Abstract
Introduction: We examined the relationship of physical, mental, and neurocognitive function with employment and occupational status in the Childhood Cancer Survivor Study.
Methods: We included survivors 25 years or older with available short form-36 (physical and mental health component scores), brief symptom inventory (depression, anxiety, and somatization), and neurocognitive questionnaire (task efficiency, emotional regulation, organization, and memory). We generated relative risks (RR) from generalized linear models for these measures on unemployment (n = 5,386) and occupation (n = 3,763) outcomes adjusted for demographic and cancer-related factors and generated sex-stratified models.
Results: Poor physical health was associated with an almost eightfold higher risk of health-related unemployment (P < 0.001) compared to survivors with normal physical health. Male survivors with somatization and memory problems were approximately 50% (P < 0.05 for both) more likely to report this outcome, whereas task efficiency limitations were significant for both sexes (males: RR = 2.43, P < 0.001; females: RR = 2.28, P < 0.001). Employed female survivors with task efficiency, emotional regulation, and memory limitations were 13% to 20% (P < 0.05 for all) less likely to work in professional or managerial occupations than unaffected females.
Conclusions: Physical problems may cause much of the health-related unemployment among childhood cancer survivors. Whereas both male and female survivors with neurocognitive deficits—primarily in task efficiencies—are at risk for unemployment, employed female survivors with neurocognitive deficits may face poor occupational outcomes more often than males.
Impact: Childhood cancer survivors are at risk for poor employment outcomes. Screening and intervention for physical, mental, and neurocognitive limitations could improve employment outcomes for this population. Cancer Epidemiol Biomarkers Prev; 20(9); 1838–49. ©2011 AACR.
Introduction
Psychosocial, physical, and neurocognitive dysfunction are of particular importance to clinicians, patients, and families of children affected by cancer. These problems can arise years after primary treatment and may eventually affect the opportunities of survivors to participate fully in adult life roles, including their ability to find or maintain employment. Adult childhood cancer survivors are approximately 2 times more likely to be unemployed (1) and are more likely to report that health problems prohibit employment (2, 3), in contrast to healthy comparison groups. Employed survivors are at risk for working in lower-skill positions that typically have lower salaries and offer fewer benefits and chances for career mobility (4).
Physical, mental, and neurocognitive deficits may affect education and later career development of survivors. Adverse psychosocial outcomes are found in adolescent survivors (5), and several studies report physical and mental health limitations in adulthood for survivors (6–8). Neurocognitive difficulties often arise for survivors in adolescence when organization, reasoning, and time management skills become increasingly important (9). Central nervous system (CNS) tumor and acute lymphoblastic leukemia survivors, who received the highest amounts of cranial radiation, are at the greatest risk of developing cognitive problems following treatment, although patients receiving neck or head radiation and other treatments also report dysfunction (10).
The types of neurocognitive deficits reported by childhood survivors typically include processing speed, memory, and concentration problems; survivors with these problems are more likely to be unemployed (11, 12). Although neurocognitive deficits play an obvious role in work ability, survivors with physical limitations and emotional health deficits are also less likely to be employed and have lower educational attainment and incomes than nonaffected survivors (13–15). In addition, unemployment is associated with psychological distress among survivors (16, 17).
Because of different diagnoses, treatments, and diagnosis ages, all of which can affect education and the transition to adulthood, childhood cancer survivors are a heterogeneous population with a variety of employment needs. Psychosocial, physical, and neurocognitive deficits have been linked to unemployment in earlier studies of childhood cancer survivors, but no research has reported on these measures in association with detailed employment outcomes. Although assessing overall unemployment is important, research that informs tailored interventions is required to meet the unique employment needs of survivors.
This study examines the association of psychosocial, physical, and neurocognitive deficits with the report of being unable to work because of health or disability problems and being unemployed but seeking work. We examined the associations of psychosocial, physical, and neurocognitive disability with type of occupation, which have not been examined in adult childhood cancer survivors. We hypothesized that poor psychosocial, physical, and neurocognitive functioning would be significantly associated with unemployment because of health or disability (“health-related unemployment”), report of being unemployed but seeking work, and part-time employment. We also hypothesized that poor psychosocial, physical, and neurocognitive functioning in employed survivors would be associated with less-skilled occupations. Because men and women typically differ in their participation in the labor force, we generated sex-stratified models in addition to combined models.
Methods
Participants and procedures
The Childhood Cancer Survivor Study (CCSS) is a multi-institutional research initiative started in 1994 to investigate health and behavioral outcomes in childhood and adolescent cancer survivors. The original cohort includes 14,357 survivors diagnosed with cancer when younger than 21 years (18). Survivors were diagnosed between January 1, 1970 and December 31, 1986 and had survived at least 5 years from the time of diagnosis (19, 20). Eligible diagnoses included leukemia, CNS malignancies (all histologies), Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), kidney cancer, neuroblastoma, soft tissue sarcoma, or malignant bone tumor. The Human Subjects Committees at the 26 participating institutions approved the CCSS study protocol and participants provided informed consent.
CCSS survivors have completed a baseline survey (1994–1996) and 4 follow-up surveys. The current analyses were based on data from the second follow-up survey (referred to as 2003 follow-up, although completed from 2003–2005), because this survey contained the most detailed employment information. Detailed information on cancer type, treatments received, and clinical characteristics of the survivors was obtained from medical records.
There were 9,308 survivors who completed the 2003 follow-up survey. Of these, 2,268 received a short form of the survey that did not include the relevant psychosocial questions described below, leaving 7,040 survivors. In addition to completing the relevant psychosocial measures, participants had to meet eligibility of being age 25 and older at the time of the 2003 follow-up survey because of potential differences in employment status for participants still in school. The oldest participants were 54 years, so we used no upper age limit. Of the 5,448 eligible survivors, 62 (1.1%) were missing employment status information. This left 5,386 survivors (4,093 employed and 1,293 unemployed) for analyses examining current employment status. Of the 4,093 employed survivors, 330 (8.1%) did not report their occupation resulting in 3,763 available for the occupational comparisons.
The survivors missing employment status and occupation were more often male (53% and 58%, respectively, vs. 50% for the eligible sample) and more likely to have a high school education or less (39% and 23%, respectively, vs. 15%). CNS tumors were more common among those missing employment (23%) compared with those missing occupation (13%) and all eligible survivors (12%). Cranial radiation doses 18 Gy or more were more common among survivors missing employment status (33%) and occupation (28%) compared with the eligible sample (24%).
Measures
Independent variables of interest
Short form-36.
Health-related quality of life was determined by the Medical Outcomes Study 36-item Short-form Health Survey, which is a widely used generic health profile (21). We used the 8 subscale domains of mental health, physical health, emotional role function, physical role function, social health, pain, vitality, and energy to calculate 2 overall component scores (physical health and mental health). Raw scores were converted to T-scores (range 0–100) and dichotomized so that a score at or below 40 (1 SD below the population mean) indicated impairment for the 2 component scores (21, 22).
Brief symptom inventory.
The brief symptom inventory (BSI)-18, an 18-item checklist, measured acute symptoms of anxiety, depression, and somatic distress. Responses were scored to generate the anxiety, somatization, and depression subscales. Subjects with T-scores of 63 or higher were classified as having psychological distress (23) for each of the 3 subscales.
