Background: The evidence about nitrosamines and heme iron intake and cancer risk is limited, despite the biologic plausibility of the hypothesis that these factors might increase cancer risk. We investigated the association between dietary nitrosamines and heme iron and the risk of prostate cancer among participants of European Prospective Investigation into Cancer and Nutrition (EPIC).

Methods: Data on food consumption and complete follow-up for cancer occurrence was available for 139,005 men, recruited in 8 European countries. Estimates of HRs were obtained by proportional hazard models, stratified by age at recruitment, and study center, and adjusted for total energy intake, smoking status, marital status, dairy products, educational level, and body mass index.

Results: After a mean follow-up of 10 years, 4,606 participants were diagnosed with first incident prostate cancer. There was no overall association between prostate cancer risk and nitrosamines exposure (preformed and endogenous) or heme iron intake (HR for a doubling of intake: 1.00; 95% CI: 0.98–1.03 for N-Nitrosodimethlyamine, 0.95; 95% CI: 0.88–1.03 for endogenous Nitrosocompounds, and 1.00; 95 CI: 0.97–1.03 for heme iron).

Conclusions and Impact: Our findings do not support an effect of nitrosamines (endogenous and exogenous) and heme iron intake on prostate cancer risk. Cancer Epidemiol Biomarkers Prev; 21(3); 547–51. ©2012 AACR.

Prostate cancer is the second most common cancer diagnosed in men, and it is the sixth most common cause of cancer mortality worldwide (1). It has been suggested that some aspect of a Western diet, such as a high meat intake, may increase prostate cancer risk (2, 3). There are various mechanisms by which meat could increase risk, one of which is via heme iron, which can promote endogenous production of NOCs (Nitrosocompounds; ref. 4); in addition, any sources of iron can also catalyze free radical formation leading to oxidative cell damage (5). Although a recent meta-analysis on cohort studies is not supportive of a positive association with red or processed meat (6), it does not preclude an association with certain aspects of meat intake, such as its content of heme iron, or nitrosamines. The aim of this study was to examine the association between dietary nitrosamines (endogenous and exogenous), heme iron intake and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC).

The rationale and design of EPIC conducted in 23 centers in 10 European countries were described in detail elsewhere (7). A questionnaire collected information about sociodemographic and lifestyle characteristics and medical history. Dietary data were collected by validated country-specific questionnaires that recorded the usual dietary intake over the previous 12 months (7), and which were used to estimate preformed NDMA (N-Nitrosodimethylamine) from different food groups, predicted ENOC (endogenous NOCs; μg/d; ref. 8) and heme iron intake, as described elsewhere (9, 10).

Men were not eligible for this analysis if they had no dietary or nondietary data were missing (5,761 men). Individuals were also excluded if they were in the top or bottom 1% of the distribution of the ratio of reported energy intake to energy requirement (79 cases), to reduce the impact of implausible extreme values in the analysis (11). One male noncase from Athens, who was aged <30 at recruitment, was excluded. We also excluded subjects with an extreme heme iron intake (heme iron >4 mg/d; 2% of cases and noncases). Following these exclusions, complete data on diet and follow-up for cancer were available for 139,005 men of the 148,016 men in the original data set.

Prostate cancer case ascertainment was via cancer registries, active follow-up, and other methods as previously described (12). Proportional hazards models were used to estimate the association between nitrosamines (NDMA and ENOC) and heme iron and prostate cancer risk. Age was used as the underlying time scale, with entry time defined as age at recruitment and exit time defined as age at first prostate tumor (cases) and age at death or last complete follow-up (noncases). All models were stratified by age and center and adjusted for confounding variables (see Table 2). Subgroup analyses were also carried out according to stage and grade of the tumor, as previously described (12). Trend tests were done by assigning the median value for each quintile category and modeling this as a continuous variable. The Statistical Analysis System version 9 (SAS Institute) was used for analyses.

