for an association between rs13181 and HNC risk among Whites or African Americans. Furthermore, several previous studies have found inconsistent associations for rs13181 within strata of cigarette smoking (10–12, 17, 23, 31, 34, 37, 38). In our study, we did not find an additive effect for smoking and rs13181.

Interactions between ever cigarette smoking and 3 SNPs, rs4253132 (intron 10 of ERCC6, in linkage disequilibrium with other untyped intronic SNPs; r2 > 0.80; CEU population), rs2291120 (intron 1 of DDB2, not in linkage disequilibrium with other SNPs), and rs744154 (intron 1 of ERCC4, in linkage disequilibrium with other untyped intronic SNPs and synonymous SNP rs1799801), were suggestive of possible super- or subadditive effects among Whites in our study (67–69). Using the conventional method, RERIs for these SNPs were significant at an uncorrected 0.05 α level, but not at a Bonferroni-corrected level. Using hierarchical regression, RERI point estimates were similar to those obtained from the conventional method. Although no previous studies considered interactions between cigarette smoking and rs4253132, rs2291120, or rs744154, four studies did investigate the effects of other SNPs, though not in linkage disequilibrium with implicated SNPs in our study, in ERCC6 and ERCC4 (XPF) within strata of cigarette smoking (8, 14, 27, 44, 68). Studies of rs4253211 in ERCC6 and rs1800067 and rs2276466 in ERCC4 reported similar SNP–HNC associations across strata of cigarette smokers (8, 27, 44), whereas other studies found rs2228528 on ERCC6 was associated with elevated HNC risk among ever smokers (GA+AA vs. GG; OR, 2.36; 95% CI, 1.36–4.10), but not among never smokers (OR, 0.99; 95% CI, 0.64–1.55; ref. 14) and rs3136038 on ERCC4 was associated with reduced HNC risk among nonsmokers (TT vs. CC+CT; OR, 0.55; 95% CI, 0.34–0.88), but not among smokers (OR, 0.96; 95% CI, 0.66–1.39; ref. 44).

Differences in joint effect results between the present and past studies may in part stem from differences in analytic approaches. Namely, most previous studies examined the effects of SNPs on HNC stratified by cigarette smoking but did not consider the ORs for singly and doubly exposed individuals (i.e., individuals who had the variant allele or smoked cigarettes or both), which would have allowed testing the interaction on the additive scale by calculating a RERI (8, 10–12, 14, 16, 17, 23, 25, 27–29, 31, 32, 34, 36–40, 44). Additional studies that assess interactions on the additive scale among large study populations are needed to follow-up our suggestive findings.

The present study builds upon the existing literature by (i) including one of the largest study populations to date, (ii) estimating race-stratified effects, and (iii) evaluating more NER genes, including more SNPs, than any single previous study. Besides two studies, which evaluated a limited number of SNPs in NER genes (13, 15), this is the largest candidate gene study to evaluate the independent and joint effects of cigarette smoking and SNPs in NER genes with respect to HNC. Most previous studies included a hundred to a thousand cases and controls (8–49). Furthermore, our study included more African Americans than any previous study. Only one previous study reported race-specific associations for a NER variant and upper aerodigestive cancers among 119 African Americans (16). Consideration of race-specific estimates is an important contribution of this study since HNC incidence, including patterns of risk factors such as cigarette smoking, varies by race, and SNP linkage disequilibrium patterns vary by ancestry (56, 70, 71). Despite our large overall and race-specific sample sizes, exploration of gene–environment interactions among African Americans was limited. HNC tumor site-specific estimates were also limited by sparse numbers.

In addition to including more individuals than previous studies, our analysis also examined more SNPs in NER genes than any previous study. Previous candidate gene studies have collectively examined approximately 60 SNPs in 10 NER genes and HNC risk (8–49). Our study alone included 84 SNPs across 15 NER genes. Although our study included the largest array of NER variants to date, it should be noted that selection of SNPs was based on a variety of approaches, which limited the variation captured across some genes, especially among African Americans. Specifically, tagging SNPs were not selected for all genes and SNPs were selected on the basis of only the CEU population. For this reason, we did not consider haplotypes. It is also important to note that SNPs found to be associated with HNC risk in this study occur in noncoding intronic regions and were not found to be in linkage disequilibrium with SNPs in coding regions (with the exception of rs744154, which is in linkage disequilibrium with rs1799801; refs. 67–69). Although intronic SNPs can be located within regulatory regions (e.g., splice sites; ref. 72), further research about the exact function of these SNPs will further elucidate potential associations with HNC.

