Aberrant microRNA (miRNA) expression might be of potential use as diagnostic and prognostic biomarker for cancers. We reviewed studies published until March 2011 which assessed expression of miRNAs in colorectal cancer (CRC)/adenoma tissue and normal colorectal mucosa and in plasma of CRC/adenoma patients and healthy controls. Overall, 20 studies that investigated miRNA expression in tissue and 3 studies that investigated miRNA levels in plasma were included. A total of 160 miRNAs were found to be dysregulated in CRC. MiR-20a and miR-31 were found to be significantly upregulated in more than one study, and miR-143 and miR-145 were found to be significantly downregulated in CRC tissue in six or more studies. MiR-92a was significantly upregulated in CRC patients in two of the plasma-based studies and in CRC tissue in one of the tissue-based studies. Our results provide timely and relevant information for miRNAs as potential diagnostic biomarkers for CRC. The expression of miRNAs in plasma may be indicative of presence of CRC. Larger diagnostic studies are needed to evaluate potential use of miRNA expression in early detection and diagnosis of CRC. Cancer Epidemiol Biomarkers Prev; 20(7); 1272–86. ©2011 AACR.

Colorectal cancer (CRC) is the third most common malignancy in the world, accounting for more than 1 million cases and 500,000 deaths per year (1). Because of its slow development from premalignant lesions, perspectives to reduce the burden of disease by early detection and treatments are particularly promising for this malignancy.

Although colonoscopy is the most reliable method for early detection of CRC and its precursors available to date, the invasive nature and the cost incurred have hampered its widespread application. The fecal occult blood test (FOBT), which is the most widely used noninvasive screening tool so far, is limited by its low sensitivity, especially with respect to detection of preneoplastic lesions (2). Stool DNA tests may be a promising alternative in the future (3), but widespread application is so far limited by labor-intensive handling and high costs. Thus, there is a pressing need for new noninvasive biomarkers to improve early detection of CRC.

MicroRNAs (miRNAs) are small noncoding, 19 to 22 nucleotide sequences of RNA that are involved in the regulation of cellular development, differentiation, proliferation, apoptosis, and metabolism (4). Although the natural mechanisms of the dysregulation of miRNAs are still largely unknown, functional studies have indicated deregulation of miRNAs to be involved in the initiation and progression of human cancers (5). Therefore, aberrant miRNAs expression might be of potential use as diagnostic and prognostic biomarker for cancers.

Although functions of miRNAs are far from being fully understood, it is predicted that approximately 30% of protein-encoding genes are controlled by miRNAs (6). During the past few years, a rapidly increasing number of miRNAs have been discovered. Eighteen years after its set up by Lee and Feinbaum in 1993, the miRBase meanwhile contains 15,172 entries representing hairpin precursor miRNAs, expressing 17,341 mature miRNA products, in 142 species, including 1,344 mature miRNAs in humans (7).

miRNAs play important roles in oncogenesis, and the expression level of miRNAs as antioncogenes is frequently reduced in cancers because of chromosomal aberrations (8), transcriptional regulation, or methylation (9, 10). The levels of miRNAs in serum and plasma are remarkably stable, reproducible, and consistent among individuals of the same species (11, 12). Recently, it has been shown that extracellular miRNAs are predominantly floating exosome free (12). It has been shown that the astonishing stability of extracellular miRNA is explained by binding of miRNA to the Ago2 protein, a part of the RNA-induced silencing complex (12). Turchinovich and colleagues hypothesize that extracellular miRNAs are, in the most part, by-products of dead cells that remain in extracellular space because of the high stability of the Ago2–miRNA complex. If and to what extent miRNA–Ago complexes can be specifically released from cells and confer cell-to-cell communication needs to be investigated. Turchinovich and colleagues show that miRNA remains stable in the extracellular space for at least 1 month, suggesting the possibility of using extracellular miRNA as a biomarker for cancer, tissue/organ damages, and viral infections (12).

Tumor-associated miRNAs have been detected in the serum or plasma from patients suffering from lymphoma, breast, and other cancers (13, 14). Three studies showed that some miRNAs have significantly upregulated or downregulated levels in the plasma of CRC patients, comparing favorably with FOBT for the detection of CRC (15–17). These findings suggest a possible use of miRNAs as novel noninvasive biomarkers for cancer detection.

Several recent articles have reviewed current knowledge about biogenesis and mechanism of action of miRNAs, and the potential role of some miRNAs in the pathogenesis of CRC and their relationship with development, treatment, and prognosis of CRC (18–22). The aim of this article was to assess the differential expression of miRNAs in CRC/adenoma and normal colorectal mucosa and in plasma of CRC patients and healthy controls.

A comprehensive literature search was conducted to identify studies assessing dysregulation of miRNAs in blood or tissues of CRC patients. PubMed (-Mar 18, 2011), EMBASE (Elsevier, Amsterdam, the Netherlands, 1980- Mar 18, 2011), and ISI Web of Knowledge (Thomson Scientific Technical Support, New York, 1945- Mar 18, 2011) databases were searched for relevant articles by the following combinations of relevant terms: (colorectal or colon or rectal or rectum) and (cancer or neoplasm or tumor or carcinoma or malignancy or adenoma) and (microRNA or miRNA or miRNA or let-7; for details of the search process see Supplementary Appendix S1). Duplicate publications were deleted. Each title and abstract was checked for relevance. The full text was reviewed if the abstract indicated that the article reported associations between miRNA expression and CRC. The search was limited to studies on humans published in English. Only full-text articles were included because abstracts did not provide enough information for a detailed review. Only studies examining both colorectal cancer/adenoma tissue and normal colorectal mucosa, as well as plasma-based studies with CRC cases and healthy controls were included.

The following data were extracted from the eligible studies independently by 2 investigators (Luo X and Tao S) in a standardized manner, and any disagreement was resolved by consensus: authors, publication year, country, kind of the samples, characteristics of the study population, laboratory methods, miRNAs detected in the study, miRNAs found to be dysregulated in tissue or plasma of CRC/adenoma patients, and the P values for the association with CRC.

A flow diagram of the search process is given in Figure 1. The searches yielded 1,321 entries. Following removal of 617 duplicates, 704 titles and abstracts were assessed and 240 articles seemed to be potentially relevant for inclusion in the review. A total of 217 articles were excluded for the following reasons: not original articles but reviews, comments, or lectures in conferences (n = 93), not English articles (n = 10), assessments of miRNAs and radiation therapy, chemotherapy (n = 10), assessments of miRNAs in cell lines (n = 9), assessments of polymorphisms of miRNAs (n = 3), assessments of miRNAs' targeting mRNA, acid, enzymes, protein, or genes (n = 59), assessments of miRNAs and methylation (n = 5), methods of detecting miRNAs in CRC (n = 5), data normalizations in miRNAs studies (n = 1), assessments of miRNAs from stool samples (n = 2), critical data not derivable (n = 12), no healthy controls (n = 5), multitissue combined analysis (n = 1), animal experiments (n = 2; Supplementary Appendix S2). Twenty-three studies were included in this review.

Figure 1.

Flow diagram of the literature search process.

Figure 1.

Flow diagram of the literature search process.

Close modal

Three studies (15–17) investigated miRNAs in the plasma from a total number of 333 patients with CRC, 37 patients with advanced colorectal adenoma, and 166 healthy controls. The other 20 studies (23–42) detected miRNAs in the tissues from altogether 1,126 patients with CRC, 66 colorectal adenoma cases, and 936 normal controls. Overall 114 miRNAs were found upregulated in CRC/adenoma compared with normal tissue/plasma, and 50 miRNAs were found downregulated. Four miRNAs (miR-147, miR-191, miR-203, and miR-215) were found to be upregulated in some studies but downregulated in some other studies (Tables 1–3).

Table 1.