After a mean follow-up of 11 years, 4,606 prostate cancer cases were identified. The association of lifestyle characteristics by dietary intake of nitrosamine and heme iron is shown in Table 1. In multivariable models, prostate cancer risk was not associated with intake of nitrosamines (HR for the highest vs. lowest quintile: 0.91; 95% CI: 0.81–1.03 for ENOC, and 1.04; 95% CI: 0.95–1.18 for NDMA) or heme iron (HR for the highest vs. lowest quintile: 1.00; 95 CI: 0.88–1.39). This lack of association was supported by analyses of continuous variables (Table 2). Furthermore, similar findings were found when stratifying prostate cancer cases by grade and stage.

Table 1.

Baseline characteristics of the cohort according to quintiles of nitrosamines and heme iron intake

Heme Iron (mg/d)NDMA (μg/d)ENOC (μg/d)
Q1Q5Q1Q5Q1Q5
Mean intake  0.41 2.74 0.045 0.87 54.27 142.85 
Age at recruitment (y)  50.44 51.37 53.33 52.26 50.99 51.35 
Smoking status (%) Never 25.99 16.93 23.21 15.07 24.5 18.98 
 Former 20.33 18.02 19.64 21.67 20.78 18.21 
 Smoker 12.25 26.32 15.7 24.21 13.17 23.93 
 Unknown 31.13 11.44 42.86 5.79 35.51 8.89 
Educational level (%) None 7.07 31.37 33.87 9.22 18.06 16.21 
 Primary school 13.05 23.94 20.74 22.18 13.62 22.91 
 Technical/professional 18.77 19.99 18.36 21.76 17.58 21.19 
 Secondary school 21.53 17.87 19.86 13.2 20.14 19.72 
 Longer education 26.17 16.79 16.53 21.98 26 18.12 
 Not specified 56.17 3.25 41.49 9.7 53.23 3.47 
BMI (%) Normal 27.57 15.55 21.49 17.29 26.01 18.35 
 Overweight 17.14 21 19.16 20.85 17.53 20.12 
 Obese 11.03 27.47 19.1 23.8 13.5 23.61 
Marital status (%) Single 36.13 11.99 23.24 17.79 33.37 15.6 
 Married/living together 25.38 13.11 24.77 20.87 24.95 16.03 
 Divorced/separated 30.32 12.74 17.67 31.34 26.95 18 
 Widowed 32.15 10.99 31.37 22.29 31.63 14.29 
 Unknown 3.88 36.36 10.16 17.15 5.88 29.07 
Alcohol (g/d)  13.55 27.55 9.55 36.86 14.49 24.85 
Red and processed meats (g/d)  31.08 117.37 53.98 133.39 28.27 158.63 
Protein from dairy (g/d)  18.73 19.9 16.08 18.02 18.27 20.63 
Total energy intake (Kcal/d)  2,025.73 2,818.44 2,053 2,639.4 2,038.06 2,782.98 
Heme Iron (mg/d)NDMA (μg/d)ENOC (μg/d)
Q1Q5Q1Q5Q1Q5
Mean intake  0.41 2.74 0.045 0.87 54.27 142.85 
Age at recruitment (y)  50.44 51.37 53.33 52.26 50.99 51.35 
Smoking status (%) Never 25.99 16.93 23.21 15.07 24.5 18.98 
 Former 20.33 18.02 19.64 21.67 20.78 18.21 
 Smoker 12.25 26.32 15.7 24.21 13.17 23.93 
 Unknown 31.13 11.44 42.86 5.79 35.51 8.89 
Educational level (%) None 7.07 31.37 33.87 9.22 18.06 16.21 
 Primary school 13.05 23.94 20.74 22.18 13.62 22.91 
 Technical/professional 18.77 19.99 18.36 21.76 17.58 21.19 
 Secondary school 21.53 17.87 19.86 13.2 20.14 19.72 
 Longer education 26.17 16.79 16.53 21.98 26 18.12 
 Not specified 56.17 3.25 41.49 9.7 53.23 3.47 
BMI (%) Normal 27.57 15.55 21.49 17.29 26.01 18.35 
 Overweight 17.14 21 19.16 20.85 17.53 20.12 
 Obese 11.03 27.47 19.1 23.8 13.5 23.61 
Marital status (%) Single 36.13 11.99 23.24 17.79 33.37 15.6 
 Married/living together 25.38 13.11 24.77 20.87 24.95 16.03 
 Divorced/separated 30.32 12.74 17.67 31.34 26.95 18 
 Widowed 32.15 10.99 31.37 22.29 31.63 14.29 
 Unknown 3.88 36.36 10.16 17.15 5.88 29.07 
Alcohol (g/d)  13.55 27.55 9.55 36.86 14.49 24.85 
Red and processed meats (g/d)  31.08 117.37 53.98 133.39 28.27 158.63 
Protein from dairy (g/d)  18.73 19.9 16.08 18.02 18.27 20.63 
Total energy intake (Kcal/d)  2,025.73 2,818.44 2,053 2,639.4 2,038.06 2,782.98 
Table 2.