Although we did not find associations between previously studied SNPs in NER genes and HNC risk, we identified two new associations. Among Whites, rs4150403 on ERCC3 (XPB) was associated with increased HNC risk. Among African Americans, rs4253132 on ERCC6 was associated with decreased HNC risk. Three suggestive ever cigarette smoking–SNP interactions were also identified. Although our study was one of the largest to date, studies with even larger sample sizes are needed to confirm these results, especially to estimate gene–environment interactions more precisely. Further studies focusing on African American and other diverse populations are recommended.

No potential conflicts of interest were disclosed.

Conception and design: A.B. Wyss, A.F. Olshan

Development of methodology: A.B. Wyss, A.H. Herring, C.L. Avery, J.T. Bensen, J.S. Barnholtz-Sloan, A.F. Olshan

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.C. Weissler, W.K. Funkhouser, A.F. Olshan

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A.B. Wyss, A.H. Herring, C.L. Avery, M.C. Weissler, J.T. Bensen, J.S. Barnholtz-Sloan, A.F. Olshan

Writing, review, and/or revision of the manuscript: A.B. Wyss, A.H. Herring, C.L. Avery, M.C. Weissler, J.T. Bensen, J.S. Barnholtz-Sloan, W.K. Funkhouser, A.F. Olshan

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A.F. Olshan

Study supervision: M.C. Weissler

The authors thank Dr. Robert Millikan for his substantial contributions to the conceptual development and analyses of this article. The authors also thank Dr. Anne Hakenewerth for assistance in research development, Ms. Kathy Wisniewski for programming support, and Dr. Katie O'Brien and Mr. Nikhil Khankari for assistance on the hierarchical models.