Studies assessing miRNAs expression in plasma among colorectal tumor patients and healthy controls

Ref.Author(s), yearStudy populationMethodsNormalization controlsmiR
CountryCases (stage I/II/III/IV)ControlAge mean (range)Tested miRs (No.)Significant miRs (No.)Difference between cases and controls (P)
15 Pu et al., 2010 China 103 (7/38/40/18) CRC 32 healthy CRC 58 (median; 39–84) Control 32 (median; 17–77) SYBR green qRT-PCR – miR-221↑ P = 0.0021 
16 Huang et al., 2010 China 100 (27/25/38/10) CRCa 59 healthya CRC 61 (26–84) SYBR green qRT-PCR miR-16 12 miR-29a↑ P < 0.0001 
   37 advanced adenomasa  Adenoma 55 (34–75)     miR-92a↑ P < 0.0001 
     Control 58 (27–81)     miR-29a↑ P < 0.0001 
          miR-92a↑ P < 0.0001 
17 Ng et al., 2009 China 130 (6/35/39/50) CRCb 75 healthyb CRC 71 (42–91) Cancer microRNA array and SYBR green qRT-PCR RNU6B 95 miR-17–3p↑ P < 0.0001 
     Control 69 (45–85)     miR-92↑ P < 0.0001 
Ref.Author(s), yearStudy populationMethodsNormalization controlsmiR
CountryCases (stage I/II/III/IV)ControlAge mean (range)Tested miRs (No.)Significant miRs (No.)Difference between cases and controls (P)
15 Pu et al., 2010 China 103 (7/38/40/18) CRC 32 healthy CRC 58 (median; 39–84) Control 32 (median; 17–77) SYBR green qRT-PCR – miR-221↑ P = 0.0021 
16 Huang et al., 2010 China 100 (27/25/38/10) CRCa 59 healthya CRC 61 (26–84) SYBR green qRT-PCR miR-16 12 miR-29a↑ P < 0.0001 
   37 advanced adenomasa  Adenoma 55 (34–75)     miR-92a↑ P < 0.0001 
     Control 58 (27–81)     miR-29a↑ P < 0.0001 
          miR-92a↑ P < 0.0001 
17 Ng et al., 2009 China 130 (6/35/39/50) CRCb 75 healthyb CRC 71 (42–91) Cancer microRNA array and SYBR green qRT-PCR RNU6B 95 miR-17–3p↑ P < 0.0001 
     Control 69 (45–85)     miR-92↑ P < 0.0001 

a3 miRs were selected from 12 miRs on a set of plasma samples (20 cases vs. 20 controls), then validated in 80 CRC, 37 advanced adenomas, and 39 healthy controls.

b5 miRs were selected from 95 miRs by comparing miRNA profiles from plasma of 5 CRC patients versus 5 age-matched healthy controls and tissues of 5 CRC patients versus 5 adjacent normal tissues with miRNA Array, then 2 miRs were seclected from the validation on a small set of plasma samples (35 cases vs. 20 controls) by qRT-PCR, then a large-scale validation on plasma samples (90 cases vs. 50 controls).

Table 2.

Studies assessing miRNAs expression in colorectal tumor tissue and nontumor tissue