CCSS–neurocognitive questionnaire.
We used the CCSS–NCQ, a 25-item instrument developed and tested for relevant psychometric properties in the CCSS population and a sibling cohort (24). Four reliable factors discriminate survivors who were at “high risk” for neurocognitive dysfunction from healthy “low-risk” survivors: Task efficiency, emotional regulation, organization, and memory. Raw scores for each factor were converted to T-scores, with higher scores (≥63) indicative of significant neurocognitive impairment.
Outcome measures
Employment status.
Survivors reported their current employment status. We created mutually exclusive outcomes to designate survivors who were either currently unemployed because of being (i) unable to work because of illness or disability (health-related unemployment) or (ii) unemployed but seeking work. To designate survivors voluntarily out of the labor market, we created a third category: (iii) not in the labor force (caring for home or family and not seeking work; retired; student; and other), on the basis of Bureau of Labor Statistics not in the labor force definition (25). Our employment status categories are described elsewhere (3). Employed was designated as full-time (≥30 hours per week) or part-time (<30 hours per week).
Occupational categories.
Employed participants listed their main job title and primary tasks. These were coded according to the 2000 Standard Occupational Classification (SOC) System developed by the US Department of Labor (26). The SOC has 23 major occupational groups that include detailed information on occupations requiring similar job duties, skills, education, or experience. We excluded military occupations (10 survivors) because of potential differences in skill requirements. The remaining 22 groups were classified into 3 mutually exclusive occupational categories. First, occupations were coded as “professional/managerial” or “service/blue collar.” We grouped professional/managerial positions according to assessment of skill levels and/or experience to capture higher-skill and higher-experience jobs. Participants in the service/blue collar group reporting mostly physically demanding work were coded as “physical” and those reporting primarily sitting, standing, or walking while at work were coded as “nonphysical.”
We used the 5-point Job Zone classification developed by occupational experts from the Occupational Information Network (O*Net) database to assess agreement with our occupational categories (27). Occupations with higher Job Zone scores require more education, preparation, and training, and the professional/managerial average Job Zone scores (3.4–5.0) were higher than those for service/blue collar physical and nonphysical (1.0–2.7), which supports our classification process (4).
Other measures.
Demographic and cancer-related variables are listed in Table 1. Cancer recurrence and secondary cancers (excluding nonmelanoma skin cancers) were examined to account for subsequent events. We created a categorical variable to investigate cranial doses: no radiation, scatter low [no treatment to head/brain, but patient received radiation to some part of the body (>0 to <1 Gy)], scatter high [no direct treatment to head/brain segment, but treatment was nearby (dose range ≥1 to ≤5 Gy)], or within radiation field doses <18, 18 to 24, and ≥25 Gy.
Survivor demographics and cancer-related variables by sex
. | Survivors n = 5,386a . | P . | |
---|---|---|---|
. | Male n = 2,682 . | Female n = 2,704 . | . |
. | n (%) . | n (%) . | . |
Current age (y) | |||
25–34 | 1,497 (55.8) | 1,500 (55.5) | 0.02 |
35–44 | 966 (36.0) | 932 (34.5) | . |
45+ | 219 (8.2) | 272 (10.0) | . |
Race/ethnicity | |||
White, non-Hispanic | 2,355 (88.1) | 2,372 (88.0) | 0.02 |
Black, non-Hispanic | 56 (2.0) | 64 (2.4) | . |
Hispanic | 66 (2.5) | 98 (3.6) | . |
Other/mixed | 196 (7.3) | 161 (6.0) | . |
Educationb | |||
High school education or less | 438 (16.4) | 374 (13.9) | <0.001 |
Some college or more | 2,240 (83.6) | 2,323 (86.1) | . |
Marital statusb | |||
Married | 1,372 (51.3) | 1,488 (55.3) | <0.001 |
Not married | 1,302 (48.7) | 1,204 (44.7) | . |
Household incomeb | |||
<$20,000 | 248 (9.9) | 300 (12.0) | 0.03 |
$20,000–$39,999 | 558 (22.4) | 555 (22.2) | . |
$40,000–$59,999 | 548 (22.0) | 511 (20.5) | . |
$60,000–$79,999 | 438 (17.6) | 449 (18.0) | . |
≥$80,000 | 702 (28.1) | 683 (27.3) | . |
Cancer diagnosis | |||
Leukemia | 793 (29.6) | 829 (30.7) | <0.001 |
CNS | 335 (12.5) | 295 (10.9) | . |
Hodgkin lymphoma | 433 (16.1) | 478 (17.7) | . |
NHL | 323 (12.0) | 154 (5.7) | . |
Wilms tumor | 150 (5.6) | 236 (8.7) | . |
Neuroblastoma | 91 (3.4) | 132 (4.9) | . |
Sarcoma | 275 (10.3) | 267 (9.9) | . |
Bone tumor | 282 (10.5) | 313 (11.6) | . |
Cancer recurrence | |||
Yes | 310 (11.6) | 298 (11.0) | 0.37 |
No | 2,372 (88.4) | 2,406 (89.0) | . |
Secondary cancers | |||
Yes | 85 (3.2) | 201 (7.4) | <0.001 |
No | 2,597 (96.8) | 2,503 (92.6) | . |
Years since diagnosis | |||
≤20 | 641 (23.9) | 620 (22.9) | 0.23 |
21–30 | 1,666 (62.1) | 1,689 (62.5) | . |
>30 | 375 (14.0) | 395 (14.6) | . |
Cranial radiation | |||
None | 722 (26.9) | 767 (28.4) | 0.01 |
Cumulative dose | |||
Scatter lowc | 747 (27.9) | 859 (31.8) | . |
Scatter highc | 92 (3.4) | 64 (2.4) | . |
<18 Gy | 237 (8.8) | 222 (8.2) | . |
18–24 Gy | 344 (12.8) | 348 (12.9) | . |
≥25 Gy | 251 (9.36) | 218 (8.06) | . |
Missing | 289 (10.8) | 226 (8.4) | . |
. | Survivors n = 5,386a . | P . | |
---|---|---|---|
. | Male n = 2,682 . | Female n = 2,704 . | . |
. | n (%) . | n (%) . | . |
Current age (y) | |||
25–34 | 1,497 (55.8) | 1,500 (55.5) | 0.02 |
35–44 | 966 (36.0) | 932 (34.5) | . |
45+ | 219 (8.2) | 272 (10.0) | . |
Race/ethnicity | |||
White, non-Hispanic | 2,355 (88.1) | 2,372 (88.0) | 0.02 |
Black, non-Hispanic | 56 (2.0) | 64 (2.4) | . |
Hispanic | 66 (2.5) | 98 (3.6) | . |
Other/mixed | 196 (7.3) | 161 (6.0) | . |
Educationb | |||
High school education or less | 438 (16.4) | 374 (13.9) | <0.001 |