This work has been supported by the U.S. National Institutes of Health (NIH), National Cancer Institute (NCI; R01CA90731-01 and 2-T32-CA09330-21-26) and National Institute of Environmental Health Sciences (NIEHS) (T32ES007018 and P30ES010126). C.L. Avery was supported in part by the National Heart, Lung, and Blood Institute (R00-HL-098458).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Curado
MP
,
Hashibe
M
. 
Recent changes in the epidemiology of head and neck cancer
.
Curr Opin Oncol
2009
;
21
:
194
.
2.
American Cancer Society
. 
Cancer facts and figures 2012
.
Atlanta, GA
:
American Cancer Society
; 
2012
.
3.
International Agency for Research on Cancer
. 
IARC monographs on the evaluation of carcinogenic risks to humans
. 
Tobacco smoke and involuntary smoking
.
Vol
.
83
.
Lyon, France
:
International Agency for Research on Cancer
; 
2004
.
4.
Hashibe
M
,
Brennan
P
,
Benhamou
S
,
Castellsague
X
,
Chen
C
,
Curado
MP
, et al
Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium
.
J Natl Cancer Inst
2007
;
99
:
777
89
.
5.
Neumann
AS
,
Sturgis
EM
,
Wei
Q
. 
Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies
.
Mol Carcinog
2005
;
42
:
65
92
.
6.
Friedberg
EC
. 
How nucleotide excision repair protects against cancer
.
Nat Rev Cancer
2001
;
1
:
22
33
.
7.
Goode
EL
,
Ulrich
CM
,
Potter
JD
. 
Polymorphisms in DNA repair genes and associations with cancer risk
.
Cancer Epidemiol Biomarkers Prev
2002
;
11
:
1513
30
.
8.
Abbasi
R
,
Ramroth
H
,
Becher
H
,
Dietz
A
,
Schmezer
P
,
Popanda
O
. 
Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes
.
Int J Cancer
2009
;
125
:
1431
9
.
9.
An
J
,
Liu
Z
,
Hu
Z
,
Li
G
,
Wang
LE
,
Sturgis
EM
, et al
Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck
.
Cancer Epidemiol Biomarkers Prev
2007
;
16
:
1633
.
10.
Anantharaman
D
,
Samant
TA
,
Sen
S
,
Mahimkar
MB
. 
Polymorphisms in tobacco metabolism and DNA repair genes modulate oral precancer and cancer risk
.
Oral Oncol
2011
;
47
:
866
72
.
11.
Bau
DT
,
Tsai
MH
,
Huang
CY
,
Lee
CC
,
Tseng
HC
,
Lo
YL
, et al
Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in taiwan: evidence for modification of smoking habit
.
Chin J Physiol
2007
;
50
:
294
300
.
12.
Buch
S
,
Zhu
B
,
Davis
AG
,
Odom
D
,
Siegfried
JM
,
Grandis
JR
, et al
Association of polymorphisms in the cyclin D1 and XPD genes and susceptibility to cancers of the upper aero-digestive tract
.
Mol Carcinog
2005
;
42
:
222
8
.
13.
Canova
C
,
Hashibe
M
,
Simonato
L
,
Nelis
M
,
Metspalu
A
,
Lagiou
P
, et al
Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project
.
Cancer Res
2009
;
69
:
2956
65
.
14.
Chiu
CF
,
Tsai
MH
,
Tseng
HC
,
Wang
CL
,
Tsai
FJ
,
Lin
CC
, et al
A novel single nucleotide polymorphism in ERCC6 gene is associated with oral cancer susceptibility in Taiwanese patients
.
Oral Oncol
2008
;
44
:
582
6
.
15.
Chuang
SC
,
Agudo
A
,
Ahrens
W
,
Anantharaman
D
,
Benhamou
S
,
Boccia
S
, et al
Sequence variants and the risk of head and neck cancer: pooled analysis in the INHANCE consortium
.
Front Oncol
2011
;
1
:
13
.
16.
Cui
Y
,
Morgenstern
H
,
Greenland
S
,
Tashkin
DP
,
Mao
J
,
Cao
W
, et al
Polymorphism of xeroderma pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus
.
Int J Cancer
2006
;
118
:
714
20
.
17.
Gajecka
M
,
Rydzanicz
M
,
Jaskula-Sztul
R
,
Wierzbicka
M
,
Szyfter
W
,
Szyfter
K
. 
Reduced DNA repair capacity in laryngeal cancer subjects. A comparison of phenotypic and genotypic results
.
Adv Otorhinolaryngol
2005
;
62
:
25
37
.
18.
Gugatschka
M
,
Dehchamani
D
,
Wascher
TC
,
Friedrich
G
,
Renner
W
. 
DNA repair gene ERCC2 polymorphisms and risk of squamous cell carcinoma of the head and neck
.
Exp Mol Pathol