Ref.Author(s), yearStudy populationMethodsNormalization controlsmiR
CountryCRC (stage I/II/III/IV)/adenoma tissueNontumor tissueAge mean (range)Tested miRs (No.)Significant miRs (No.)Difference between CRC tissue and nontumor tissue
23 Kulda et al., 2010 Czech Republic 46 CRC (10/21/13/2) 46 MNATa 62.8 (39.9–79.1) TaqMan MicroRNA Assays RNU6B miR-21↑  P < 0.0001   
          miR-143↓  P < 0.0001   
   30 colorectal liver metastases 30 MNAT 59.4 (median; 39.6–82.1)  miR-191   miR-21↑  P < 0.0001   
       miR-143↓     P < 0.0001   
24 Chiang et al., 2011 China 107 CRC 107 MNAT 62.1 (17–82) SYBR green qRT-PCR RNU6B miR-203↓  P < 0.001   
25 Earle et al., 2010 United States 55 CRC (5/23/18/1) 55 MNAT 51.3 (25–85) TaqMan MicroRNA Assays Ct method 24 20 miR-17↑ P = 4.38×10−4 miR-135a↑ P = 1.12 ×10−3 miR-26b↓ P = 8.91×10−9   
          miR-20a↑ P = 1.52×10−4 miR-183↑ P = 2.47 ×10−16 miR-143↓ P = 2.47×10−8   
          miR-25↑ P = 3.92×10−7 miR-203↑ P = 3.14 ×10−3 miR-145↓ P = 9.39×10−8   
          miR-31↑ P = 6.02×10−13 miR-223↑ P = 3.69 ×10−2 miR-191↓ P = 3.71×10−6   
          miR-92↑ P = 1.96×10−6  miR-192↓ P = 3.51×10−16   
          miR-93↑ P = 3.33×10−5 let-7a↓ P = 4.93×10−4 miR-196a↓ P = 7.72×10−4   
          miR-133b↑ P = 1.36×10−2 miR-16↓ P = 1.78×10−3 miR-215↓ P = 2.37×10−13   
26 Li et al., 2010 China 66 CRC (17/18/22/9) 66 MNAT SYBR green qRT-PCR RNU6B miR-126↓  P < 0.001   
27 Liu et al., 2010 China 81 CRC 81 MNAT 57.4 qRT-PCR RNU6B - miR-195 ↓  P < 0.01   
28 Wang et al., 2010 China 3 colonic tumor tissue 3 MNAT microRNA microarray andTaqMan MicroRNA Assays  723 14b miR-18a↑ miR-135b↑ miR-374a↑   
          miR-18b↑ miR-196b ↑ miR-424↑   
          miR-19a ↑ miR-224 ↑ miR-378↓   
          miR-20a* ↑ miR-301b↑ miR-378*↓   
          miR-106b ↑ miR-335 ↑ (miR-18a,135b were validated by qRT-PCR)   
29 Wang et al., 2009 China 98 (I+II 45/III+IV 53) 98 MNAT 54.3 TaqMan MicroRNA Assays 5S rRNA miR-31↑ P = 0.001    
     (24–83) miR-145↓ P = 0.001        
30 Diosdado et al., 2009 The Netherlands 55 (30 adenomas 25 adenocar- cinomas) 10 normal mucosa Case 68.4 (47–88) TaqMan MicroRNA Assays RNU48 miR-17↑ P = 0.001 miR-19b-1↑ P = 0.021    
      Control 68 miR-18a↑ p = 0.04 miR-20a ↑ P = 0.001       
          miR-19a↑ P < 0.001 miR-92a-1↑ P < 0.001    
31 Sarver et al., 2009 United States 80 colon cancer 28 normal colon tissue SYBR green qRT-PCR RNU6B 735 39 miR-17–3p↑ P = 7.59 ×10−14 miR-552↑ P = 1.72×10−8 miR-138↓ P = 0   
          miR-31↑ P = 0 miR-584 ↑ P = 0 miR-139↓ P = 0   
          miR-32 ↑ P = 1.97×10−5 HS_287 ↑ P = 3.87×10−8 miR-147↓ P = 0   
          miR-33 ↑ P = 1.76×10−9 HS_29 ↑ P = 1.91×10−9 miR-328↓ P = 2.62×10−14   
          miR-96 ↑ P = 7.11×10−14 miR-1↓ P = 2.33×10−11 miR-363↓ P = 1.30×10−7   
          miR-135b↑ P = 0 miR-9↓ P = 0 miR-375↓ P = 0   
          miR-182 ↑ P = 0 miR-9*↓ P = 0 miR-378↓ P = 0   
          miR-182*↑ P = 0 miR-10b↓ P = 2.66×10−15 miR-486↓ P = 6.90×10−9   
          miR-183 ↑ p = 0 miR-20b↓ p = 1.90×10−7 miR-497↓ P = 0   
          miR-188 ↑ P = 1.20×10−11 miR-30a-3p↓ P = 0 miR-511↓ P = 2.22×10−16   
          miR-224 ↑ P = 0 miR-30a-5p↓ P = 0 miR-551b↓ P = 0   
          miR-503 ↑ P = 0 miR-133a↓ P = 9.55×10−15 miR-642↓ P = 0   
          miR-542–5p↑ P = 7.01×10−11 miR-137↓ P = 0 miR-650↓ P = 0   
          (P < 10−16 represent as 0)     
32 Arndt et al., 2009 United States 45 (4/19/20/2) CRC 4 normal colon tissue CRC 62.8 TaqMan MicroRNA Assays A no cDNA control 169 37 miR-18a↑ P = 2.9×10−3 miR-106a↑ P = 5.1×10−4 miR-125a↓ P = 6.40×10−3   
     Control - miR-19a↑ P = 2.3×10−3 miR-106b↑ P = 1.0×10−4 miR-30a-3p↓ P = 7.30×10−4       
          miR-19b↑ P = 3.4×10−3 miR-130b↑ P = 1.2×10−3 miR-30a-5p↓ P = 1.60×10−5   
          miR-20a↑ P = 2.0×10−3 miR-17–5p↑ P = 1.5×10−3 miR-30c↓ P = 4.00×10−4   
          miR-21↑ P = 6.0 x 10−6 miR-181b↑ P = 2.2×10−4 miR-133a↓ P = 6.50×10−4   
          miR-25↑ P = 1.4×10−2 miR-182↑ P = 2.8×10−3 miR-139↓ P = 1.10×10−5   
          miR-29a↑ P = 3.6×10−4 miR-183↑ P = 2.3×10−3 miR-143↓ P = 1.00×10−2   
          miR-29b↑ P = 4.9×10−3 miR-203↑ P = 2.2×10−2 miR-145↓ P = 1.20×10−3   
          miR-31↑ P = 2.6×10−3 miR-224↑ P = 1.1×10−3 miR-195↓ P = 4.20×10−5   
          miR-34a↑ P = 1.5×10−2  miR-378*↓ P = 1.30×10−5   
          miR-93↑ P = 3.4×10−3  miR-422a↓ P = 7.30×10−5   
          miR-95↑ P = 1.1×10−2 miR-1↓ P = 1.6×10−3 miR-422b↓ P = 8.30×10−5   
          miR-96↑ P = 8.4×10−3 miR-10b↓ P = 2.1×10−2 miR-497↓ P = 9.80×10−4   
33 Chen et al., 2009 China 13 CRC 13 MNAT 57.2 qRT-PCR 200 15 miR-31↑ P = 0.016 miR-200a↑ P = 0.036 miR-145↓ P = 0.048   
          miR-92↑ P = 0.049 miR-200c↑ P = 0.033 miR-192↓ P = 0.008   
          miR-103↑ P = 0.002 miR-210↑ P = 0.000 miR-193b↓ P = 0.006   
          miR-142-3p↑ P = 0.016 miR-125b↓ P = 0.010 miR-212↓ P = 1.88×10−9   
          miR-188↑ P = 0.001 miR-143↓ P = 0.001 miR-214↓ P = 5.95×10−7   
34 Schmitz et al., 2009 Germany 18 SSAs 20 Normal colonic mucosal SSAs 60.1 TaqMan MicroRNA Assays RNU48 miR-21 ↑ P < 0.001    
     CRC - miR-181b ↑ P < 0.001        
   20 CRC Control - miR-181b ↑ P < 0.001         
          miR-133↓ P = 0.025    
35 Motoyama et al., 2008 Japan 69 CRC 69 MNAT MicroRNA microarray and TaqMan MicroRNA Assays RNU6B 455 miR-17–5p ↑ P < 0.05 miR-92 ↑ P < 0.05    
          miR-18a ↑ P < 0.05 miR-183 ↑ P < 0.05    
          miR-31 ↑ P < 0.05 miR-143↓ P < 0.05    
          miR-20a ↑ P < 0.05 miR-145↓ P < 0.05    
36 Schetter et al., 2008 United States (test cohort)/China (validation cohort) 197 primary colon tumorc 197 MNATc Test cohort 64.6 (32–87) MicroRNA microarray and TaqMan MicroRNA Assays RNU6B 389 miR-20a ↑ P < 0.001    
     Validation cohort 55.8 (32–84) miR-21 ↑ P < 0.001        