Adjusted HRs for full cohort and high/low risk of prostate cancer by quartiles of heme iron, ENOC, NDMA, and meat

Heme iron (mg/Kcal)aENOC (μg/kcal)NDMA (μg/kcal)b
NoncasesCasesHRNoncasesCasesHRNoncasesCasesHR
Full cohort (139,005)          
  Q1 26,862 923 1.00 27,065 736 1.00 26,889 795 1.00 
  Q2 26,742 1,043 0.98 (0.89–1.08) 26,877 924 1.04 (0.94–1.15) 26,880 804 1.07 (0.96–1.19) 
  Q3 26,828 958 0.98 (0.89–1.08) 62,857 944 0.99 (0.89–1.10) 26,774 910 1.05 (0.94–1.17) 
  Q4 26,964 821 0.88 (0.79–0.98) 26,801 1,000 1.00 (0.89–1.11) 26,673 1,011 1.05 (0.94–1.18) 
  Q5 26,928 857 0.91 (0.82–1.02) 26,799 1,002 0.91 (0.81–1.03) 26,607 1,077 1.04 (0.92–1.18) 
  P for trend   0.03   0.04   0.95 
  log2 134,324 4,602 1.00 (0.97–1.03) 170,399 4,606 0.95 (0.88–1.03) 133,823 4,597 1.00 (0.98–1.03) 
Stagec          
 Advanced          
  Q1 27,603 182 1.00 27,658 143 1.00 27,523 161 1.00 
  Q2 27,622 163 0.77 (0.61–0.96) 27,631 170 0.97 (0.77–1.23) 27,537 147 1.00 (0.78–1.27) 
  Q3 27,598 188 0.84 (0.67–1.05) 27,613 188 0.93 (0.73–1.18) 27,492 192 0.98 (0.76–1.26) 
  Q4 27,606 179 0.77 (0.61–0.98) 27,615 186 0.84 (0.65–1.08) 27,475 209 0.93 (0.72–1.21) 
  Q5 27,585 200 0.87 (0.69–1.11) 27,574 227 0.97 (0.75–1.27) 27,480 204 0.93 (0.72–1.21) 
  P for trend   0.55   0.83   0.54 
  log2 138,014 912 0.96 (0.90–1.03) 138,091 914 0.96 (0.78–1.15) 137,507 913 1.00 (0.94–1.06) 
  Localized          
  Q1 27,503 282 1.00 27,552 249 1.00 27,398 286 1.00 
  Q2 27,439 346 1.01 (0.86–1.19) 27,517 284 0.86 (0.72–1.02) 27,383 301 1.20 (1.01–1.43) 
  Q3 27,427 359 1.07 (0.90–1.26) 27,442 359 0.98 (0.82–1.16) 27,373 311 1.12 (0.93–1.35) 
  Q4 27,470 315 0.91 (0.76–1.08) 27,402 399 0.99 (0.83–1.19) 27,347 337 1.15 (0.94–1.40) 
  Q5 27,407 378 1.01 (0.84–1.20) 27,411 390 0.85 (0.70–1.03) 27,242 442 1.23 (0.99–1.53) 
  P for trend   0.75   0.24   0.19 
  log2 137,246 1,680 1.00 (0.94–1.06) 137,324 1,681 0.93 (0.82–1.06) 136,743 1,677 1.04 (0.98–1.09) 
Uncertain          
  Q1 27,326 459 1.00 27,457 344 1.00 27,336 348 1.00 
  Q2 27,251 534 1.05(0.92–1.20) 27,331 470 1.23 (1.06–1.42) 27,328 356 1.10 (0.86–1.18) 