2011
;
91
:
331
4
.
19.
Hall
J
,
Hashibe
M
,
Boffetta
P
,
Gaborieau
V
,
Moullan
N
,
Chabrier
A
, et al
The association of sequence variants in DNA repair and cell cycle genes with cancers of the upper aerodigestive tract
.
Carcinogenesis
2007
;
28
:
665
71
.
20.
Harth
V
,
Schafer
M
,
Abel
J
,
Maintz
L
,
Neuhaus
T
,
Besuden
M
, et al
Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair
.
J Toxicol Environ Health A
2008
;
71
:
887
97
.
21.
Huang
WY
,
Olshan
AF
,
Schwartz
SM
,
Berndt
SI
,
Chen
C
,
Llaca
V
, et al
Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis
.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
1747
53
.
22.
Jelonek
K
,
Gdowicz-Klosok
A
,
Pietrowska
M
,
Borkowska
M
,
Korfanty
J
,
Rzeszowska-Wolny
J
, et al
Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a polish population
.
J Appl Genet
2010
;
51
:
343
52
.
23.
Ji
YB
,
Tae
K
,
Lee
YS
,
Lee
SH
,
Kim
KR
,
Park
CW
, et al
XPD polymorphisms and risk of squamous cell carcinoma of the head and neck in a Korean sample
.
Clin Exp Otorhinolaryngol
2010
;
3
:
42
7
.
24.
Jones
NR
,
Spratt
TE
,
Berg
AS
,
Muscat
JE
,
Lazarus
P
,
Gallagher
CJ
. 
Association studies of excision repair cross-complementation group 1 (ERCC1) haplotypes with lung and head and neck cancer risk in a Caucasian population
.
Cancer Epidemiol
2011
;
35
:
175
81
.
25.
Kietthubthew
S
,
Sriplung
H
,
Au
WW
,
Ishida
T
. 
Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand
.
Int J Hyg Environ Health
2006
;
209
:
21
9
.
26.
Kostrzewska-Poczekaj
M
,
Gawecki
W
,
Illmer
J
,
Rydzanicz
M
,
Gajecka
M
,
Szyfter
W
, et al
Polymorphisms of DNA repair genes and risk of squamous cell carcinoma of the head and neck in young adults
.
Eur Arch Otorhinolaryngol
2013
;
270
:
271
6
.
27.
Krupa
R
,
Kasznicki
J
,
Gajecka
M
,
Rydzanicz
M
,
Kiwerska
K
,
Kaczmarczyk
D
, et al
Polymorphisms of the DNA repair genes XRCC1 and ERCC4 are not associated with smoking- and drinking-dependent larynx cancer in a polish population
.
Exp Oncol
2011
;
33
:
55
6
.
28.
Lee
YC
,
Morgenstern
H
,
Greenland
S
,
Tashkin
DP
,
Papp
J
,
Sinsheimer
J
, et al
A case–control study of the association of the polymorphisms and haplotypes of DNA ligase I with lung and upper-aerodigestive-tract cancers
.
Int J Cancer
2008
;
122
:
1630
8
.
29.
Ma
H
,
Yu
H
,
Liu
Z
,
Wang
LE
,
Sturgis
EM
,
Wei
Q
. 
Polymorphisms of XPG/ERCC5 and risk of squamous cell carcinoma of the head and neck
.
Pharmacogenet Genomics
2012
;
22
:
50
7
.
30.
Majumder
M
,
Sikdar
N
,
Ghosh
S
,
Roy
B
. 
Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators
.
Int J Cancer
2007
;
120
:
2148
56
.
31.
Matullo
G
,
Dunning
AM
,
Guarrera
S
,
Baynes
C
,
Polidoro
S
,
Garte
S
, et al
DNA repair polymorphisms and cancer risk in non-smokers in a cohort study
.
Carcinogenesis
2006
;
27
:
997
1007
.
32.
Michiels
S
,
Danoy
P
,
Dessen
P
,
Bera
A
,
Boulet
T
,
Bouchardy
C
, et al
Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers
.
Carcinogenesis
2007
;
28
:
1731
9
.
33.
Mitra
AK
,
Singh
N
,
Garg
VK
,
Chaturvedi
R
,
Sharma
M
,
Rath
SK
. 
Statistically significant association of the single nucleotide polymorphism (SNP) rs13181 (ERCC2) with predisposition to squamous cell carcinomas of the head and neck (SCCHN) and breast cancer in the north Indian population
.
J Exp Clin Cancer Res
2009
;
28
:
104
.
34.
Ramachandran
S
,
Ramadas
K
,
Hariharan
R
,
Rejnish Kumar
R
,
Radhakrishna Pillai
M
. 
Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer
.
Oral Oncol
2006
;
42
:
350
62
.
35.
Rydzanicz
M
,
Wierzbicka
M
,
Gajecka
M
,
Szyfter
W
,
Szyfter
K
. 
The impact of genetic factors on the incidence of multiple primary tumors (MPT) of the head and neck