Some college or more | 2,240 (83.6) | 2,323 (86.1) | . |
Marital statusb | |||
Married | 1,372 (51.3) | 1,488 (55.3) | <0.001 |
Not married | 1,302 (48.7) | 1,204 (44.7) | . |
Household incomeb | |||
<$20,000 | 248 (9.9) | 300 (12.0) | 0.03 |
$20,000–$39,999 | 558 (22.4) | 555 (22.2) | . |
$40,000–$59,999 | 548 (22.0) | 511 (20.5) | . |
$60,000–$79,999 | 438 (17.6) | 449 (18.0) | . |
≥$80,000 | 702 (28.1) | 683 (27.3) | . |
Cancer diagnosis | |||
Leukemia | 793 (29.6) | 829 (30.7) | <0.001 |
CNS | 335 (12.5) | 295 (10.9) | . |
Hodgkin lymphoma | 433 (16.1) | 478 (17.7) | . |
NHL | 323 (12.0) | 154 (5.7) | . |
Wilms tumor | 150 (5.6) | 236 (8.7) | . |
Neuroblastoma | 91 (3.4) | 132 (4.9) | . |
Sarcoma | 275 (10.3) | 267 (9.9) | . |
Bone tumor | 282 (10.5) | 313 (11.6) | . |
Cancer recurrence | |||
Yes | 310 (11.6) | 298 (11.0) | 0.37 |
No | 2,372 (88.4) | 2,406 (89.0) | . |
Secondary cancers | |||
Yes | 85 (3.2) | 201 (7.4) | <0.001 |
No | 2,597 (96.8) | 2,503 (92.6) | . |
Years since diagnosis | |||
≤20 | 641 (23.9) | 620 (22.9) | 0.23 |
21–30 | 1,666 (62.1) | 1,689 (62.5) | . |
>30 | 375 (14.0) | 395 (14.6) | . |
Cranial radiation | |||
None | 722 (26.9) | 767 (28.4) | 0.01 |
Cumulative dose | |||
Scatter lowc | 747 (27.9) | 859 (31.8) | . |
Scatter highc | 92 (3.4) | 64 (2.4) | . |
<18 Gy | 237 (8.8) | 222 (8.2) | . |
18–24 Gy | 344 (12.8) | 348 (12.9) | . |
≥25 Gy | 251 (9.36) | 218 (8.06) | . |
Missing | 289 (10.8) | 226 (8.4) | . |
a5,386 survivors had available information on employment and the measures of interest.
bRace reported by 2,673 males and 2,695 females; education reported by 2,678 males and 2,697 females; martial status reported by 2,674 males and 2,692 females; household income reported by 2,494 males and 2,498 females.
cScatter low = no treatment to head or brain, but patient received radiation to some part of the body (dose range >0 to <1 Gy); scatter high = no direct treatment to segment, but treatment was nearby (≥1 to ≤5 Gy).
Statistical methods
We compared overall demographic characteristics of survivors, and cancer- and treatment-specific variables by employment status and occupational categories. We calculated proportions reporting low and normal scores on the short form SF-36, BSI, and NCQ for each outcome.
Two sets of analyses were used to explore the association of the SF-36, BSI, and NCQ with the outcomes. First, we used generalized linear models (28) to generate relative risks (RR) and 95% CIs to examine the associations among the SF-36, BSI, and NCQ with employment status and occupational categories for survivors. We fit models to examine the specific reasons for unemployment (health or disability or seeking work) or for not being in the labor force. The 639 survivors who were not in the labor force (retired, in school, or taking care of family) were excluded from the regression analyses because such individuals are not typically included in labor force calculations (25). Sensitivity analyses that included these survivors were similar to the reported results. Because of collinearity with the other NCQ factors and the small number of survivors with organizational limitations for those reporting health-related unemployment and unemployed but seeking work, the organizational factor was not included in the models for these outcomes.
Among employed survivors, models were also fit to examine full-time versus part-time employment, professional/managerial occupations, and blue collar/service physical and nonphysical occupations. Because of potential differences for male and female survivors, we generated sex-stratified models. All models were adjusted for age, race, time since treatment, recurrence, and secondary cancers, and as relevant, sex. As secondary analyses, models were fit to examine the impact of educational attainment and cranial radiation exposure on our outcomes. Because higher doses of cranial radiation are associated with educational difficulties (9, 29), these variables were examined separately.
Finally, we calculated proportions reporting limitations within each of the 6 mutually exclusive employment status and occupational categories (not in the labor force, health-related unemployment, unemployed but seeking work, professional occupation, nonphysical occupation, or physical occupation) adjusted for age, sex, and race. We compared these with the expected proportions of impairment by using the standardization samples for the SF-36 and BSI and normed sibling data for the CCSS–NCQ. Analyses were done by using Stata version 11.0 (Stata Corp). All reported P values were 2-sided, considered significant at α = 0.05, and were not adjusted for multiple comparisons. The sex-specific models are subanalyses of the total models, so these are not independent tests. Because of the large number of statistical tests being carried out, P values between 0.05 and 0.01 should be viewed with some caution.
Results
Survivors tended to be younger than 35 years (55.6%) and non-Hispanic white (88%) and were similarly composed of males (49.8%) and females (50.2%). The most frequently occurring cancer diagnosis was leukemia (30.1%), and the majority of survivors (72.4%) were exposed to some level of cranial radiation. When examined by sex (Table 1), female survivors were married more often than males (55.3% vs. 51.3%), less likely to have NHL than other cancers (5.7% vs. 12.0% of males), and more likely to report secondary malignancies than males (7.4% vs. 3.2%).
Female survivors were more likely to not be in the labor force (20% vs. 5% of males). However, if employed, female survivors were in professional/managerial occupations more often than males (59% compared with 53%), whereas only 3% of employed females held blue collar/service jobs requiring physical activity compared with 15% of males. In Table 2, survivors who were unemployed because of health had the highest levels of functional loss, most notably in physical health (72%), task efficiency (62%), and memory (54%).