  Q3 27,375 411 0.99 (0.85–1.14) 27,404 397 1.01 (0.86–1.18) 27,277 407 1.02 (0.87–1.20) 
  Q4 27,458 327 0.92 (0.79–1.07) 27,386 415 1.07 (0.91–1.26) 27,219 465 1.03 (0.87–1.21) 
  Q5 27,506 279 0.83 (0.71–0.99) 27,416 385 0.93 (0.78–1.10) 27,253 431 0.96 (0.80–1.15) 
  P for trend   0.01   0.06   0.43 
  log2 136,916 2,010 1.01 (0.97–1.05) 136,994 2,011 0.96 (0.86–1.08) 136,413 2007 0.98 (0.95–1.02) 
Graded          
  Low          
  Q1 27,401 384 1.00 27,487 314 1.00 27,644 314 1.00 
  Q2 27,341 444 1.00 (0.86–1.15) 27,415 386 1.04 (0.89–1.21) 27,632 366 1.12 (0.96–1.31) 
  Q3 27,387 399 0.99 (0.85–1.15) 27,408 393 1.01 (0.86–1.18) 27,620 331 1.02 (0.86–1.20) 
  Q4 27,461 324 0.86 (0.73–1.01) 27,401 400 0.98 (0.82–1.15) 27,633 371 1.08 (0.91–1.29) 
  Q5 27,420 365 0.91 (0.77–1.07) 27,378 423 0.87 (0.73–1.04) 27,626 533 1.13 (0.93–1.36) 
  P for trend   0.08   0.04   0.33 
  log2 137,010 1,916 1.01 (0.96–1.05) 137,089 1,916 0.92 (0.82–1.04) 138,155 1915 1.02 (0.98–1.07) 
High          
  Q1 27,729 56 1.00 27,752 49 1.00 27,644 40 1.00 
  Q2 27,731 54 0.95 (0.64–1.41) 27,747 54 1.04 (0.70–1.57) 27,632 52 1.32 (0.86–2.03) 
  Q3 27,739 47 0.91 (0.60–1.39) 27,762 39 0.73 (0.46–1.15) 27,620 64 1.50 (0.97–2.32) 
  Q4 27,733 52 1.01 (0.66–1.55) 27,740 61 1.12 (0.72–1.73) 27,633 51 1.18 (0.74–1.88) 
  Q5 27,729 56 1.05 (0.68–1.64) 27,739 62 1.03 (0.65–1.66) 27,626 58 1.34 (0.81–2.24) 
  P for trend   0.68   0.71   0.68 
  log2 138,661 265 0.99 (0.89–1.10) 138,740 265 1.01 (0.73–1.38) 138,155 265 1.09 (0.97–1.21) 
Uncertain          
  Q1 27,326 483 1.00 27,428 373 1.00 27,246 441 1.00 
  Q2 27,251 545 0.97 (0.85–1.10) 27,317 484 1.05 (0.91–1.21) 27,298 386 0.99 (0.86–1.15) 
  Q3 27,375 512 0.98 (0.86–1.12) 27,289 512 1.00 (0.87–1.16) 27,169 515 1.01 (0.86–1.18) 
  Q4 27,458 445 0.88 (0.76–1.02) 27,262 539 1.00 (0.86–1.16) 27,095 589 0.99 (0.84–1.16) 
  Q5 27,506 436 0.90 (0.78–1.05) 27,284 517 0.94 (0.80–1.10) 27,198 486 0.92 (0.76–1.10) 
  P for trend   0.10   0.23   0.18 