          miR-106a ↑ P < 0.001    
          miR-181b ↑ P < 0.001    
          miR-203 ↑ P < 0.001    
  Cooperative Human Tissue Network 18 adenoma 18 MNAT TaqMan MicroRNA Assays  miR-21 ↑ P = 0.006    
37 Slaby et al., 2007 Czech Republic 29 CRC (3/11/6/9) 6 Nontumor adjacent tissue CRC 65 (median; 49–75) TaqMan MicroRNA Assays let-7a-1 miR-21↑ P = 0.0001    
 Control - miR-31↑ P = 0.0006            
          miR-143↓ P = 0.011    
          miR-145↓ P = 0.003    
38 Schepeler et al., 2008 Denmark 49 colon cancers (stage II) 10 normal mucosa Case 65.7 (36–87) LNA-based oligonucleotide microarrays and TaqMan MicroRNA Assays 315 19d miR-20a↑ miR-302a↑ miR-510↑ miR-527↑ miR-101↓ 
      Control 67.4 (52–85) miR-92↑ miR-320↑ miR-512–5p↑  miR-145↓    
          miR-191*↑ miR-432*↑ miR-513↑ miR-26b↓ miR-455↓ 
          miR-200a*↑ miR-492↑ miR-526c↑ miR-30b↓ miR-484↓ 
39 Monzo et al., 2008 Spain 22 (6 is stage I and 16 is stage II) 22 MNAT 69.5 (49–87) TaqMan MicroRNA Assays let-7a 156 28e (6 stage I vs. MNAT) miR-17–5p↑ miR-92↑ miR-135b↑ miR-203↑ miR-99a↓ 
          miR-19a↑ miR-95↑ miR-148a↑ miR-224↑ miR-125b↓ 
          miR-20↑ miR-96↑ miR-182↑ miR-339↑ miR-139↓ 
          miR-21↑ miR-103↑ miR-182*↑  miR-145↓ 
          miR-31↑ miR-106a↑ miR-183↑  miR-149↓ 
          miR-34a↑ miR-107↑ miR-200c↑ miR-30a- 3p↓ miR-195↓ 
         64e (16 stage I vs. MNAT) let-7g↑ miR-34a↑ miR-141↑ miR-183↑ miR-221↑ 
          miR-10a↑ miR-92↑ miR-142–3p↑ miR-186↑ miR-222↑ 
          miR-15a↑ miR-95↑ miR-142–5p↑ miR-191↑ miR-224↑ 
          miR-15b↑ miR-96↑ miR-146↑ miR-194↑ miR-301↑ 
          miR-17–3p↑ miR-98↑ miR-147↑ miR-197↑ miR-320↑ 
          miR-17–5p↑ miR-103↑ miR-148a↑ miR-200a↑ miR-324–5p↑ 
          miR-19a↑ miR-105↑ miR-151↑ miR-200b↑ miR-330↑ 
          miR-20↑ miR-106a↑ miR-154*↑ miR-200c↑ miR-338↑ 
          miR-21↑ miR-122a↑ miR-181a↑ miR-210↑ miR-339↑ 
          miR-25↑ miR-128a↑ miR-181b↑ miR-213↑ miR-370↑ 
          miR-27a↑ miR-130b↑ miR-181c↑ miR-215↑ miR-373↑ 
          miR-29a↑ miR-134↑ miR-182↑ miR-216↑ miR-374↑ 
          miR-31↑ miR-135a↑ miR-182*↑ miR-219↑  
40 Volinia et al., 2006 United States and Italy 46 colon tumor 8 normal tissue MicroRNA microarray 228 22f miR-10a ↑ miR-24–2 ↑ miR-106a ↑ miR-155 ↑ miR-223↑ 
          miR-17-5p↑ miR-29b-2↑ miR-107↑ miR-191 ↑  
          miR-20a ↑ miR-30c↑ miR-126*↑ miR-203↑ miR-9–3 ↓ 
          miR-21↑ miR-32 ↑ miR-128b ↑ miR-213↑  
          miR-24-1 ↑ miR-99b ↑ miR-150 ↑ miR-221↑  
41 Nakajima et al., 2006 United States and Japan 21 CRC 21 MNAT SYBR green qRT-PCR 5s rRNA RNU6B let-7g↑ P = 0.0037 miR-181b↑ P = 0.0005 miR-200c↑ P = 0.0001   
42 Xi et al., 2006 Germany 24 CRC (4/4/8/8) 24 MNAT 62 (30–93) SYBR green qRT-PCR 5S rRNA 10 miR-15b↑ P = 0.0278 miR-191↑ P = 0.0264    
          miR-181b↑ P = 0.0002 miR-200c↑ P = 0.0017    
Ref.Author(s), yearStudy populationMethodsNormalization controlsmiR
CountryCRC (stage I/II/III/IV)/adenoma tissueNontumor tissueAge mean (range)Tested miRs (No.)Significant miRs (No.)Difference between CRC tissue and nontumor tissue
23 Kulda et al., 2010 Czech Republic 46 CRC (10/21/13/2) 46 MNATa 62.8 (39.9–79.1) TaqMan MicroRNA Assays RNU6B miR-21↑  P < 0.0001   
          miR-143↓  P < 0.0001   
   30 colorectal liver metastases 30 MNAT 59.4 (median; 39.6–82.1)  miR-191   miR-21↑  P < 0.0001   
       miR-143↓     P < 0.0001   
24 Chiang et al., 2011 China 107 CRC 107 MNAT 62.1 (17–82) SYBR green qRT-PCR RNU6B miR-203↓  P < 0.001   
25 Earle et al., 2010 United States 55 CRC (5/23/18/1) 55 MNAT 51.3 (25–85) TaqMan MicroRNA Assays Ct method 24 20 miR-17↑ P = 4.38×10−4 miR-135a↑ P = 1.12 ×10−3 miR-26b↓ P = 8.91×10−9   
          miR-20a↑ P = 1.52×10−4 miR-183↑ P = 2.47 ×10−16 miR-143↓ P = 2.47×10−8   
          miR-25↑ P = 3.92×10−7 miR-203↑ P = 3.14 ×10−3 miR-145↓ P = 9.39×10−8   
          miR-31↑ P = 6.02×10−13 miR-223↑ P = 3.69 ×10−2 miR-191↓ P = 3.71×10−6   
          miR-92↑ P = 1.96×10−6  miR-192↓ P = 3.51×10−16   
          miR-93↑ P = 3.33×10−5 let-7a↓ P = 4.93×10−4 miR-196a↓ P = 7.72×10−4   
          miR-133b↑ P = 1.36×10−2 miR-16↓ P = 1.78×10−3 miR-215↓ P = 2.37×10−13   
26 Li et al., 2010 China 66 CRC (17/18/22/9) 66 MNAT SYBR green qRT-PCR RNU6B miR-126↓  P < 0.001   
27 Liu et al., 2010 China 81 CRC 81 MNAT 57.4 qRT-PCR RNU6B - miR-195 ↓  P < 0.01   
28 Wang et al., 2010 China 3 colonic tumor tissue 3 MNAT microRNA microarray andTaqMan MicroRNA Assays  723 14b miR-18a↑ miR-135b↑ miR-374a↑   
          miR-18b↑ miR-196b ↑ miR-424↑   
          miR-19a ↑ miR-224 ↑ miR-378↓   
          miR-20a* ↑ miR-301b↑ miR-378*↓   
          miR-106b ↑ miR-335 ↑ (miR-18a,135b were validated by qRT-PCR)   
29 Wang et al., 2009 China 98 (I+II 45/III+IV 53) 98 MNAT 54.3 TaqMan MicroRNA Assays 5S rRNA miR-31↑ P = 0.001    
     (24–83) miR-145↓ P = 0.001        
30 Diosdado et al., 2009 The Netherlands 55 (30 adenomas 25 adenocar- cinomas) 10 normal mucosa Case 68.4 (47–88) TaqMan MicroRNA Assays RNU48 miR-17↑ P = 0.001 miR-19b-1↑ P = 0.021    
      Control 68 miR-18a↑ p = 0.04 miR-20a ↑ P = 0.001       
          miR-19a↑ P < 0.001 miR-92a-1↑ P < 0.001    
31 Sarver et al., 2009 United States 80 colon cancer 28 normal colon tissue SYBR green qRT-PCR RNU6B 735 39 miR-17–3p↑ P = 7.59 ×10−14 miR-552↑ P = 1.72×10−8 miR-138↓ P = 0   
          miR-31↑ P = 0 miR-584 ↑ P = 0 miR-139↓ P = 0   
          miR-32 ↑ P = 1.97×10−5 HS_287 ↑ P = 3.87×10−8 miR-147↓ P = 0   
          miR-33 ↑ P = 1.76×10−9 HS_29 ↑ P = 1.91×10−9 miR-328↓ P = 2.62×10−14   
          miR-96 ↑ P = 7.11×10−14 miR-1↓ P = 2.33×10−11 miR-363↓ P = 1.30×10−7   
          miR-135b↑ P = 0 miR-9↓ P = 0 miR-375↓ P = 0   
          miR-182 ↑ P = 0 miR-9*↓ P = 0 miR-378↓ P = 0   