Proportions of survivors reporting normal and low SF-36, BSI, and NCQ by employment and occupational status
. | Employment status . | Occupational categories . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | Not currently employed n = 1,293 . | Employed n = 4,093c . | n = 3,763d . | |||||||||
. | Total . | Not in the labor forcebn = 639 (11.9%) . | Health-related unemploymentbn = 399 (7.4%) . | Unemployed but seeking workb n = 255 (4.7%) . | . | Full-time n = 3,699 (68.7%) . | Part-time n = 394 (7.3%) . | . | Total . | Professional/managerial n = 2,094 (55.6%) . | Service/Blue collar . | . |
. | . | . | . | . | . | . | . | . | . | Nonphysical n = 1,317 (35.0%) . | Physical n = 352 (9.4%) . | . |
. | n = 5,386 . | n (%) . | n (%) . | n (%) . | . | n (%) . | n (%) . | . | n = 3,763 . | n (%) . | n (%) . | n (%) . |
SF-36a | ||||||||||||
Physical health | ||||||||||||
≥40 (normal) | 4,509 | 534 (84) | 113 (28) | 205 (80) | 3,335 (90) | 322 (82) | 3,369 | 1,896 (91) | 1,159 (88) | 314 (89) | ||
<40 (low) | 877 | 105 (16) | 286 (72) | 50 (20) | 364 (10) | 72 (18) | 394 | 198 (9) | 158 (12) | 38 (11) | ||
Mental health | ||||||||||||
≥40 (normal) | 4,429 | 515 (81) | 254 (64) | 160 (63) | 3,191 (86) | 309 (78) | 3,218 | 1,802 (86) | 1,107 (84) | 309 (88) | ||
<40 (low) | 957 | 124 (19) | 145 (36) | 95 (37) | 508 (14) | 85 (22) | 545 | 292 (14) | 210 (16) | 43 (12) | ||
BSIa | ||||||||||||
Depression | ||||||||||||
<63 (normal) | 4,771 | 572 (90) | 273 (68) | 189 (74) | 3,393 (92) | 344 (87) | 3,433 | 1,935 (92) | 1,185 (90) | 313 (89) | ||
≥63 (low) | 615 | 67 (10) | 126 (32) | 66 (26) | 306 (8) | 50 (13) | 330 | 159 (8) | 132 (10) | 39 (11) | ||
Somatization | ||||||||||||
<63 (normal) | 4,629 | 557 (87) | 207 (52) | 199 (78) | 3,326 (90) | 340 (86) | 3,376 | 1,912 (91) | 1,159 (88) | 305 (87) | ||
≥63 (low) | 757 | 82 (13) | 192 (48) | 56 (22) | 373 (10) | 54 (14) | 387 | 182 (9) | 158 (12) | 47 (13) | ||
Anxiety | ||||||||||||
<63 (normal) | 4,987 | 599 (94) | 319 (80) | 219 (86) | 3,482 (94) | 368 (93) | 3,531 | 1,981 (95) | 1,229 (93) | 321 (91) | ||
≥63 (low) | 399 | 40 (6) | 80 (20) | 36 (14) | 217 (6) | 26 (7) | 232 | 113 (5) | 88 (7) | 31 (9) | ||
NCQa | ||||||||||||
Task efficiency | ||||||||||||
<63 (normal) | 4,183 | 480 (75) | 152 (38) | 164 (64) | 3,127 (85) | 260 (66) | 3,117 | 1,786 (85) | 1,039 (79) | 292 (83) | ||
≥63 (low) | 1,203 | 159 (25) | 247 (62) | 91 (36) | 572 (15) | 134 (34) | 646 | 308 (15) | 278 (21) | 60 (17) | ||
Emotional regulation | ||||||||||||
<63 (normal) | 4,297 | 487 (76) | 230 (58) | 175 (68) | 3,104 (84) | 301 (76) | 3,128 | 1,797 (86) | 1,051 (80) | 280 (80) | ||
≥63 (low) | 1,089 | 152 (24) | 169 (42) | 80 (31) | 595 (16) | 93 (24) | 635 | 297 (14) | 266 (20) | 72 (20) | ||
Organization | ||||||||||||
<63 (normal) | 4,701 | 556 (87) | 302 (76) | 211 (83) | 3,307 (89) | 325 (82) | 3,332 | 1,842 (88) | 1,172 (89) | 318 (90) | ||
≥63 (low) | 685 | 83 (13) | 97 (24) | 44 (17) | 392 (11) | 69 (18) | 431 | 252 (12) | 145 (11) | 34 (10) | ||
Memory | ||||||||||||
<63 (normal) | 4,065 | 467 (73) | 183 (46) | 173 (68) | 2,983 (81) | 259 (66) | 2,976 | 1,718 (82) | 972 (74) | 286 (81) | ||
≥63 (low) | 1,321 | 172 (27) | 216 (54) | 82 (32) | 716 (19) | 135 (34) | 787 | 376 (18) | 345 (26) | 66 (19) |
. | Employment status . | Occupational categories . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | Not currently employed n = 1,293 . | Employed n = 4,093c . | n = 3,763d . | |||||||||
. | Total . | Not in the labor forcebn = 639 (11.9%) . | Health-related unemploymentbn = 399 (7.4%) . | Unemployed but seeking workb n = 255 (4.7%) . | . | Full-time n = 3,699 (68.7%) . | Part-time n = 394 (7.3%) . | . | Total . | Professional/managerial n = 2,094 (55.6%) . | Service/Blue collar . | . |
. | . | . | . | . | . | . | . | . | . | Nonphysical n = 1,317 (35.0%) . | Physical n = 352 (9.4%) . | . |
. | n = 5,386 . | n (%) . | n (%) . | n (%) . | . | n (%) . | n (%) . | . | n = 3,763 . | n (%) . | n (%) . | n (%) . |
SF-36a | ||||||||||||
Physical health | ||||||||||||
≥40 (normal) | 4,509 | 534 (84) | 113 (28) | 205 (80) | 3,335 (90) | 322 (82) | 3,369 | 1,896 (91) | 1,159 (88) | 314 (89) | ||
<40 (low) | 877 | 105 (16) | 286 (72) | 50 (20) | 364 (10) | 72 (18) | 394 | 198 (9) | 158 (12) | 38 (11) | ||
Mental health | ||||||||||||
≥40 (normal) | 4,429 | 515 (81) | 254 (64) | 160 (63) | 3,191 (86) | 309 (78) | 3,218 | 1,802 (86) | 1,107 (84) | 309 (88) | ||
<40 (low) | 957 | 124 (19) | 145 (36) | 95 (37) | 508 (14) | 85 (22) | 545 | 292 (14) | 210 (16) | 43 (12) | ||
BSIa | ||||||||||||
Depression | ||||||||||||
<63 (normal) | 4,771 | 572 (90) | 273 (68) | 189 (74) | 3,393 (92) | 344 (87) | 3,433 | 1,935 (92) | 1,185 (90) | 313 (89) | ||
≥63 (low) | 615 | 67 (10) | 126 (32) | 66 (26) | 306 (8) | 50 (13) | 330 | 159 (8) | 132 (10) | 39 (11) | ||
Somatization | ||||||||||||
<63 (normal) | 4,629 | 557 (87) | 207 (52) | 199 (78) | 3,326 (90) | 340 (86) | 3,376 | 1,912 (91) | 1,159 (88) | 305 (87) | ||
≥63 (low) | 757 | 82 (13) | 192 (48) | 56 (22) | 373 (10) | 54 (14) | 387 | 182 (9) | 158 (12) | 47 (13) | ||
Anxiety | ||||||||||||
<63 (normal) | 4,987 | 599 (94) | 319 (80) | 219 (86) | 3,482 (94) | 368 (93) | 3,531 | 1,981 (95) | 1,229 (93) | 321 (91) | ||
≥63 (low) | 399 | 40 (6) | 80 (20) | 36 (14) | 217 (6) | 26 (7) | 232 | 113 (5) | 88 (7) | 31 (9) | ||
NCQa | ||||||||||||
Task efficiency | ||||||||||||
<63 (normal) | 4,183 | 480 (75) | 152 (38) | 164 (64) | 3,127 (85) | 260 (66) | 3,117 | 1,786 (85) | 1,039 (79) | 292 (83) | ||
≥63 (low) | 1,203 | 159 (25) | 247 (62) | 91 (36) | 572 (15) | 134 (34) | 646 | 308 (15) | 278 (21) | 60 (17) | ||
Emotional regulation | ||||||||||||
<63 (normal) | 4,297 | 487 (76) | 230 (58) | 175 (68) | 3,104 (84) | 301 (76) | 3,128 | 1,797 (86) | 1,051 (80) | 280 (80) | ||
≥63 (low) | 1,089 | 152 (24) | 169 (42) | 80 (31) | 595 (16) | 93 (24) | 635 | 297 (14) | 266 (20) | 72 (20) | ||
Organization | ||||||||||||
<63 (normal) | 4,701 | 556 (87) | 302 (76) | 211 (83) | 3,307 (89) | 325 (82) | 3,332 | 1,842 (88) | 1,172 (89) | 318 (90) | ||
≥63 (low) | 685 | 83 (13) | 97 (24) | 44 (17) | 392 (11) | 69 (18) | 431 | 252 (12) | 145 (11) | 34 (10) | ||
Memory | ||||||||||||
<63 (normal) | 4,065 | 467 (73) | 183 (46) | 173 (68) | 2,983 (81) | 259 (66) | 2,976 | 1,718 (82) | 972 (74) | 286 (81) | ||
≥63 (low) | 1,321 | 172 (27) | 216 (54) | 82 (32) | 716 (19) | 135 (34) | 787 | 376 (18) | 345 (26) | 66 (19) |
aSF-36: component scores <40 indicate low physical or mental health functioning; BSI: ≥63 indicates psychological distress; NCQ: ≥63 indicates poor functioning.