  log2 136,916 2,421 0.99 (0.95–1.03) 136,580 2,425 0.97 (0.86–1.08) 136,006 2,417 0.98 (0.95–1.02) 
Heme iron (mg/Kcal)aENOC (μg/kcal)NDMA (μg/kcal)b
NoncasesCasesHRNoncasesCasesHRNoncasesCasesHR
Full cohort (139,005)          
  Q1 26,862 923 1.00 27,065 736 1.00 26,889 795 1.00 
  Q2 26,742 1,043 0.98 (0.89–1.08) 26,877 924 1.04 (0.94–1.15) 26,880 804 1.07 (0.96–1.19) 
  Q3 26,828 958 0.98 (0.89–1.08) 62,857 944 0.99 (0.89–1.10) 26,774 910 1.05 (0.94–1.17) 
  Q4 26,964 821 0.88 (0.79–0.98) 26,801 1,000 1.00 (0.89–1.11) 26,673 1,011 1.05 (0.94–1.18) 
  Q5 26,928 857 0.91 (0.82–1.02) 26,799 1,002 0.91 (0.81–1.03) 26,607 1,077 1.04 (0.92–1.18) 
  P for trend   0.03   0.04   0.95 
  log2 134,324 4,602 1.00 (0.97–1.03) 170,399 4,606 0.95 (0.88–1.03) 133,823 4,597 1.00 (0.98–1.03) 
Stagec          
 Advanced          
  Q1 27,603 182 1.00 27,658 143 1.00 27,523 161 1.00 
  Q2 27,622 163 0.77 (0.61–0.96) 27,631 170 0.97 (0.77–1.23) 27,537 147 1.00 (0.78–1.27) 
  Q3 27,598 188 0.84 (0.67–1.05) 27,613 188 0.93 (0.73–1.18) 27,492 192 0.98 (0.76–1.26) 
  Q4 27,606 179 0.77 (0.61–0.98) 27,615 186 0.84 (0.65–1.08) 27,475 209 0.93 (0.72–1.21) 
  Q5 27,585 200 0.87 (0.69–1.11) 27,574 227 0.97 (0.75–1.27) 27,480 204 0.93 (0.72–1.21) 
  P for trend   0.55   0.83   0.54 
  log2 138,014 912 0.96 (0.90–1.03) 138,091 914 0.96 (0.78–1.15) 137,507 913 1.00 (0.94–1.06) 
  Localized          
  Q1 27,503 282 1.00 27,552 249 1.00 27,398 286 1.00 
  Q2 27,439 346 1.01 (0.86–1.19) 27,517 284 0.86 (0.72–1.02) 27,383 301 1.20 (1.01–1.43) 
  Q3 27,427 359 1.07 (0.90–1.26) 27,442 359 0.98 (0.82–1.16) 27,373 311 1.12 (0.93–1.35) 
  Q4 27,470 315 0.91 (0.76–1.08) 27,402 399 0.99 (0.83–1.19) 27,347 337 1.15 (0.94–1.40) 
  Q5 27,407 378 1.01 (0.84–1.20) 27,411 390 0.85 (0.70–1.03) 27,242 442 1.23 (0.99–1.53) 
  P for trend   0.75   0.24   0.19 
  log2 137,246 1,680 1.00 (0.94–1.06) 137,324 1,681 0.93 (0.82–1.06) 136,743 1,677 1.04 (0.98–1.09) 
Uncertain          
  Q1 27,326 459 1.00 27,457 344 1.00 27,336 348 1.00 
  Q2 27,251 534 1.05(0.92–1.20) 27,331 470 1.23 (1.06–1.42) 27,328 356 1.10 (0.86–1.18) 