          miR-182*↑ P = 0 miR-10b↓ P = 2.66×10−15 miR-486↓ P = 6.90×10−9   
          miR-183 ↑ p = 0 miR-20b↓ p = 1.90×10−7 miR-497↓ P = 0   
          miR-188 ↑ P = 1.20×10−11 miR-30a-3p↓ P = 0 miR-511↓ P = 2.22×10−16   
          miR-224 ↑ P = 0 miR-30a-5p↓ P = 0 miR-551b↓ P = 0   
          miR-503 ↑ P = 0 miR-133a↓ P = 9.55×10−15 miR-642↓ P = 0   
          miR-542–5p↑ P = 7.01×10−11 miR-137↓ P = 0 miR-650↓ P = 0   
          (P < 10−16 represent as 0)     
32 Arndt et al., 2009 United States 45 (4/19/20/2) CRC 4 normal colon tissue CRC 62.8 TaqMan MicroRNA Assays A no cDNA control 169 37 miR-18a↑ P = 2.9×10−3 miR-106a↑ P = 5.1×10−4 miR-125a↓ P = 6.40×10−3   
     Control - miR-19a↑ P = 2.3×10−3 miR-106b↑ P = 1.0×10−4 miR-30a-3p↓ P = 7.30×10−4       
          miR-19b↑ P = 3.4×10−3 miR-130b↑ P = 1.2×10−3 miR-30a-5p↓ P = 1.60×10−5   
          miR-20a↑ P = 2.0×10−3 miR-17–5p↑ P = 1.5×10−3 miR-30c↓ P = 4.00×10−4   
          miR-21↑ P = 6.0 x 10−6 miR-181b↑ P = 2.2×10−4 miR-133a↓ P = 6.50×10−4   
          miR-25↑ P = 1.4×10−2 miR-182↑ P = 2.8×10−3 miR-139↓ P = 1.10×10−5   
          miR-29a↑ P = 3.6×10−4 miR-183↑ P = 2.3×10−3 miR-143↓ P = 1.00×10−2   
          miR-29b↑ P = 4.9×10−3 miR-203↑ P = 2.2×10−2 miR-145↓ P = 1.20×10−3   
          miR-31↑ P = 2.6×10−3 miR-224↑ P = 1.1×10−3 miR-195↓ P = 4.20×10−5   
          miR-34a↑ P = 1.5×10−2  miR-378*↓ P = 1.30×10−5   
          miR-93↑ P = 3.4×10−3  miR-422a↓ P = 7.30×10−5   
          miR-95↑ P = 1.1×10−2 miR-1↓ P = 1.6×10−3 miR-422b↓ P = 8.30×10−5   
          miR-96↑ P = 8.4×10−3 miR-10b↓ P = 2.1×10−2 miR-497↓ P = 9.80×10−4   
33 Chen et al., 2009 China 13 CRC 13 MNAT 57.2 qRT-PCR 200 15 miR-31↑ P = 0.016 miR-200a↑ P = 0.036 miR-145↓ P = 0.048   
          miR-92↑ P = 0.049 miR-200c↑ P = 0.033 miR-192↓ P = 0.008   
          miR-103↑ P = 0.002 miR-210↑ P = 0.000 miR-193b↓ P = 0.006   
          miR-142-3p↑ P = 0.016 miR-125b↓ P = 0.010 miR-212↓ P = 1.88×10−9   
          miR-188↑ P = 0.001 miR-143↓ P = 0.001 miR-214↓ P = 5.95×10−7   
34 Schmitz et al., 2009 Germany 18 SSAs 20 Normal colonic mucosal SSAs 60.1 TaqMan MicroRNA Assays RNU48 miR-21 ↑ P < 0.001    
     CRC - miR-181b ↑ P < 0.001        
   20 CRC Control - miR-181b ↑ P < 0.001         
          miR-133↓ P = 0.025    
35 Motoyama et al., 2008 Japan 69 CRC 69 MNAT MicroRNA microarray and TaqMan MicroRNA Assays RNU6B 455 miR-17–5p ↑ P < 0.05 miR-92 ↑ P < 0.05    
          miR-18a ↑ P < 0.05 miR-183 ↑ P < 0.05    
          miR-31 ↑ P < 0.05 miR-143↓ P < 0.05    
          miR-20a ↑ P < 0.05 miR-145↓ P < 0.05    
36 Schetter et al., 2008 United States (test cohort)/China (validation cohort) 197 primary colon tumorc 197 MNATc Test cohort 64.6 (32–87) MicroRNA microarray and TaqMan MicroRNA Assays RNU6B 389 miR-20a ↑ P < 0.001    
     Validation cohort 55.8 (32–84) miR-21 ↑ P < 0.001        
          miR-106a ↑ P < 0.001    
          miR-181b ↑ P < 0.001    
          miR-203 ↑ P < 0.001    
  Cooperative Human Tissue Network 18 adenoma 18 MNAT TaqMan MicroRNA Assays  miR-21 ↑ P = 0.006    
37 Slaby et al., 2007 Czech Republic 29 CRC (3/11/6/9) 6 Nontumor adjacent tissue CRC 65 (median; 49–75) TaqMan MicroRNA Assays let-7a-1 miR-21↑ P = 0.0001    
 Control - miR-31↑ P = 0.0006            
          miR-143↓ P = 0.011    
          miR-145↓ P = 0.003    
38 Schepeler et al., 2008 Denmark 49 colon cancers (stage II) 10 normal mucosa Case 65.7 (36–87) LNA-based oligonucleotide microarrays and TaqMan MicroRNA Assays 315 19d miR-20a↑ miR-302a↑ miR-510↑ miR-527↑ miR-101↓ 
      Control 67.4 (52–85) miR-92↑ miR-320↑ miR-512–5p↑  miR-145↓    
          miR-191*↑ miR-432*↑ miR-513↑ miR-26b↓ miR-455↓ 
          miR-200a*↑ miR-492↑ miR-526c↑ miR-30b↓ miR-484↓ 
39 Monzo et al., 2008 Spain 22 (6 is stage I and 16 is stage II) 22 MNAT 69.5 (49–87) TaqMan MicroRNA Assays let-7a 156 28e (6 stage I vs. MNAT) miR-17–5p↑ miR-92↑ miR-135b↑ miR-203↑ miR-99a↓ 
          miR-19a↑ miR-95↑ miR-148a↑ miR-224↑ miR-125b↓ 
          miR-20↑ miR-96↑ miR-182↑ miR-339↑ miR-139↓ 
          miR-21↑ miR-103↑ miR-182*↑  miR-145↓ 
          miR-31↑ miR-106a↑ miR-183↑  miR-149↓ 
          miR-34a↑ miR-107↑ miR-200c↑ miR-30a- 3p↓ miR-195↓ 
         64e (16 stage I vs. MNAT) let-7g↑ miR-34a↑ miR-141↑ miR-183↑ miR-221↑ 
          miR-10a↑ miR-92↑ miR-142–3p↑ miR-186↑ miR-222↑ 
          miR-15a↑ miR-95↑ miR-142–5p↑ miR-191↑ miR-224↑ 
          miR-15b↑ miR-96↑ miR-146↑ miR-194↑ miR-301↑ 
          miR-17–3p↑ miR-98↑ miR-147↑ miR-197↑ miR-320↑ 
          miR-17–5p↑ miR-103↑ miR-148a↑ miR-200a↑ miR-324–5p↑ 
          miR-19a↑ miR-105↑ miR-151↑ miR-200b↑ miR-330↑ 
          miR-20↑ miR-106a↑ miR-154*↑ miR-200c↑ miR-338↑ 
          miR-21↑ miR-122a↑ miR-181a↑ miR-210↑ miR-339↑ 
          miR-25↑ miR-128a↑ miR-181b↑ miR-213↑ miR-370↑ 
          miR-27a↑ miR-130b↑ miR-181c↑ miR-215↑ miR-373↑ 
          miR-29a↑ miR-134↑ miR-182↑ miR-216↑ miR-374↑ 
          miR-31↑ miR-135a↑ miR-182*↑ miR-219↑  
40 Volinia et al., 2006 United States and Italy 46 colon tumor 8 normal tissue MicroRNA microarray 228 22f miR-10a ↑ miR-24–2 ↑ miR-106a ↑ miR-155 ↑ miR-223↑ 
          miR-17-5p↑ miR-29b-2↑ miR-107↑ miR-191 ↑  
          miR-20a ↑ miR-30c↑ miR-126*↑ miR-203↑ miR-9–3 ↓ 
          miR-21↑ miR-32 ↑ miR-128b ↑ miR-213↑  
          miR-24-1 ↑ miR-99b ↑ miR-150 ↑ miR-221↑  
41 Nakajima et al., 2006 United States and Japan 21 CRC 21 MNAT SYBR green qRT-PCR 5s rRNA RNU6B let-7g↑ P = 0.0037 miR-181b↑ P = 0.0005 miR-200c↑ P = 0.0001   
42 Xi et al., 2006 Germany 24 CRC (4/4/8/8) 24 MNAT 62 (30–93) SYBR green qRT-PCR 5S rRNA 10 miR-15b↑ P = 0.0278 miR-191↑ P = 0.0264    
          miR-181b↑ P = 0.0002 miR-200c↑ P = 0.0017    