bNot in the labor force (retired, in school, or taking care of family); health-related unemployment (unable work because of illness or disability); unemployed but seeking work (unemployed but actively looking for work).
cEmployed = Currently full time (≥30 hours per week) or part time (<30 hours per week).
dOccupation limited to participants currently employed that reported their occupation.
Employment status
None of the physical, emotional, or neurocognitive risk factors were associated with not participating in the labor force (retired, student, or taking care of family; data not shown). The results of the regression models examining the association between physical, emotional, or neurocognitive health and health-related unemployment, unemployed but seeking work, and full-time vs. part-time employment are shown in Table 3. Overall, survivors with impaired physical health were at a high risk for health-related unemployment (RR = 7.83, 95% CI: 6.11–10.04) when compared with those reporting normal physical health. In sex-stratified models, male survivors with deficits in physical health, somatization, task efficiency, and memory were at a higher risk for health-related unemployment, whereas among female survivors, only physical health (RR = 7.75, 95% CI: 5.57–10.77) and task efficiency (RR = 2.28, 95% CI: 1.70–3.05) were significant.
Survivor RRs and 95% CIs for employment status by sex
. | Health-related unemployment . | Unemployed but seeking work . | Full-time versus Part-time work . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | Total n = 4,735 . | Male n = 2,546 . | Female n = 2,189 . | Total n = 4,735 . | Male n = 2,546 . | Female n = 2,189 . | Total n = 4,085 . | Male n = 2,241 . | Female n = 1,844 . |
. | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . |
SF-36a | |||||||||
Physical health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 7.83d(6.11–10.04) | 7.75d(5.35–11.24) | 7.75d(5.57–10.77) | 0.94 (0.65–1.37) | 1.04 (0.58–1.83) | 0.88 (0.55–1.45) | 0.94c(0.90–0.98) | 0.93b(0.87–0.98) | 0.94 (0.88–1.01) |
Mental health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 1.20 (0.98–1.48) | 1.35 (0.98–1.85) | 1.09 (0.83–1.43) | 2.08d(1.48–2.91) | 2.50d(1.53–4.11) | 1.76b(1.11–2.75) | 0.98 (0.94–1.02) | 1.02 (0.99–1.06) | 0.96 (0.89–1.02) |
BSIa | |||||||||
Depression | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.15 (0.92–1.43) | 0.99 (0.69–1.40) | 1.30 (0.97–1.73) | 1.57b(1.10–2.24) | 1.62b(1.00–2.63) | 1.39 (0.81–2.43) | 0.99 (0.94–1.04) | 0.96 (0.92–1.01) | 1.00 (0.89–1.12) |
Somatization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.32c(1.08–1.61) | 1.48b(1.08–2.02) | 1.23 (0.95–1.59) | 1.14 0.79–1.66) | 1.35 (0.79–2.31) | 0.98 (0.60–1.53) | 1.03 (0.99–1.07) | 1.02 (0.97–1.07) | 1.04 (0.97–1.12) |
Anxiety | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.88 (0.69–1.12) | 0.77 (0.53–1.12) | 0.95 (0.70–1.30) | 0.77 (0.52–1.15) | 0.86 (0.51–1.45) | 0.66 (0.35–1.24) | 1.04 (0.99–1.09) | 1.00 (0.96–1.06) | 1.09 (0.97–1.22) |
NCQa | |||||||||
Task efficiency | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 2.38d(1.89–3.01) | 2.43d(1.67–3.53) | 2.28d(1.70–3.05) | 1.39b(1.02–1.91) | 1.35 (0.85–2.13) | 1.46 (0.96–2.23) | 0.91d(0.87–0.94) | 0.93c(0.89–0.97) | 0.87d(0.81–0.94) |
Emotional regulation | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.92 (0.75–1.13) | 0.82 (0.59–1.13) | 1.02 (0.78–1.34) | 1.08 (0.79–1.49) | 1.11 (0.71–1.74) | 1.11 (0.71–1.72) | 1.00 (0.98–1.04) | 1.04b(1.00–1.07) | 0.98 (0.92–1.04) |
Organization | |||||||||
<63 (ref) | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 |
≥63 | 0.99 (0.95–1.04) | 0.96 (0.93–1.00) | 1.04 (0.97–1.12) | ||||||
Memory | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.23b(1.01–1.50) | 1.45b(1.04–2.03) | 1.15 (0.90–1.47) | 0.91 (0.67–1.24) | 0.78 (0.50–1.22) | 1.01 (0.73–1.53) | 0.97 (0.94–1.01) | 0.97b(0.93–1.00) | 0.97 (0.91–1.03) |
. | Health-related unemployment . | Unemployed but seeking work . | Full-time versus Part-time work . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | Total n = 4,735 . | Male n = 2,546 . | Female n = 2,189 . | Total n = 4,735 . | Male n = 2,546 . | Female n = 2,189 . | Total n = 4,085 . | Male n = 2,241 . | Female n = 1,844 . |
. | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . |
SF-36a | |||||||||
Physical health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 7.83d(6.11–10.04) | 7.75d(5.35–11.24) | 7.75d(5.57–10.77) | 0.94 (0.65–1.37) | 1.04 (0.58–1.83) | 0.88 (0.55–1.45) | 0.94c(0.90–0.98) | 0.93b(0.87–0.98) | 0.94 (0.88–1.01) |
Mental health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 1.20 (0.98–1.48) | 1.35 (0.98–1.85) | 1.09 (0.83–1.43) | 2.08d(1.48–2.91) | 2.50d(1.53–4.11) | 1.76b(1.11–2.75) | 0.98 (0.94–1.02) | 1.02 (0.99–1.06) | 0.96 (0.89–1.02) |
BSIa | |||||||||
Depression | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.15 (0.92–1.43) | 0.99 (0.69–1.40) | 1.30 (0.97–1.73) | 1.57b(1.10–2.24) | 1.62b(1.00–2.63) | 1.39 (0.81–2.43) | 0.99 (0.94–1.04) | 0.96 (0.92–1.01) | 1.00 (0.89–1.12) |