  Q3 27,375 411 0.99 (0.85–1.14) 27,404 397 1.01 (0.86–1.18) 27,277 407 1.02 (0.87–1.20) 
  Q4 27,458 327 0.92 (0.79–1.07) 27,386 415 1.07 (0.91–1.26) 27,219 465 1.03 (0.87–1.21) 
  Q5 27,506 279 0.83 (0.71–0.99) 27,416 385 0.93 (0.78–1.10) 27,253 431 0.96 (0.80–1.15) 
  P for trend   0.01   0.06   0.43 
  log2 136,916 2,010 1.01 (0.97–1.05) 136,994 2,011 0.96 (0.86–1.08) 136,413 2007 0.98 (0.95–1.02) 
Graded          
  Low          
  Q1 27,401 384 1.00 27,487 314 1.00 27,644 314 1.00 
  Q2 27,341 444 1.00 (0.86–1.15) 27,415 386 1.04 (0.89–1.21) 27,632 366 1.12 (0.96–1.31) 
  Q3 27,387 399 0.99 (0.85–1.15) 27,408 393 1.01 (0.86–1.18) 27,620 331 1.02 (0.86–1.20) 
  Q4 27,461 324 0.86 (0.73–1.01) 27,401 400 0.98 (0.82–1.15) 27,633 371 1.08 (0.91–1.29) 
  Q5 27,420 365 0.91 (0.77–1.07) 27,378 423 0.87 (0.73–1.04) 27,626 533 1.13 (0.93–1.36) 
  P for trend   0.08   0.04   0.33 
  log2 137,010 1,916 1.01 (0.96–1.05) 137,089 1,916 0.92 (0.82–1.04) 138,155 1915 1.02 (0.98–1.07) 
High          
  Q1 27,729 56 1.00 27,752 49 1.00 27,644 40 1.00 
  Q2 27,731 54 0.95 (0.64–1.41) 27,747 54 1.04 (0.70–1.57) 27,632 52 1.32 (0.86–2.03) 
  Q3 27,739 47 0.91 (0.60–1.39) 27,762 39 0.73 (0.46–1.15) 27,620 64 1.50 (0.97–2.32) 
  Q4 27,733 52 1.01 (0.66–1.55) 27,740 61 1.12 (0.72–1.73) 27,633 51 1.18 (0.74–1.88) 
  Q5 27,729 56 1.05 (0.68–1.64) 27,739 62 1.03 (0.65–1.66) 27,626 58 1.34 (0.81–2.24) 
  P for trend   0.68   0.71   0.68 
  log2 138,661 265 0.99 (0.89–1.10) 138,740 265 1.01 (0.73–1.38) 138,155 265 1.09 (0.97–1.21) 
Uncertain          
  Q1 27,326 483 1.00 27,428 373 1.00 27,246 441 1.00 
  Q2 27,251 545 0.97 (0.85–1.10) 27,317 484 1.05 (0.91–1.21) 27,298 386 0.99 (0.86–1.15) 
  Q3 27,375 512 0.98 (0.86–1.12) 27,289 512 1.00 (0.87–1.16) 27,169 515 1.01 (0.86–1.18) 
  Q4 27,458 445 0.88 (0.76–1.02) 27,262 539 1.00 (0.86–1.16) 27,095 589 0.99 (0.84–1.16) 
  Q5 27,506 436 0.90 (0.78–1.05) 27,284 517 0.94 (0.80–1.10) 27,198 486 0.92 (0.76–1.10) 
  P for trend   0.10   0.23   0.18 
  log2 136,916 2,421 0.99 (0.95–1.03) 136,580 2,425 0.97 (0.86–1.08) 136,006 2,417 0.98 (0.95–1.02) 

