Background: Single-nucleotide polymorphisms (SNP) in alcohol metabolism genes are associated with squamous cell carcinoma of the head and neck (SCCHN) and may influence cancer risk in conjunction with alcohol. Genetic variation in the oxidative stress pathway may impact the carcinogenic effect of reactive oxygen species produced by ethanol metabolism. We hypothesized that alcohol interacts with these pathways to affect SCCHN incidence.

Methods: Interview and genotyping data for 64 SNPs were obtained from 2,552 European- and African-American subjects (1,227 cases and 1,325 controls) from the Carolina Head and Neck Cancer Epidemiology Study, a population-based case–control study of SCCHN conducted in North Carolina from 2002 to 2006. We estimated ORs and 95% confidence intervals (CI) for SNPs and haplotypes, adjusting for age, sex, race, and duration of cigarette smoking. P values were adjusted for multiple testing using Bonferroni correction.

Results: Two SNPs were associated with SCCHN risk: ADH1B rs1229984 A allele (OR = 0.7; 95% CI, 0.6–0.9) and ALDH2 rs2238151 C allele (OR = 1.2; 95% CI, 1.1–1.4). Three were associated with subsite tumors: ADH1B rs17028834 C allele (larynx, OR = 1.5; 95% CI, 1.1–2.0), SOD2 rs4342445 A allele (oral cavity, OR = 1.3; 95% CI, 1.1–1.6), and SOD2 rs5746134 T allele (hypopharynx, OR = 2.1; 95% CI, 1.2–3.7). Four SNPs in alcohol metabolism genes interacted additively with alcohol consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and CYP2E1 rs2249695. No alcohol interactions were found for oxidative stress SNPs.

Conclusions and Impact: Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and SOD2 with SCCHN and subsite tumors provide evidence that alterations in alcohol and oxidative stress pathways influence SCCHN carcinogenesis and warrant further investigation. Cancer Epidemiol Biomarkers Prev; 20(11); 2438–49. ©2011 AACR.

Head and neck cancers typically include tumors of the oral cavity, pharynx, larynx, nose, nasal cavity and sinuses, and esophagus. This study focuses specifically on squamous cell cancers of the oral cavity, pharynx, and larynx.

There were an estimated 49,260 new cases and 11,480 deaths from oropharyngeal and laryngeal cancer in the United States in 2010 (1). Globally in 2008, oral cavity tumors were among the top 10 incident cancers in men world wide, and the top 10 fatal cancers in men in developing countries (2).

Squamous cell carcinoma of the head and neck (SCCHN) incidence is higher in men than women, and in the United States, in African-Americans and the poor. Much of this disparity is due to higher incidence of laryngeal tumors among African-American men (3).

SCCHN is strongly associated with smoking tobacco products and drinking alcoholic beverages, and recently with human papillomavirus infection. It is estimated that 75% of SCCHN in the United States is due to cigarette smoking and alcohol consumption (4). The effect of these exposures varies by anatomic subsite, with smoking more associated with laryngeal tumors, and drinking with oral cavity tumors. However, only a small fraction of people exposed to these carcinogens will develop SCCHN, suggesting that other factors, including genetic, must be considered. Inherited genetic variation in alcohol metabolism has been suggested as a potentially important contributor to SCCHN risk. Investigation of the association between single-nucleotide polymorphisms (SNP) and SCCHN may help to identify high-risk groups and clarify carcinogenesis pathways.

Many studies of genes in the alcohol metabolism pathway (ADH family, ALDH2, CYP2E1) have been limited by sample size, and with one exception (5), none have included a significant percentage of African-Americans. Furthermore, few studies have examined the influence of genetic variation in oxidative stress pathways (SOD, GPx, CAT). We examined the association between SNPs and haplotypes of genes in the alcohol metabolism and oxidative stress pathways and SNP–alcohol interactions using data from a large NC population–based case–control study of SCCHN including 22% African-Americans.

Subject enrollment

The Carolina Head and Neck Cancer Epidemiology Study (CHANCE) is a population-based case–control study upon which these analyses are based (6).