Somatization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.32c(1.08–1.61) | 1.48b(1.08–2.02) | 1.23 (0.95–1.59) | 1.14 0.79–1.66) | 1.35 (0.79–2.31) | 0.98 (0.60–1.53) | 1.03 (0.99–1.07) | 1.02 (0.97–1.07) | 1.04 (0.97–1.12) |
Anxiety | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.88 (0.69–1.12) | 0.77 (0.53–1.12) | 0.95 (0.70–1.30) | 0.77 (0.52–1.15) | 0.86 (0.51–1.45) | 0.66 (0.35–1.24) | 1.04 (0.99–1.09) | 1.00 (0.96–1.06) | 1.09 (0.97–1.22) |
NCQa | |||||||||
Task efficiency | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 2.38d(1.89–3.01) | 2.43d(1.67–3.53) | 2.28d(1.70–3.05) | 1.39b(1.02–1.91) | 1.35 (0.85–2.13) | 1.46 (0.96–2.23) | 0.91d(0.87–0.94) | 0.93c(0.89–0.97) | 0.87d(0.81–0.94) |
Emotional regulation | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.92 (0.75–1.13) | 0.82 (0.59–1.13) | 1.02 (0.78–1.34) | 1.08 (0.79–1.49) | 1.11 (0.71–1.74) | 1.11 (0.71–1.72) | 1.00 (0.98–1.04) | 1.04b(1.00–1.07) | 0.98 (0.92–1.04) |
Organization | |||||||||
<63 (ref) | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 |
≥63 | 0.99 (0.95–1.04) | 0.96 (0.93–1.00) | 1.04 (0.97–1.12) | ||||||
Memory | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.23b(1.01–1.50) | 1.45b(1.04–2.03) | 1.15 (0.90–1.47) | 0.91 (0.67–1.24) | 0.78 (0.50–1.22) | 1.01 (0.73–1.53) | 0.97 (0.94–1.01) | 0.97b(0.93–1.00) | 0.97 (0.91–1.03) |
Outcomes: health-related unemployment (unable work because of illness or disability); seeking work (unemployed but actively looking for work); currently employed full time (≥30 hours per week) versus part time (<30 hours per week) employment. Models adjusted for age, race, time since treatment, recurrence, and secondary cancers. The “total” models are also adjusted for sex. Because of collinearity with the other NCQ factors and the small number of survivors with organizational limitations for those reporting health-related unemployment and seeking work, we did not include organization in the models for these outcomes. Models for unemployment exclude 639 survivors who are not in the labor force (retired, in school, or taking care of family); 12 additional survivors were missing covariate information.
aSF-36: component scores <40 indicate low physical or mental health functioning; BSI: ≥63 indicates psychological distress; NCQ: ≥63 indicates poor functioning.
bSignificant at <0.05.
cSignificant at <0.01.
dSignificant at <0.001.
Because of the complex relationship among demographic factors, treatment, and functioning, we ran separate secondary analyses to assess the impact of cranial radiation therapy and educational attainment (data not shown in tables). Adjusting for cranial radiation exposure did not substantially change the estimates, although memory was no longer significant for males. When adjusted for educational attainment, the relative risks for physical health attenuated but remained significant.
Poor mental health, depression, and task efficiency problems were associated with a higher risk of being unemployed but seeking work (Table 3). In gender-stratified models, poor mental health was associated more strongly with the outcome for males (RR = 2.50, 95% CI: 1.53–4.11) than females (RR = 1.76, 95% CI: 1.11–2.75; interaction P = 0.03), whereas task efficiency was not significant for either sex. Depression was moderately associated with a 62% higher risk for males (RR = 1.62, 95% CI: 1.00–2.63). Neither cranial radiation nor education changed the estimates except that depression was no longer significant in the male-stratified models.
The third set of models examined full-time versus part-time employment status among employed survivors. Physical health deficits were associated with a 7% decreased likelihood of full-time employment for males and a similar, although nonsignificant, risk for females. Task efficiency limitations resulted in a lower likelihood of working full-time for both male (RR = 0.93, 95% CI: 0.89–0.97) and female (RR = 0.87, 95% CI: 0.81–0.94) survivors. For males, emotional regulation limitations had a slightly elevated association with full-time employment (RR = 1.04, 95% CI: 1.00–1.07), and a decreased association with memory limitations (RR = 0.97, 95% CI: 0.93–1.00), although the significance for both were eliminated when cranial radiation was included.
Occupational categories
Professional/managerial.
Somatization and problems in task efficiency, emotional regulation, and memory all conferred a 10% to 15% lower likelihood of working in a professional occupation (Table 4). In sex-stratified models, female survivors with task, emotion, and memory problems were 13% to 20% less likely to be working in professional occupations, whereas there were no significant associations with these factors for males. Organizational problems for males and females were associated with an approximately 20% higher likelihood of this outcome, and female survivors reporting anxiety were at a higher risk (RR = 1.24, 95% CI: 1.00–1.53). Including either cranial radiation or education eliminated the association of task completion for females.