NOTE: All models were stratified by age, and center and adjusted for educational level (none, primary school, technical/professional school, secondary school, longer education and unknown), marital status, BMI (as continuous variable), protein from dairy (continuous), smoking status (never, former, and current), lifetime intensity of smoking (for current smokers, <20 cigarettes per day and >20) and time since quitting (for former smokers, <10 years and >10 years) and total energy intake (continuous per 2,000 kcal).

a79 noncases missing.

bcases and 576 noncases missing.

cProstate cancer stage was based on the TNM code: Advanced (T3 or T4 or N1+ or M1, or stage coded in the recruitment center as metastatic), localized (TNM staging score of T0/T1/T2 and N0/NX and M0 or stage coded in the recruitment center as localized) or unknown.

dProstate cancer grade was defined as follow: low grade was defined as (Gleason sum <8 or equivalent) and high-grade disease (Gleason >8 or equal) or unknown.

2,592 cases (61%) had information on stage and 2,281 cases (60%) had information on grade.

Linear trends were tested by using the median value of each category as an ordinal variable.

Homogeneity of risk by stage and grade were tested by Wald test (all P values >0.05).

To our knowledge this is the first European prospective study of nitrosamines, heme iron intake, and prostate cancer risk. We found no overall association between intake of nitrosamines and heme iron and prostate cancer risk. One study reported that heme iron intake was associated with a 9% increased risk for total prostate cancer and 28% for advanced disease (3), but we did not find any associations of the dietary factors with risk regardless of stage or grade. One possible explanation for our null findings is that red meat intake (the most important source of heme iron) is also a source of selenium and zinc. The WCRF report (1) judges foods containing selenium as probably protective against prostate cancer. However, a previous analysis from our group did not find any association between plasma selenium and prostate cancer risk (13). The strengths of this study include its large size, prospective design, and adjustment of potential confounding variables.

In summary, our findings do not support the hypothesis that dietary nitrosamines and heme iron intakes are associated with the risk of developing prostate cancer.

No potential conflicts of interest were disclosed.

1.
World Cancer Research Fund American Institute for Cancer Research
. 
Food, nutrition, physical activity, and the prevention of cancer: a global perspective
.
Washington, DC
:
AICR
; 
2007
.
2.
Mirvish
SS
. 
Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and prostate cancer and contribution to cancer of known exposures to NOC
.
Cancer Lett
1995
;
93
:
17
48
.
3.
Sinha
R
,
Park
Y
,
Graubard
BI
,
Leitzmann
MF
,
Hollenbeck
A
,
Schatzkin
A
, et al
Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States
.
Am J Epidemiol
2009
;
170
:
1165
77
.
4.
Cross
AJ
,
Pollock
JR
,
Bingham
SA
. 
Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat
.
Cancer Res
2003
;
63
:
2358
60
.
5.
Tappel
A
. 
Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases
.
Med Hypotheses
2007
;
68
:
562
4
.
6.
Alexander
DD
,
Mink
PJ
,
Cushing
CA
,
Sceurman
B
. 
A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer
.
Nutr J
2010
;
9
:
50
.
7.
Riboli
E
,
Hunt
KJ
,
Slimani
N
,
Ferrari
P
,
Norat
T
,
Fahey
M
, et al
European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection
.
Public Health Nutr
2002
;
5
:
1113
24
.
8.
Jakszyn
P
,
Bingham
S
,
Pera
G
,
Agudo
A
,
Luben
R
,
Welch
A
, et al
Endogenous versus exogenous exposure to N-nitroso compounds and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study
.
Carcinogenesis
2006
;
27
:
1497
501
.
9.
Jakszyn
P
,
González
CA
,
Luján-Barroso
L
,
Ros
MM
,
Bueno-de-Mesquita
HB
,
Roswall
N
, et al
Red meat, dietary nitrosamines, and heme iron and risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)
.
Cancer Epidemiol Biomarkers Prev
2011
;
20
:
555
9
.
10.
Jakszyn
P
,
Agudo
A
,
Lujan-Barroso
L
,
Bueno-de-Mesquita
HB
,
Jenab
M
,
Navarro
C
, et al
Dietary intake of heme iron and risk of gastric cancer in the European prospective investigation into cancer and nutrition (EURGAST- EPIC) study
.
Int J Cancer
2011 Jun 29
.
[
Epub ahead of print]
.
11.
Ferrari
P
,
Slimani
N
,
Ciampi
A
,
Trichopoulou
A
,
Naska
A
,
Lauria
C
, et al
Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC)
.
Public Health Nutr
2002
;
5
:
1329
45
.
12.
Allen
NE
,
Key
TJ
,
Appleby
PN
,
Travis
RC
,
Roddam
AW
,
Tjønneland
A
, et al
Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition
.
Br J Cancer
2008
;
98
:
1574
81
.
13.
Allen
NE
,
Appleby
PN
,
Roddam
AW
,
Tjønneland
A
,
Johnsen
NF
,
Overvad
K
, et al
Plasma selenium concentration and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)
.
Am J Clin Nutr
2008
;
88
:
1567
75
.