All cases of squamous cell carcinoma of the oral cavity, pharynx, and larynx diagnosed in 46 NC counties between January 1, 2002, and February 28, 2006, were eligible for enrollment. Rapid case identification was conducted by the NC Central Cancer Registry. CHANCE cases included ICD-O-3 topography codes C0.00-C14.8 and C32.0-C32.9, excluding salivary gland (C07.9, C08.0-C08.9), nasopharynx (C11.0-C11.9), nasal cavity (C30.0), and nasal sinuses (C31.0-C31.9). ICD-O-3 morphology codes included were 8010/3, 8051/3, 8083/3, 8071/3, 8072/3, 8073/3, 8074/3, and 8076/3. Benign tumors, carcinomas in situ, papillary carcinomas, and adenoid carcinomas were excluded. We further excluded 21 lip cancers (C00.3-C00.9, C14.2), 46 of “other” race, and 96 without genotyping data, producing a study composition of 1,227 cases and 1,325 controls.

Potentially eligible controls from the same counties as cases were identified through NC Department of Motor Vehicles records. Controls were frequency matched to cases using random sampling with stratification on age, race, and sex.

Trained nurse-interviewers conducted an in-person interview with each subject. For this analysis only self-reported, nonproxy data were included. Questions were asked about demographics, tobacco use, drinking of alcoholic beverages, diet, oral health, medical history, and family history of cancer.

Blood samples were obtained by nurse-interviewers trained in phlebotomy. If the subject was not willing or able to consent to the blood draw, they were asked to contribute a buccal cell sample via mouth rinse.

Written informed consent was obtained from all subjects. The study was approved by the Biomedical Institutional Review Board at the University of North Carolina at Chapel Hill.

Outcome, exposure, and covariate measurement

Outcome.

Case tumors were classified into anatomic subsites according to the following 5 ICD-O categories used by the International Head and Neck Cancer Epidemiology Consortium (ref. 7): (i) oral cavity: C02.0-C02.3, C03.0, C03.1, C03.9, C04.0, C04.1, C04.8, C04.9, C05.0, C06.0-C06.2, C06.8, and C06.9; (ii) oropharynx: C01.9, C02.4, C05.1, C05.2, C09.0, C09.1, C09.8, C09.9, C10.0-C10.4, C10.8, and C10.9; (iii) oral cavity–oropharynx–hypopharynx NOS: C02.8, C02.9, C05.8, C05.9, C14.0, C14.2, and C14.8; (iv) hypopharynx: C12.9, C13.0-C13.2, C13.8, and C13.9; and (v) larynx: C32.0-C32.3, and C32.8-C32.9.

Alcohol and tobacco use.

Questions about alcohol use were designed to estimate lifetime history of consumption, and usual consumption of each beverage type, prior to the year before diagnosis. Questions asked about beer, wine, and hard liquor separately as follows: (i) Did you drink (beer/wine/hard liquor)? (ii) At what age did you start? (iii) At what age did you stop? (iv) For how many years did you drink (beer/wine/hard liquor) during this period? (v) How much (beer/wine/hard liquor) did you usually drink? Per day/week/month/year? and (vi) What size did you usually drink?

As frequency of drinking has shown stronger associations with SCCHN than duration (8), a single frequency measure that included all types of alcoholic beverages would have been optimal for estimating alcohol interaction with SNPs. Because this was unavailable in CHANCE, we instead derived a lifetime measure of alcohol intake, in milliliters, for beer, wine, and liquor combined. Using splines, we confirmed that tertiles best represented the risk associated with alcohol intake.

The primary tobacco exposure covariate selected was continuous duration of cigarette smoking. Dichotomous variables representing additional potential tobacco confounders were: ever use of non-cigarette tobacco, and ever-exposed to environmental tobacco smoke at work or at home.

SNPs and haplotypes.