.
Cancer Lett
2005
;
224
:
263
78
.
36.
Shen
H
,
Sturgis
EM
,
Khan
SG
,
Qiao
Y
,
Shahlavi
T
,
Eicher
SA
, et al
An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case–control study
.
Cancer Res
2001
;
61
:
3321
5
.
37.
Sliwinski
T
,
Przybylowska
K
,
Markiewicz
L
,
Rusin
P
,
Pietruszewska
W
,
Zelinska-Blizniewska
H
, et al
MUTYH Tyr165Cys, OGG1 Ser326Cys and XPD Lys751Gln polymorphisms and head neck cancer susceptibility: a case control study
.
Mol Biol Rep
2011
;
38
:
1251
61
.
38.
Sturgis
EM
,
Zheng
R
,
Li
L
,
Castillo
EJ
,
Eicher
SA
,
Chen
M
, et al
XPD/ERCC2 polymorphisms and risk of head and neck cancer: a case–control analysis
.
Carcinogenesis
2000
;
21
:
2219
23
.
39.
Sturgis
EM
,
Dahlstrom
KR
,
Spitz
MR
,
Wei
Q
. 
DNA repair gene ERCC1 and ERCC2/XPD polymorphisms and risk of squamous cell carcinoma of the head and neck
.
Arch Otolaryngol Head Neck Surg
2002
;
128
:
1084
8
.
40.
Sugimura
T
,
Kumimoto
H
,
Tohnai
I
,
Fukui
T
,
Matsuo
K
,
Tsurusako
S
, et al
Gene–environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms
.
J Oral Pathol Med
2006
;
35
:
11
8
.
41.
Wen
SX
,
Tang
PZ
,
Zhang
XM
,
Zhao
D
,
Guo
YL
,
Tan
W
, et al
[ 
Association between genetic polymorphism in xeroderma pigmentosum G gene and risks of laryngeal and hypopharyngeal carcinomas]
.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao
2006
;
28
:
703
6
.
42.
Yang
M
,
Kang
MJ
,
Choi
Y
,
Kim
CS
,
Lee
SM
,
Park
CW
, et al
Associations between XPC expression, genotype, and the risk of head and neck cancer
.
Environ Mol Mutagen
2005
;
45
:
374
9
.
43.
Yang
M
,
Kim
WH
,
Choi
Y
,
Lee
SH
,
Kim
KR
,
Lee
HS
, et al
Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer
.
Eur J Cancer Prev
2006
;
15
:
269
73
.
44.
Yu
H
,
Liu
Z
,
Huang
YJ
,
Yin
M
,
Wang
LE
,
Wei
Q
. 
Association between single nucleotide polymorphisms in ERCC4 and risk of squamous cell carcinoma of the head and neck
.
PLoS ONE
2012
;
7
:
e41853
.
45.
Yuan
H
,
Li
H
,
Ma
H
,
Niu
Y
,
Wu
Y
,
Zhang
S
, et al
Genetic polymorphisms in key DNA repair genes and risk of head and neck cancer in a chinese population
.
Exp Ther Med
2012
;
3
:
719
24
.
46.
Zavras
AI
,
Yoon
AJ
,
Chen
MK
,
Lin
CW
,
Yang
SF
. 
Association between polymorphisms of DNA repair gene ERCC5 and oral squamous cell carcinoma
.
Oral Surg Oral Med Oral Pathol Oral Radiol
2012
;
114
:
624
9
.
47.
Flores-Obando
RE
,
Gollin
SM
,
Ragin
CC
. 
Polymorphisms in DNA damage response genes and head and neck cancer risk
.
Biomarkers
2010
;
15
:
379
99
.
48.
Yuan
H
,
Niu
YM
,
Wang
RX
,
Li
HZ
,
Chen
N
. 
Association between XPD Lys751Gln polymorphism and risk of head and neck cancer: a meta-analysis
.
Genet Mol Res
2011
;
10
:
3356
64
.
49.
Zhang
D
,
Chen
C
,
Fu
X
,
Gu
S
,
Mao
Y
,
Xie
Y
, et al
A meta-analysis of DNA repair gene XPC polymorphisms and cancer risk
.
J Hum Genet
2008
;
53
:
18
33
.
50.
Stingone
JA
,
Funkhouser
WK
,
Weissler
MC
,
Bell
ME
,
Olshan
AF
. 
Racial differences in the relationship between tobacco, alcohol, and squamous cell carcinoma of the head and neck
.
Cancer Causes Control
2012
;
24
:
649
64
.
51.
Divaris
K
,
Olshan
AF
,
Smith
J
,
Bell
ME
,
Weissler
MC
,
Funkhouser
WK
, et al
Oral health and risk for head and neck squamous cell carcinoma: the Carolina Head and Neck Cancer Study
.
Cancer Causes Control
2010
;
21
:
567
75
.
52.
Hakenewerth
AM
,
Millikan
RC
,
Rusyn
I
,
Herring
AH
,
North
KE
,
Barnholtz-Sloan
JS
, et al
Joint effects of alcohol consumption and polymorphisms in alcohol and oxidative stress metabolism genes on risk of head and neck cancer
.
Cancer Epidemiol Biomarkers Prev
2011
;
20
:
2438
49
.
53.
Fritz
A
,
Percy
C
,
Jack
A
,
Shanmugarathan
K
,
Sobin
L
,