Survivor RRs and 95% CIs for occupational categories by sex
. | Professional/Managerial . | Blue collar-service: nonphysical . | Blue collar-service: physical . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . |
. | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . |
SF-36a | |||||||||
Physical health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 0.93 (0.84–1.03) | 0.84 (0.70–1.01) | 1.00 (0.88–1.13) | 1.09 (0.95–1.28) | 1.18 (0.95–1.47) | 1.03 (0.86–1.23) | 1.09 (0.76–1.55) | 1.21 (0.82–1.77) | 0.75 (0.30–1.90) |
Mental health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
<40 | 1.07 (0.97–1.18) | 1.09 (0.93–1.27) | 1.06 (0.93–1.19) | 0.99 (0.86–1.14) | 0.99 (0.79–1.26) | 0.97 (0.82–1.15) | 0.72 (0.50–1.05) | 0.77 (0.50–1.19) | 0.58 (0.26–1.32) |
BSIa | |||||||||
Depression | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.95 (0.83–1.09) | 0.94 (0.78–1.13) | 0.94 (0.77–1.16) | 1.05 (0.88–1.26) | 1.08 (0.85–1.39) | 1.04 (0.81–1.34) | 1.11 (0.75–1.65) | 1.03 (0.65–1.63) | 1.71 (0.66–4.40) |
Somatization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.88b(0.78–0.99) | 0.86 (0.71–1.05) | 0.90 (0.78–1.04) | 1.06 (0.91–1.23) | 1.03 (0.81–1.31) | 1.09 (0.91–1.32) | 1.51b(1.07–2.12) | 1.39 (0.95–2.03) | 1.91 (0.89–4.08) |
Anxiety | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.05 (0.90–1.22) | 0.94 (0.75–1.16) | 1.24b(1.00–1.53) | 0.88 (0.72–1.07) | 1.07 (0.81–1.40) | 0.69b(0.51–0.93) | 1.16 (0.75–1.80) | 1.06 (0.66–1.69) | 1.71 (0.49–5.95) |
NCQa | |||||||||
Task efficiency | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
≥63 | 0.90b(0.82–1.00) | 0.93 (0.80–1.07) | 0.87b(0.76–1.00) | 1.14b(1.00–1.29) | 1.14 (0.94–1.39) | 1.16 (0.99–1.36) | 1.00 (0.73–1.36) | 0.94 (0.66–1.33) | 1.22 (0.58–2.57) |
Emotional regulation | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.85c(0.77–0.94) | 0.88 (0.76–1.02) | 0.82c(0.72–0.94) | 1.12b(1.00–1.26) | 0.97 (0.80–1.17) | 1.26c(1.09–1.46) | 1.47c(1.13–1.92) | 1.55c(1.16–2.07) | 1.16 (0.55–2.45) |
Organization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.21d(1.11–1.33) | 1.21c(1.07–1.37) | 1.22c(1.08–1.39) | 0.80c(0.69–0.93) | 0.85 (0.69–1.05) | 0.74c(0.61–0.91) | 0.77 (0.54–1.09) | 0.71 (0.48–1.05) | 1.19 (0.56–2.56) |
Memory | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.86c(0.78–0.94) | 0.93 (0.81–1.06) | 0.80d(0.71–0.90) | 1.27d(1.13–1.42) | 1.18 (0.99–1.42) | 1.32d (1.14–1.53) | 0.89 (0.66–1.20) | 0.86 (0.62–1.19) | 1.08 (0.52–2.28) |
. | Professional/Managerial . | Blue collar-service: nonphysical . | Blue collar-service: physical . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . | Total n = 3,757 . | Male n = 2,050 . | Female n = 1,707 . |
. | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . | RR (95% CI) . |
SF-36a | |||||||||
Physical health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
<40 | 0.93 (0.84–1.03) | 0.84 (0.70–1.01) | 1.00 (0.88–1.13) | 1.09 (0.95–1.28) | 1.18 (0.95–1.47) | 1.03 (0.86–1.23) | 1.09 (0.76–1.55) | 1.21 (0.82–1.77) | 0.75 (0.30–1.90) |
Mental health | |||||||||
≥40 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
<40 | 1.07 (0.97–1.18) | 1.09 (0.93–1.27) | 1.06 (0.93–1.19) | 0.99 (0.86–1.14) | 0.99 (0.79–1.26) | 0.97 (0.82–1.15) | 0.72 (0.50–1.05) | 0.77 (0.50–1.19) | 0.58 (0.26–1.32) |
BSIa | |||||||||
Depression | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.95 (0.83–1.09) | 0.94 (0.78–1.13) | 0.94 (0.77–1.16) | 1.05 (0.88–1.26) | 1.08 (0.85–1.39) | 1.04 (0.81–1.34) | 1.11 (0.75–1.65) | 1.03 (0.65–1.63) | 1.71 (0.66–4.40) |
Somatization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.88b(0.78–0.99) | 0.86 (0.71–1.05) | 0.90 (0.78–1.04) | 1.06 (0.91–1.23) | 1.03 (0.81–1.31) | 1.09 (0.91–1.32) | 1.51b(1.07–2.12) | 1.39 (0.95–2.03) | 1.91 (0.89–4.08) |
Anxiety | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.05 (0.90–1.22) | 0.94 (0.75–1.16) | 1.24b(1.00–1.53) | 0.88 (0.72–1.07) | 1.07 (0.81–1.40) | 0.69b(0.51–0.93) | 1.16 (0.75–1.80) | 1.06 (0.66–1.69) | 1.71 (0.49–5.95) |
NCQa | |||||||||
Task efficiency | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
≥63 | 0.90b(0.82–1.00) | 0.93 (0.80–1.07) | 0.87b(0.76–1.00) | 1.14b(1.00–1.29) | 1.14 (0.94–1.39) | 1.16 (0.99–1.36) | 1.00 (0.73–1.36) | 0.94 (0.66–1.33) | 1.22 (0.58–2.57) |
Emotional regulation | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.85c(0.77–0.94) | 0.88 (0.76–1.02) | 0.82c(0.72–0.94) | 1.12b(1.00–1.26) | 0.97 (0.80–1.17) | 1.26c(1.09–1.46) | 1.47c(1.13–1.92) | 1.55c(1.16–2.07) | 1.16 (0.55–2.45) |
Organization | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 1.21d(1.11–1.33) | 1.21c(1.07–1.37) | 1.22c(1.08–1.39) | 0.80c(0.69–0.93) | 0.85 (0.69–1.05) | 0.74c(0.61–0.91) | 0.77 (0.54–1.09) | 0.71 (0.48–1.05) | 1.19 (0.56–2.56) |
Memory | |||||||||
<63 (ref) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
≥63 | 0.86c(0.78–0.94) | 0.93 (0.81–1.06) | 0.80d(0.71–0.90) | 1.27d(1.13–1.42) | 1.18 (0.99–1.42) | 1.32d (1.14–1.53) | 0.89 (0.66–1.20) | 0.86 (0.62–1.19) | 1.08 (0.52–2.28) |
Models include only employed survivors and are adjusted for age, race, time since treatment, recurrence and secondary cancers. The “total” models are also adjusted for sex.
aSF-36: component scores <40 indicate low physical or mental health functioning; BSI: ≥63 indicates psychological distress; NCQ: ≥63 indicates poor functioning. Of the 3,763 survivors with available occupation, 6 were missing covariate information.
bSignificant at <0.05.
cSignificant at <0.01.
dSignificant at <0.001.
Service-blue collar–nonphysical and physical.
NCQ factors of task efficiency, emotional regulation, and memory problems were associated with a higher likelihood of a blue collar or service job that did not require physical activity (Table 4). Only females showed significant differences for working in nonphysical occupations, with emotional (RR = 1.26, 95% CI: 1.09–1.46) and memory problems (RR = 1.32, 95% CI: 1.14–1.53) imparting a higher risk and anxiety and organizational problems associated with a lower risk. For physical jobs, only emotional regulation deficit was significant for males in sex-stratified models (RR = 1.55, 95% CI: 1.16–2.07). When cranial radiation was included, organizational deficits became significantly associated with a lower likelihood of having a physical occupation for males (RR = 0.63, 95% CI: 0.40–0.99).
Unemployment and occupations–adjusted proportions
Figure 1 displays the proportions reporting limitations in the SF-36, BSI, and NCQ by employment status adjusted for age, sex, and race. Low physical health was reported by 70% of survivors unemployed because of health and 20% who were currently seeking employment. Approximately 35% of survivors indicating health-related unemployment or seeking work had poor mental health. Physical health and mental health did not differ substantially among employed survivors or those not in the labor force and were similar to population norms.
Adjusted proportions and 95% confidence intervals (95% CI) of survivors reporting limitations by employment status. Proportions adjusted for age, sex, and race; unemployed categories: not in the labor force (retired, in school, or taking care of family); health-related (unable work because of illness or disability); seeking work (unemployed but actively looking for work). A, dashed line represents SF-36 and BSI expected proportions of impairment by using a threshold developed in the standardization sample; BSI categories: depress = depression; somat = somatization. B, dashed line represents NCQ expected proportions of impairment by using a threshold developed in the CCSS sibling data; NCQ categories: task = task efficiency; emotion = emotional regulation; org = organization; mem = memory.