Seventy-five SNPs (69 tag SNPs, and 6 candidate SNPs found in prior studies to be associated with cancer incidence or survival, or alcohol dependence) were selected in 12 genes that are part of 2 metabolic pathways: ADH1B, ADH1C, ADH4, ADH7, ALDH2, and CYP2E1 in the alcohol metabolism pathway in the upper aerodigestive tract; and CAT, SOD1, SOD2, GPX1, GPX2, and GPX4 in the oxidative stress pathway. Tag SNPs, chosen to represent the genetic variation within each of the 12 candidate genes (gene and 2,000 bp upstream and downstream) were selected using the Genome Variation Server (9), using SNPs that were polymorphic in either CEU or YRI HapMap Release 2 (unrelated only), with the following parameters: allele frequency cutoff value of 10%, 0.8 R2 threshold minimum for variations to belong to the same cluster, 85% minimum data coverage for tag SNPs, 70% minimal data coverage for a variation to be potentially clustered with others.

To control for potential population stratification, we selected 157 ancestry informative markers (AIM) to maximize (i) the difference in allele frequencies (delta) between European and African populations in the HapMap data (CEU vs. YRI), and (ii) the Fisher's information criterion (FIC). AIMs were prioritized on the basis of having the highest delta and FIC values in the following order: 90% European/10% African, 10% European/90% African, and 50% European/50% African. This allowed AIMs to represent the entire expected ancestral distribution of the study population. Individual estimates of percentage African ancestry were calculated from 145 successfully genotyped AIMs using maximum likelihood estimation methods previously described (10–12). AIMs were chosen to differentiate only between African and European ancestry, so individual ancestry estimates for the 2 groups sum to 1.0.

DNA was extracted from blood or buccal samples collected at time of interview. Genotyping was done by the University of North Carolina at Chapel Hill, Mammalian Genotyping Core Facility, using the Illumina GoldenGate Genotyping Assay with Sentrix Array matrix and 96-well standard microtiter plates.

Haplotypes using SNP data were constructed separately for African- and European-Americans using default D' blocks in Haploview 4.2. The algorithm (13) constructs 95% confidence limits on D' and each comparison is defined as “strong LD,” “inconclusive,” or “strong recombination.” A block is created if 95% of informative comparisons are in “strong LD.” Markers with minor allele frequency less than 5% are ignored. Assignment of most likely haplotype for individuals with ambiguous haplotype was done using an EM algorithm in haplo.stats (14), with minimum counts set to 10.

Socioeconomic status, oral health.

Dichotomous variables representing additional potential confounders were: had health insurance on reference date, had a routine dental visit in the last 10 years, ever had a loose permanent tooth due to disease, ever used mouthwash, family history of SCCHN, household poverty as defined by federal guidelines, and education level.

Statistical analysis

ORs for the independent effects of SNPs and alcohol, and their interactive effects, were computed using conditional logistic regression implemented in SAS 9.2. ORs for the main effects of haplotypes were computed using unconditional logistic regression implemented in haplo.stats 1.4.4.

A dominant genetic model (at least one minor allele vs. referent of no minor alleles) was used for SNPs because for many SNPs, the number of subjects homozygous for the minor allele was too small to permit precise effect measurement.

Potential covariates were eliminated using stepwise backward elimination, comparing each reduced model with a full model that included all covariates listed in Table 1. No collinearity was noted between variables in the full model, with one exception as described below. If a covariate did not change the ln(OR) for any SNP by a difference of at least 0.10, it was eliminated from subsequent models. Final models for genetic main effects contained a single SNP or haplotype and duration of smoking as a continuous variable. Models estimating SNP–drinking interaction also included categorized lifetime ethanol consumption. We had insufficient power to detect haplotype–drinking interaction because haplotypes were constructed and analyzed separately for African- and European-Americans. The conditional logistic regression used for SNPs by definition takes into account the matching variables of age, sex, and race. The unconditional logistic regression models used for haplotypes (for each race separately) included, as covariates, sex, age, and their 2-way interaction. Ancestry was not important for the polymorphisms studied, probably because self-reported race was already included (as a matching variable). The ancestry variable also showed evidence of collinearity with race, so for these reasons and for parsimony's sake, ancestry was excluded from final models.

Table 1.