aMNAT: matched nontumor adjacent tissue.

bP values less than 0.1, details are not available.

c84 patients with colon tumors in the U.S. test cohort and 113 patients with colon tumors in the Hong Kong validation cohort.

dDifferentially expressed miRNAs identified by significance of microarray analysis (SAM). The cutoff, delta value, was adjusted so as to set the median false discovery rate (FDR) < 0.0001%.

eSAM and Student's t test were done to identify differentially expressed miRNAs with a FDR < 0.1.

fSAM and Student's t test were done to identify differentially expressed miRNAs with a FDR ≤ 0.01.

Table 3.

Summary of studies reporting significant associations of miRNAs with CRC

Upregulated miRNAsRef.Number of studies
1516172324252627282930313233343536373839404142
let-7g                    II   
miR-10a                    II   
miR-15a                    II    
miR-15b                    II   
miR-17                      
miR-17-3p                  II    
miR-17-5p                  I/II   
miR-18a                    
miR-18b                       
miR-19a                 I/II    
miR-19b                       
miR-19b-1                       
miR-20                    I/II    
miR-20a                 
miR-20a*                       
miR-21              C/A  I/II   
miR-24-1                       
miR-24-2                       
miR-25                  II    
miR-27a                    II    
miR-29a                  II    
miR-29b                       
miR-29b-2                       
miR-30c                       
miR-31             II    
miR-32                      
miR-33                       
miR-34a                   I/II    
miR-92                I/II    
miR-92a                      
miR-92a-1                       
miR-93                      
miR-95                   I/II    
miR-96                  I/II    
miR-98                    II    
miR-99b                       
miR-103                   I/II    
miR-105                    II    
miR-106a                  I/II   
miR-106b                      
miR-107                      
miR-122a                    II    
miR-126*                       
miR-128a                    II    
miR-128b                       
miR-130b                   II    
miR-133b                       
miR-134                    II    
miR-135a                   II    
miR-135b                     
miR-141                    II    
miR-142-3p                   II    
miR-142-5p                    II    
miR-146                    II    
miR-147                    II    
miR-148a                    I/II    
miR-150                       
miR-151                    II    
miR-154*                    II    
miR-155                       
miR-181a                    II    
miR-181b              S/C    I/II  
miR-181c                    II    
miR-182                  II    
miR-182*                   I/II    
miR-183                I/II    
miR-186                    II    
miR-188                      
miR-191                    II  
miR-191*                       
miR-194                    II    
miR-196b                      
miR-197                    II    
miR-200a                   II    
miR-200a*                       
miR-200b                    II    
miR-200c                   I/II  
miR-203                   
miR-210                    II    
miR-213                    II   
miR-215                    II    
miR-216                    II    
miR-219                    II    
miR-221                  II   
miR-222                    II    
miR-223                      
miR-224                 I/II    
miR-301                    II    
miR-301b                       
miR-302a                       
miR-320                   II    
miR-324-5p                    II    
miR-330                    II    
miR-335                       
miR-338                    II    
miR-339                    I/II    
miR-370                    II    
miR-373                    II    
miR-374                    II    
miR-374a                       
miR-424                       
miR-432*                       
miR-492                       
miR-503                       
miR-510                       
miR-512-5p                       
miR-513                       
miR-526c                       
miR-527                       
miR-542-5p                       
miR-552                       
miR-584                       
HS_287                       
HS_29                       
Downregulated miRNAs Ref. Number of studies 
 15 16 17 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  
let-7a      −                  
miR-1            −            
miR-9            −            
miR-9*            −            
miR-9-3                     −   
miR-10b            − −           
miR-16      −                  
miR-20b            −            
miR-26b      −             −     
miR-30a-3p            − −          
miR-30a-5p            − −           
miR-30b                   −     
miR-99a                       
miR-101                   −     
miR-125a             −           
miR-125b              −         
miR-126       −                 
miR-133               −         
miR-133a            − −           
miR-137            −            
miR-138            −            
miR-139            − −          
miR-143    −  −    −    −  −  −      
miR-145      −    −   − −  −  − −    
miR-147            −            
miR-149                       
miR-191      −                  
miR-192      −        −          
miR-193b              −          
miR-195        −     −          
miR-196a      −                  
miR-203     −                   
miR-212              −          
miR-214              −          
miR-215      −                  
miR-328            −            
miR-363            −            
miR-375            −            
miR-378         −   −            
miR-378*         −    −           
miR-422a             −           
miR-422b             −           
miR-455                   −     
miR-484                   −     
miR-486            −            
miR-497            − −           
miR-511            −            
miR-551b            −            
miR-642            −            
miR-650            −            
Upregulated miRNAsRef.Number of studies
1516172324252627282930313233343536373839404142
let-7g                    II   
miR-10a                    II   
miR-15a                    II    
miR-15b                    II   
miR-17                      
miR-17-3p                  II    
miR-17-5p                  I/II   
miR-18a                    
miR-18b                       
miR-19a                 I/II    
miR-19b                       
miR-19b-1                       
miR-20                    I/II    
miR-20a                 
miR-20a*                       
miR-21              C/A  I/II   
miR-24-1                       
miR-24-2                       
miR-25                  II    
miR-27a                    II    
miR-29a                  II    
miR-29b                       
miR-29b-2                       
miR-30c                       
miR-31             II    
miR-32                      
miR-33                       
miR-34a                   I/II    
miR-92                I/II    
miR-92a                      
miR-92a-1                       
miR-93                      
miR-95                   I/II    
miR-96                  I/II    
miR-98                    II    
miR-99b                       
miR-103                   I/II    
miR-105                    II    
miR-106a                  I/II   
miR-106b                      
miR-107                      
miR-122a                    II    
miR-126*                       
miR-128a                    II    
miR-128b                       
miR-130b                   II    
miR-133b                       
miR-134                    II    
miR-135a                   II    
miR-135b                     
miR-141                    II    
miR-142-3p                   II    
miR-142-5p                    II    
miR-146                    II    
miR-147                    II    
miR-148a                    I/II    
miR-150                       
miR-151                    II    
miR-154*                    II    
miR-155                       
miR-181a                    II    
miR-181b              S/C    I/II  
miR-181c                    II    
miR-182                  II    
miR-182*                   I/II    
miR-183                I/II    
miR-186                    II    
miR-188                      
miR-191                    II  
miR-191*                       
miR-194                    II    
miR-196b                      
miR-197                    II    
miR-200a                   II    
miR-200a*                       
miR-200b                    II    
miR-200c                   I/II  
miR-203                   
miR-210                    II    
miR-213                    II   
miR-215                    II    
miR-216                    II    
miR-219                    II    
miR-221                  II   
miR-222                    II    
miR-223                      
miR-224                 I/II    
miR-301                    II    
miR-301b                       
miR-302a                       
miR-320                   II    
miR-324-5p                    II    
miR-330                    II    
miR-335                       
miR-338                    II    
miR-339                    I/II    
miR-370                    II    
miR-373                    II    
miR-374                    II    
miR-374a                       
miR-424                       
miR-432*                       
miR-492                       
miR-503                       
miR-510                       
miR-512-5p                       
miR-513                       
miR-526c                       
miR-527                       
miR-542-5p                       
miR-552                       
miR-584                       
HS_287                       
HS_29                       
Downregulated miRNAs Ref. Number of studies 
 15 16 17 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  
let-7a      −                  
miR-1            −            
miR-9            −            
miR-9*            −            
miR-9-3                     −   
miR-10b            − −           
miR-16      −                  
miR-20b            −            
miR-26b      −             −     
miR-30a-3p            − −          
miR-30a-5p            − −           
miR-30b                   −     
miR-99a                       
miR-101                   −     
miR-125a             −           
miR-125b              −         
miR-126       −                 
miR-133               −         
miR-133a            − −           
miR-137            −            
miR-138            −            
miR-139            − −          
miR-143    −  −    −    −  −  −      
miR-145      −    −   − −  −  − −    
miR-147            −            
miR-149                       
miR-191      −                  
miR-192      −        −          
miR-193b              −          
miR-195        −     −          
miR-196a      −                  
miR-203     −                   
miR-212              −          
miR-214              −          
miR-215      −                  
miR-328            −            
miR-363            −            
miR-375            −            
miR-378         −   −            
miR-378*         −    −           
miR-422a             −           
miR-422b             −           
miR-455                   −     
miR-484                   −     
miR-486            −            
miR-497            − −           
miR-511            −            
miR-551b            −            
miR-642            −            
miR-650            −            

C: colorectal cancer.

A: colorectal adenoma.

S: sessile serrated adenoma.

I: stage I of CRC.

II: stage II of CRC.

Methods used in the studies

Most of the studies measured a panel of miRNAs on a small set of samples with the quantitative real-time PCR (qRT-PCR; Refs. 15, 16, 23–27, 29–34, 37, 39, 41, 42; Tables 1 and 2) or miRNA MicroArray, followed by further validations of miRNAs found to be dysregulated in a larger scale set of samples with qRT-PCR (Refs. 17, 28, 35, 36; Tables 1 and 2).

Dysregulated miRNAs in plasma

The 3 plasma-based studies investigated 3, 12, and 95 miRNAs, respectively (15–17). With one exception (miR-320b), the 3 miRNAs (miR-21, -221, and -222) tested by Pu and colleagues and the 12 miRNAs (miR-17–3p, -25, 29, 92a, 134, 146a, 181d, 191, 221, 222, 223, and 320a) tested by Huang and colleagues were included among the 95 miRNAs assessed in the study by Ng and colleagues (17). The latter study found miR-17-3p and miR-92 (miR-92a, according to the accession number of miRBase) to be significantly upregulated in 130 CRC patients compared with 75 healthy controls (P < 0.0001) by using qRT-PCR. In 10 CRC patients, expression of miRNAs was measured before and 7 days after surgical cancer resection, and miR-17-3p and miR-92a seemed to be downregulated after the surgery (P = 0.02). Levels of miR-92 of patients with other gastrointestinal diseases were not significantly higher than that in healthy controls [CRC vs. healthy controls P < 0.0001, gastric cancer vs. healthy controls P = 0.4, inflammatory bowel disease vs. healthy controls P < 0.0001 (miR-92 was significantly higher in healthy controls)]. Furthermore, expression of miR-92 was not related to other gastrointestinal diseases. Huang and colleagues (16) also found overexpression of miR-92a in plasma of 100 CRC patients and 37 advanced adenoma patients along with overexpression of miR-29a (both P < 0.0001). Analysis of Pu and colleagues (15) showed that expression of miR-221 in plasma was significantly higher in 103 CRC patients than in 32 healthy controls (P = 0.0021) from 3 miRNAs.

Dysregulated miRNAs in tissue

Most of the studies investigated the miRNAs in the tissue samples of CRC patients (23–42). Sample sizes ranged from 3 pairs of tissue (tumor tissue and nontumor tissue) to 215 pairs. The numbers of assessed miRNAs ranged from 1 to 723, and the numbers of miRNAs whose expression was found to differ significantly between tumor tissue and nontumor tissue ranged from 1 to 92. Overall, 164 miRNAs were found to be dysregulated in CRC. In more than one study, miR-20a and miR-31 were found to be significantly upregulated, and miR-143 and miR-145 were found to be downregulated in CRC tissue in 6 or more studies. Interestingly, miR-203 was found to be upregulated in 5 tissue-based studies, but downregulated in 1 tissue-based study. For further details see Tables 2 and 3.

Expression of miRNAs in adenomas and different stages of colorectal carcinogenesis

Huang and colleagues (16) found miR-29a and miR-92a to be significantly upregulated in a comparison of plasma samples of 37 patients with advanced adenomas with plasma samples of 59 healthy controls (both P < 0.0001).

Wang and colleagues (29) reported miR-31 to be related to tumor node metastasis stage (P = 0.026, stages I and II vs. III and IV) and tumor invasion (P = 0.024, T1 + T2 + T3 vs. T4) in 98 CRC cases from China.

In a study from Arndt and colleagues (32), among 45 CRC cases from the United States, 6 miRNAs showed significant differential expression between early stage (mostly stage II) and late stage (mostly stage III; miR-31 P = 1.53 × 10−3, miR-7 P = 1.96 × 10−2, miR-99b P = 3.64 × 10−3, miR-378* P = 3.02 × 10−2, miR-133a P = 1.64 × 10−2, and miR-125a P = 2.69 × 10−3).

Schetter and colleagues (35) found miR-21 to be significantly upregulated in the tissue of 18 adenoma patients compared with the paired adjacent nonadenoma tissue (P = 0.006). Expression of miR-21 was found to be lower in adenomas than in cancer tissue (P < 0.001; ref. 36) and positively related to CRC stage (P = 0.032) and poor survival of CRC patients (37).

Diosdado and colleagues (30) found all 6 miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1) in the miR-17-92 cluster to be significantly upregulated in tissue samples from 30 colorectal adenoma patients, 25 adenocarcinomas patients compared with 10 normal controls and all of them were higher expressed in adenocarcinomas than in adenomas (all P < 0.001).