Parkin
DM
, et al
editors
. 
International classification of diseases for oncology. 3rd ed.
Geneva, Switzerland
:
World Health Organization
;
2000
.
54.
GoldenGate assay workflow [Internet]
.
San Diego, CA
:
Illumina
. 
2006
[cited 2011 Dec]
.
Available from
: http://www.illumina.com/documents/products/workflows/workflow_goldengate_assay.pdf.
55.
NIEHS Environmental Genome Project [Internet]
.
Seattle, WA
:
University of Washington
. 
2001
.
Available from
: http://egp.gs.washington.edu.
56.
The International HapMap Consortium
.
The International HapMap Project
.
Nature
2003
;
426
:
789
96
.
57.
Weale
ME
. 
Chapter 19: Quality control for genome-wide association studies
. In:
Barnes
MR
,
Breen
G
,
editors
. 
Genetic variation: methods and protocols, methods in molecular biology
.
Vol
.
628
.
New York, NY
:
Humana Press, Springer Science + Business Media
; 
2010
.
p.
341
.
58.
Hung
RJ
,
Brennan
P
,
Malaveille
C
,
Porru
S
,
Donato
F
,
Boffetta
P
, et al
Using hierarchical modeling in genetic association studies with multiple markers: application to a case–control study of bladder cancer
.
Cancer Epidemiol Biomarkers Prev
2004
;
13
:
1013
21
.
59.
Witte
JS
,
Greenland
S
,
Kim
LL
,
Arab
L
. 
Multilevel modeling in epidemiology with GLIMMIX
.
Epidemiology
2000
;
11
:
684
8
.
60.
Glymour
M
,
Greeland
S
. 
Chapter 12: Causal Diagrams
.
In
:
Rothman
KJ
,
Greenland
S
,
Lash
TL
,
editors
. 
Modern epidemiology
. 3rd ed.
Philadeplhia, PA
:
Wolters Kluwer Health: Lippincott, Williams, & Wilkins
; 
2008
.
61.
Pfaff
CL
,
Barnholtz-Sloan
J
,
Wagner
JK
,
Long
JC
. 
Information on ancestry from genetic markers
.
Genet Epidemiol
2004
;
26
:
305
15
.
62.
Barnholtz-Sloan
JS
,
McEvoy
B
,
Shriver
MD
,
Rebbeck
TR
. 
Ancestry estimation and correction for population stratification in molecular epidemiologic association studies
.
Cancer Epidemiol Biomarkers Prev
2008
;
17
:
471
7
.
63.
Barnholtz-Sloan
JS
,
Shetty
PB
,
Guan
X
,
Nyante
SJ
,
Luo
J
,
Brennan
DJ
, et al
FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women
.
Carcinogenesis
2010
;
31
:
1417
23
.
64.
Hosmer
DW
,
Lemeshow
S
. 
Confidence interval estimation of interaction
.
Epidemiology
1992
;
3
:
452
6
.
65.
SAS Institute Inc.
SAS 9.3
.
Cary, NC
:
SAS Institute Inc.
, 
2011
.
66.
Friedberg
EC
,
Walker
GC
,
Siede
W
,
Wood
RD
,
Schultz
RA
. 
DNA repair and mutagenesis
.
Washington, DC
:
ASM Press
; 
2006
.
67.
Database of Single Nucleotide Polymorphisms (dbSNP)
. 
Bethesda, MD: National Center for Biotechnology Information, National Library of Medicine
. 
2013
[cited 2013 Feb]. Available from
: http://www.ncbi.nlm.nih.gov/SNP/.
68.
Johnson
AD
,
Handsaker
RE
,
Pulit
S
,
Nizzari
MM
,
O'Donnell
CJ
,
de Bakker
PIW
. 
SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap
.
Bioinformatics
2008
;
24
:
2938
9
.
69.
Meyer
LR
,
Zweig
AS
,
Hinrichs
AS
,
Karolchik
D
,
Kuhn
RM
,
Wong
M
, et al
The UCSC Genome Browser database: extensions and updates 2013
.
Nucleic Acids Res
2013
;
41
(
D1
):
D64
9
.
70.
Percent of Adults Who Smoke by Race/Ethnicity, 2011 [Internet]
.
Menlo Park, CA
:
The Henry J. Kaiser Family Foundation
. 
2013
[cited 2013 May]
.
Available from
: http://kff.org/other/state-indicator/smoking-adults-by-raceethnicity/.
71.
SEER Stat Fact Sheets: Oral Cavity and Pharynx [Internet]
.
Bethesda, MD
:
United States National Cancer Institute
. 
2013
[cited 2013 May]
.
Available from
: http://seer.cancer.gov.libproxy.lib.unc.edu/statfacts/html/oralcav.html.
72.
Intronic Mutation [Internet]
.
Bethesda, MD
:
United States Library of Medicine
. 
2013
[cited 2013 Feb]
.
Available from
: http://ghr.nlm.nih.gov/glossary=intronicmutation.

Supplementary data