Adjusted proportions and 95% confidence intervals (95% CI) of survivors reporting limitations by employment status. Proportions adjusted for age, sex, and race; unemployed categories: not in the labor force (retired, in school, or taking care of family); health-related (unable work because of illness or disability); seeking work (unemployed but actively looking for work). A, dashed line represents SF-36 and BSI expected proportions of impairment by using a threshold developed in the standardization sample; BSI categories: depress = depression; somat = somatization. B, dashed line represents NCQ expected proportions of impairment by using a threshold developed in the CCSS sibling data; NCQ categories: task = task efficiency; emotion = emotional regulation; org = organization; mem = memory.
For the BSI and NCQ subscales, again both the health-related unemployment and seeking work groups reported the highest frequency of limitations. Survivors reporting health-related unemployment were most impaired; 47% of them reported somatization, 62% had task limitations, and 54% had memory problems. Survivors unemployed but seeking work also had depression, somatization, and neurocognitive deficits in levels above the norms. Whereas the employed survivors had BSI scores at or below population norm levels, for the blue collar/service occupations, NCQ task, emotion, and memory limitations were all somewhat higher than the normed sibling comparison.
Discussion
This study is the first to explore the relationships of psychosocial, physical, and neurocognitive health on different aspects of unemployment and occupational status for adult survivors of childhood cancer. Our findings suggest that multiple health domains influence unemployment and occupational status and that these factors may be dissimilar among male and female survivors. Although comparisons by sex should be interpreted cautiously because males and females often have different attachments to the labor force, our findings suggest that interventions to improve employment outcomes for childhood cancer survivors may need to consider how limitations affect work status differentially for males and females. We also found that neurocognitive limitations are associated with a decreased likelihood of working in higher-skill occupations for survivors. In addition, survivors reporting health-related unemployment or being unemployed but seeking work are likely to have limitations in physical, mental, and neurocognitive function at levels above comparison norms.
Childhood cancer survivors face health-related barriers to employment more often than sibling or population-based samples (2, 3), and our analyses suggest that limitations because of physical functioning may drive much of this difference. Survivors with poor physical health were almost 8 times more likely to be unemployed because of health or disability, and this was consistent for both male and female survivors. Survivors with poor physical health were also more likely to work part-time, suggesting that even employed survivors could benefit from strategies to address physical limitations in the workplace. Physical limitations, however, were not significant for the work seeking group. Instead, both active depression and low mental health were associated with being unemployed but seeking work.
Survivors report more frequent executive functioning problems compared with siblings (11). In our analyses, male survivors with task efficiency and memory problems were more likely to report health-related unemployment or to work part-time. Female survivors with task efficiency problems also were at a higher risk for these outcomes. However, we found no association with neurocognitive deficits or for females or males who were retired, in school, or taking care of family. That is, survivors with neurocognitive problems may not be selecting themselves out of the labor force. Instead, survivors with neurocognitive problems may want to work, but face cognitive or health status barriers to gaining or maintaining employment.
Employed female survivors with task efficiency, emotional regulation, and memory limitations were less likely to report working in higher-skilled professional or managerial occupations. Deficits in task efficiency (e.g., ability to finish work or multitask), emotional regulation (e.g., becoming easily frustrated or upset), and memory (e.g., forgetting instructions, difficulty with recall) may be more of an impediment for females in obtaining higher-skilled jobs than males. When we adjusted the models for education and cranial radiation, these associations for females attenuated or disappeared, suggesting that efforts to mitigate educational barriers or late effects from cranial radiation for female survivors could reduce the burden of neurocognitive deficits on their occupational achievement.
In our multivariable models, both female and male survivors with organization problems were more likely to work in professional occupations, compared with the other NCQ factors that conferred a decreased likelihood. The statements comprising the organizational factor–I am disorganized, I have trouble finding things in my bedroom, closet, or desk, and my desk/workspace is a mess—may indicate different things for survivors depending on their underlying health status or their type of occupation. Organizational problems may not become apparent until the survivor is confronted with a busy lifestyle that includes occupational or other higher level obligations. In addition, fewer survivors report organizational limitations compared with the other NCQ factors, suggesting that deficits of task attention, emotion, and memory may be more important to target in employment interventions for this population.
This study has limitations that should be considered when interpreting the results. First, we did not postulate specific hypotheses about the relationship of the SF-36, BSI, and NCQ on our outcomes, in particular by sex. Because of the multiple outcomes investigated, our results should be interpreted cautiously. Second, we did not have information on how long survivors had been unemployed or looking for work, which could differ substantially according to the limitations of a survivor. Also, alternatives to the ≥63 T-score cut-point to indicate psychological distress using for the Global BSI have been suggested (30). Because we were interested in the BSI subscales, we used this cut-point to be consistent with the current literature on cancer survivors and to be conservative in classifications of emotional distress.
These survivors were diagnosed during childhood. We have no information on when the psychosocial, physical, and neurocognitive limitations first emerged nor do we know about their relationship with education or other social outcomes such as marriage, all which may impact adult work status. Finally, although the proportions missing employment status and occupation were minimal, comparison with the sample eligible for this analysis suggest that those missing employment and occupation may be at higher risk for poor employment outcomes because of having a lower education and higher levels of CNS tumors and cranial radiation. Our findings may underestimate the relationship between our measures of interest and unemployment.
In the general population, individuals with health limitations or disabilities are more likely to be unemployed (31). With the recent economic downturn, such individuals may be increasingly vulnerable in the workplace (32) and childhood cancer survivors may face additional risks because of neurocognitive, physical, and mental deficits as a result of their treatment history. Unemployed survivors often lack the necessary resources, such as affordable health insurance, to obtain occupational services to address physical, mental, and neurocognitive deficits that can hamper employment. Although there are legal protections that safeguard survivors from blatant employment discrimination and that obligate employers to provide reasonable accommodations for individuals with limitations (33), childhood cancer survivors continue to be unemployed and underemployed.
Interventions to improve employment outcomes for childhood cancer survivors should target physical health barriers to employment coupled with screening for mental health and neurocognitive problems. Currently employed survivors, especially women reporting neurocognitive deficits, may need education or training services to maximize their occupational potential, whereas unemployed survivors could benefit from assistance in managing any physical barriers to work. Moreover, longitudinal research is needed to identify survivors at risk for physical, mental, and neurocognitive limitations during important developmental periods, such as adolescence, to provide early occupational intervention. Information about the risk of neurocognitive and other deficits, their effect on employment, and legal rights of survivors, as well as recommendations for strategies to improve employment success, need to be widely distributed to survivors, their families, primary care clinicians, and professionals involved in vocational and rehabilitation services.
Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
Grant Support
The Childhood Cancer Survivor Study is funded by the National Cancer Institute (U24 CA55727, principal investigator (L. L. Robison). Support to St. Jude Children's Research Hospital was also provided by the Cancer Center Support (CORE) grant (CA 21765) and by the American, Syrian, Lebanese Associated Charities (ALSAC).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.