In the study of Schmitz and colleagues (34), miR-21 and miR-181b showed significantly higher levels in the tissue of 19 sessile serrated adenomas (SSA) than in 20 normal colonic mucosal specimens.

This article provides an overview of miRNA studies in CRC published to date. We summarized the results of 23 studies which investigated more than 700 miRNAs in 1,525 cases of colorectal tumors/adenomas and 1,102 controls. Among them, 160 miRNAs were found to be significantly dysregulated in at least one study. Overall, samples size was less than 100, between 100 and 200, more than 200 in 11, 9, and 3 studies, respectively. Out of the 164 miRNAs that were found to be dysregulated, miR-31 (upregulated) and miR-145 (downregulated) were most often reported (both in 8 different studies). A total of 107 miRNAs were identified to be dysregulated in only one study.

miRNAs were first reported by Lee and colleagues in 1993, and tumor-associated miRNAs were first described in plasma by Mitchell in 2008 (11). miRNAs were found in extracellular fluids, such as blood plasma and serum and other body fluids, including urine, tear, and saliva (43). It has been shown that the vast majority of circulating miRNAs are Ago-bound and thus protected from RNases (12). This enables miRNAs to serve as stable biomarkers for cancer and other diseases (12). To what extent miRNA–Ago complexes can specifically be released from cells and, possibly, commit cell-to-cell communication needs to be shown (12). The number of studies assessing expression of miRNAs in CRC patients has rapidly increased in recent years but is still rather small. In particular, only 3 studies assessing expression of miRNAs in plasma of CRC patients have been reported, and only 96 miRNAs were investigated in these studies.

Because of the fact that circulating miRNA is very stable–it remains stable for at least 1 month and even in cell culture media, in which fetal calf serum has been added, miRNA from cattle can be observed (12)–it is astonishing that Ng and colleagues observed a drop down of tumor-associated miRNAs (miR-17-3p and miR-92a) so soon after surgery (7 days). However, this result was based on 10 pairs of samples only. Further studies with repeat longitudinal measurements of miRNAs in larger numbers of patients are needed to clarify occurrence and timing of potential downregulation of miRNAs after surgery.

Nomenclature of miRNAs is also still evolving. As identical mature sequences from distinct precursor sequences/genomic loci and closely related mature sequences are more and more identified, some miRNAs in different studies with different names actually are the same ones according to the accession number of miRBase provided (16, 17).

Most of the studies reported to date had sample sizes of less than 200. Furthermore, not all known miRNAs were investigated; many of the miRNAs investigated in the studies were selected based on previous reports and even when microarrays were applied, not all miRNAs known today were covered. Also, not all miRNAs have been discovered yet.

qRT-PCR is the most sensitive and reproducible method to quantify gene expression, but the accuracy is limited if expression of miRNAs is too low. As a result, some miRNAs with low expression cannot be tested or compared between the patients and healthy controls. A common problem in research on circulating miRNAs is that no consensus housekeeper miRNAs or endogenous controls have been established. The identified studies used several different genes as their endogenous controls, such as RNU6B, 5S rRNA, or let-7a. Davoren and colleagues (44) reported the first systematic assessments of candidate reference genes for miRNA qRT-PCR analysis in breast cancer. Recently, Chang and colleagues (45) reported that miR-16 and miR-345 were identified as the most stably expressed reference genes. Koch and colleagues (46) used miR-16 and miR-223 as endogenous controls and described an optimized method for the circulating miRNAs detection as well as the data analysis. However, there are still very few reports that detailed a robust identification and validation strategy for suitable reference genes for normalization. So, looking for definitely stably expressed reference genes as an appropriate normalization is important and critical for the accurate quantification of RNA levels with qRT-PCR. Most likely not one endogenous control/control set will fit for all studies (tissues, body fluids). Furthermore, if we take the different stability of different RNA species (mRNA, rRNA, and miRNA), especially in serum or plasma into consideration, it will be critical to find a suitable endogenous miRNA control/control set.

Organ and disease specificity is another important issue when investigating miRNAs as biomarker for certain diseases. It may often be difficult to discriminate whether the dysregulated miRNAs are only related to the CRC or are a common phenomenon in the histologic progression to cancer or the immune response. Ng and colleagues (16) also examined the plasma from patients with inflammatory bowel disease and gastric cancer, and miR-92a overexpressed in plasma was not correlated with those diseases. With regard to the other miRNAs, many were found expressed at high levels in different solid tumors (40).

In this article, we aimed for a timely general overview of the rapidly increasing number of the often rather heterogeneous studies about dysregulated miRNAs in CRC patients. Although our review searched 3 databases, PubMed, EMBASE, and ISI Web of knowledge and extensive checks for completeness by crossing-referencing were employed, we cannot exclude that we might have missed a relevant study.

The search for noninvasive screening methodologies for CRC screening is subject to ongoing intensive research. There are many challenges to the development and implementation of a miRNA blood test to detect CRC in a clinically useful way, just as with any diagnostic biomarkers. In spite of the challenges, there are encouraging indications that circulating miRNAs have potential as a diagnostic biomarker for CRC and other cancers. For potential use in CRC screening, the ability of tests to detect CRC in an early stage or even in a precancerous stage will be most crucial.

With respect to potential application for screening, the plasma-based studies are of particular interest. Although first results seem promising, especially with respect to miR-92a which was found to be significantly elevated in CRC patients in both studies investigating this marker, further studies are needed which should investigate a much larger number of miRNAs and which should ideally be conducted in screening settings among the target population of screening. The sensitivity for detecting early stages of CRC and advanced adenomas, the most common precursors of CRC, are of particular relevance in this context. These outcomes have only been specifically addressed in one study (16) so far. Furthermore, combinations of multiple miRNAs and combinations of miRNAs with other noninvasive markers deserve increased attention. Ideally, studies evaluating potential use in CRC screening should be conducted in a true screening setting with availability of a gold standard diagnostic test, for example, among participants of screening colonoscopy. Studies are needed that include reasonable numbers of patients with CRC at various stages, advanced adenomas, and other adenomas as well as adenoma-free patients, and additional factors that might affect expression of miRNAs, including medical history, and lifestyle factors should receive careful additional attention.

Most likely, a signature of miRNAs rather than a single miRNA alone, possibly in combination with other blood or stool-based biomarkers or other available tests, such as FOBT, will be needed to reach enough sensitivity and specificity for an early detection test. If successful, such a noninvasive test might lead to higher compliance in CRC screening rates, earlier detection of CRC, and an overall reduction in cancer burden.

Conclusion

The expression of miRNAs in plasma may be indicative of presence of CRC. But phased validation with large-scale samples is needed. Further studies should also focus on early stages and adenoma cases. Furthermore, practical values and costs also need to be considered.

No potential conflicts of interest were disclosed.

1.
Parkin
DM
,
Bray
F
,
Ferlay
J
,
Pisani
P
. 
Global cancer statistics, 2002. CA
Cancer J Clin
2005
;
55
:
74
108
.
2.
Walsh
JM
,
Terdiman
JP
. 
Colorectal cancer screening: scientific review
.
JAMA
2003
;
289
:
1288
96
.
3.
Collins
JF
,
Lieberman
DA
,
Durbin
TE
,
Weiss
DG
. 
Accuracy of screening for fecal occult blood on a single stool sample obtained by digital rectal examination: a comparison with recommended sampling practice
.
Ann Intern Med
2005
;
142
:
81
5
.
4.
Bartel
DP
. 
MicroRNAs: genomics, biogenesis, mechanism, and function
.
Cell
2004
;
116
:
281
97
.
5.
Cho
WC
. 
OncomiRNAs: the discovery and progress of microRNAs in cancers
.
Mol Cancer
2007
;
6
:
60
.
6.
Filipowicz
W
,
Bhattacharyya
SN
,
Sonenberg
N
. 
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
Nat Rev Genet
2008
;
9
:
102
14
.
7.
Release 16, Sep, 2010
, http://www.mirbase.org/
8.
Calin
GA
,
Croce
CM
. 
MicroRNA signatures in human cancers
.
Nat Rev Cancer
2006
;
6
:
857
66
.
9.
Balaguer
F
,
Link
A
,
Lozano
JJ
,
Cuatrecasas
M
,
Nagasaka
T
,
Boland
CR
, et al
Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis
.
Cancer Res
2010
;
70
:
6609
18
.
10.
Toyota
M
,
Suzuki
H
,
Sasaki
Y
,
Maruyama
R
,
Imai
K
,
Shinomura
Y
, et al
Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer
.
Cancer Res
2008
;
68
:
4123
32
.
11.
Mitchell
PS
,
Parkin
RK
,
Kroh
EM
,
Fritz
BR
,
Wyman
SK
,
Pogosova-Agadjanyan
EL
, et al
Circulating microRNAs as stable blood-based markers for cancer detection
.
Proc Natl Acad Sci USA
2008
;
105
:
10513
8
.
12.
Turchinovich
A
,
Weiz
L
,
Langheinz
A
,
Burwinkel
B
. 
Characterization of extracellular miRNA
.
Nucleic Acids Res
2011
.
13.
Lawrie
CH
,
Gal
S
,
Dunlop
HM
,
Pushkaran
B
,
Liggins
AP
,
Pulford
K
, et al
Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma
.
Br J Haematol
2008
;
141
:
672
5
.
14.
Heneghan
HM
,
Miller
N
,
Lowery
AJ
,
Sweeney
KJ
,
Newell
J
,
Kerin
MJ
. 
Circulating microRNAs as novel minimally invasive biomarkers for breast cancer
.
Ann Surg
2010
;
251
:
499
505
.
15.
Pu
XX
,
Huang
GL
,
Guo
HQ
,
Guo
CC
,
Li
H
,
Ye
S
, et al
Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression
.
J Gastroenterol Hepatol
2010
;
25
:
1674
80
.
16.
Huang
Z
,
Huang
D
,
Ni
S
,
Peng
Z
,
Sheng
W
,
Du
X
. 
Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer
.
Int J Cancer
2010
;
127
:
118
26
.
17.
Ng
EK
,
Chong
WW
,
Jin
H
,
Lam
EK
,
Shin
VY
,
Yu
J
, et al
Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening
.
Gut
2009
;
58
:
1375
81
.
18.
Agostini
M
,
Pucciarelli
S
,
Calore
F
,
Bedin
C
,
Enzo
M
,
Nitti
D
. 
miRNAs in colon and rectal cancer: A consensus for their true clinical value
.
Clin Chim Acta
2010
;
411
:
1181
6
.
19.
Slaby
O
,
Svoboda
M
,
Michalek
J
,
Vyzula
R
. 
MicroRNAs in colorectal cancer: translation of molecular biology into clinical application
.
Mol Cancer
2009
;
8
:
102
.
20.
Wu
WK
,
Law
PT
,
Lee
CW
,
Cho
CH
,
Fan
D
,
Wu
K
, et al
MicroRNA in colorectal cancer: from benchtop to bedside
.
Carcinogenesis
2011
;
32
:
247
53
.
21.
Tang
JT
,
Fang
JY
. 
MicroRNA regulatory network in human colorectal cancer
.
Mini Rev Med Chem
2009
;
9
:
921
6
.
22.
Goel
A
,
Boland
CR
. 
Recent insights into the pathogenesis of colorectal cancer
.
Curr Opin Gastroenterol
2010
;
26
:
47
52
.
23.
Kulda
V
,
Pesta
M
,
Topolcan
O
,
Liska
V
,
Treska
V
,
Sutnar
A
, et al
Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases
.
Cancer Genet Cytogenet
2010
;
200
:
154
60
.
24.
Chiang
Y
,
Song
Y
,
Wang
Z
,
Chen
Y
,
Yue
Z
,
Xu
H
, et al
Aberrant Expression of miR-203 and Its Clinical Significance in Gastric and Colorectal Cancers
.
J Gastrointest Surg
. 
2011
;
15
:
63
70
.
25.
Earle
JS
,
Luthra
R
,
Romans
A
,
Abraham
R
,
Ensor
J
,
Yao
H
, et al
Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma
. 
2010
;
12
:
433
40
.
26.
Li
XM
,
Wang
AM
,
Zhang
J
,
Yi
H
. 
Down-regulation of miR-126 expression in colorectal cancer and its clinical significance
.
Med Oncol
2010
.
27.
Liu
L
,
Chen
L
,
Xu
Y
,
Li
R
,
Du
X
. 
microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells
.
Biochem Biophys Res Commun
2010
;
400
:
236
40
.
28.
Wang
YX
,
Zhang
XY
,
Zhang
BF
,
Yang
CQ
,
Chen
XM
,
Gao
HJ
. 
Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis
.
J Dig Dis
2010
;
11
:
50
4
.
29.
Wang
CJ
,
Zhou
ZG
,
Wang
L
,
Yang
L
,
Zhou
B
,
Gu
J
, et al
Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer
.
Dis Markers
2009
;
26
:
27
34
.
30.
Diosdado
B
,
van de Wiel
MA
,
Terhaar
Sive Droste JS
,
Mongera
S
,
Postma
C
,
Meijerink
WJ
, et al
MiR-17–92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression
.
Br J Cancer
2009
;
101
:
707
14
.
31.
Sarver
AL
,
French
AJ
,
Borralho
PM
,
Thayanithy
V
,
Oberg
AL
,
Silverstein
KA
, et al
Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states
.
BMC Cancer
2009
;
9
:
401
.
32.
Arndt
GM
,
Dossey
L
,
Cullen
LM
,
Lai
A
,
Druker
R
,
Eisbacher
M
, et al
Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer
.
BMC Cancer
2009
;
9
:
374
.
33.
Chen
X
,
Guo
X
,
Zhang
H
,
Xiang
Y
,
Chen
J
,
Yin
Y
, et al
Role of miR-143 targeting KRAS in colorectal tumorigenesis
.
Oncogene
2009
;
28
:
1385
92
.
34.
Schmitz
KJ
,
Hey
S
,
Schinwald
A
,
Wohlschlaeger
J
,
Baba
HA
,
Worm
K
, et al
Differential expression of microRNA 181b and microRNA 21 in hyperplastic polyps and sessile serrated adenomas of the colon
.
Virchows Arch
2009
;
455
:
49
54
.
35.
Motoyama
K
,
Inoue
H
,
Takatsuno
Y
,
Tanaka
F
,
Mimori
K
,
Uetake
H
, et al
Over- and under-expressed microRNAs in human colorectal cancer
.
Int J Oncol
2009
;
34
:
1069
75
.
36.
Schetter
AJ
,
Leung
SY
,
Sohn
JJ
,
Zanetti
KA
,
Bowman
ED
,
Yanaihara
N
, et al
MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma
.
JAMA
2008
;
299
:
425
36
.
37.
Slaby
O
,
Svoboda
M
,
Fabian
P
,
Smerdova
T
,
Knoflickova
D
,
Bednarikova
M
, et al
Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer
.
Oncology
2007
;
72
:
397
402
.
38.
Schepeler
T
,
Reinert
JT
,
Ostenfeld
MS
,
Christensen
LL
,
Silahtaroglu
AN
,
Dyrskjøt
L
, et al
Diagnostic and prognostic microRNAs in stage II colon cancer
.
Cancer Res
2008
;
68
:
6416
24
.
39.
Monzo
M
,
Navarro
A
,
Bandres
E
,
Artells
R
,
Moreno
I
,
Gel
B
, et al
Overlapping expression of microRNAs in human embryonic colon and colorectal cancer
.
Cell Res
2008
;
18
:
823
33
.
40.
Volinia
S
,
Calin
GA
,
Liu
CG
,
Ambs
S
,
Cimmino
A
,
Petrocca
F
, et al
A microRNA expression signature of human solid tumors defines cancer gene targets
.
Proc Natl Acad Sci U S A
2006
;
103
:
2257
61
.
41.
Nakajima
G
,
Hayashi
K
,
Xi
Y
,
Kudo
K
,
Uchida
K
,
Takasaki
K
, et al
Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer
.
Cancer Genomics Proteomics
2006
;
3
:
317
24
.
42.
Xi
Y
,
Formentini
A
,
Chien
M
,
Weir
DB
,
Russo
JJ
,
Ju
J
, et al
Prognostic values of microRNAs in colorectal cancer
.
Biomark Insights
2006
;
2
:
113
21
.
43.
Chen
X
,
Ba
Y
,
Ma
L
,
Cai
X
,
Yin
Y
,
Wang
K
, et al
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases
.
Cell Res
2008
;
18
:
997
1006
.
44.
Davoren
PA
,
McNeill
RE
,
Lowery
AJ
,
Kerin
MJ
,
Miller
N
. 
Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer
.
BMC Mol Biol
2008
;
9
:
76
.
45.
Chang
KH
,
Mestdagh
P
,
Vandesompele
J
,
Kerin
MJ
,
Miller
N
. 
MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer
.
BMC Cancer
2010
;
10
:
173
.
46.
Kroh
EM
,
Parkin
RK
,
Mitchell
PS
,
Tewari
M
. 
Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR)
.
Methods
2010
;
50
:
298
301
.

Supplementary data