Distribution of nongenetic variables in cases and controls

Cases (n = 1,227)Controls (n = 1,325)χ2 or t test, unadjusted P-value
Variablena (%)na (%)
Age, y 
20–49 239 (19.5) 151 (11.4) <0.0001 
50–54 189 (15.4) 156 (11.8)  
55–59 207 (16.9) 199 (15.0)  
60–64 205 (16.7) 202 (15.2)  
65–69 168 (13.7) 237 (17.9)  
70–74 135 (11.0) 216 (16.3)  
75–80 84 (6.8) 164 (12.4)  
Sex 
Male 938 (76.4) 924 (69.7) 0.0001 
Female 289 (23.6) 401 (30.3)  
Race 
European-American 922 (75.1) 1,074 (81.1) 0.0003 
African-American 305 (24.9) 251 (18.9)  
Drinking (lifetime ethanol intake in mL) <0.0001 
Never-drinkers 117 (9.5) 280 (21.1)  
>0 to <134,699 210 (17.1) 467 (35.2)  
134,699 to <757,550 318 (25.9) 360 (27.2)  
757,550+ 505 (41.2) 173 (13.1)  
Missing 77 (6.3) 45 (3.4)  
Smoking (duration in y) <0.0001 
160 (13.0) 497 (37.5)  
1–19 104 (8.5) 266 (20.1)  
20–39 435 (35.5) 314 (23.7)  
40–49 295 (24.0) 131 (9.9)  
50+ 155 (12.6) 71 (5.4)  
Missing 78 (6.4) 46 (3.5)  
Poverty group (at or above, or below, federal poverty guideline) <0.0001 
≥Poverty guideline 816 (66.5) 1,088 (82.1)  
<Poverty guideline 356 (29.0) 187 (14.1)  
Had a routine dental visit in past 10 years? <0.0001 
Yes 781 (63.7) 1,115 (84.2)  
No 438 (35.7) 210 (15.8)  
Drank alcoholic beverages in prior 20 years? 0.8851 
No 24 (2.0) 27 (2.0)  
Yes 1,202 (98.0) 1,298 (98.0)  
Ever exposed to environmental tobacco smoke at work 0.0024 
No 316 (25.8) 414 (31.2)  
Yes 909 (74.1) 911 (68.8)  
Ever exposed to environmental tobacco smoke at home <0.0001 
No 399 (32.5) 592 (44.7)  
Yes 827 (67.4) 732 (55.2)  
Ever used non-cigarette tobacco products 0.1165 
No 754 (61.5) 854 (64.5)  
Yes 473 (38.5) 471 (35.5)  
Had health insurance at reference date <0.0001 
Yes 1,068 (87.0) 1,250 (94.3)  
No 154 (12.6) 74 (5.6)  
Highest education level attained <0.0001 
≥High school 828 (67.5) 1,123 (84.8)  
<High school 399 (32.5) 202 (15.2)  
Ever had loose permanent tooth due to disease <0.0001 
No 765 (62.3) 1,018 (76.8)  
Yes 455 (37.1) 305 (23.0)  
Ever regularly used mouthwash 0.8572 
No 502 (40.9) 549 (41.4)  
Yes 719 (58.6) 775 (58.5)  
Family history of SCCHN among first-degree relatives 0.3848 
No 1,206 (98.3) 1,296 (97.8)  
Yes 21 (1.7) 29 (2.2)  
Mean African ancestry, % 23.8 19.7 0.0008 
Cases (n = 1,227)Controls (n = 1,325)χ2 or t test, unadjusted P-value
Variablena (%)na (%)
Age, y 
20–49 239 (19.5) 151 (11.4) <0.0001 
50–54 189 (15.4) 156 (11.8)  
55–59 207 (16.9) 199 (15.0)  
60–64 205 (16.7) 202 (15.2)  
65–69 168 (13.7) 237 (17.9)  
70–74 135 (11.0) 216 (16.3)  
75–80 84 (6.8) 164 (12.4)  
Sex 
Male 938 (76.4) 924 (69.7) 0.0001 
Female 289 (23.6) 401 (30.3)  
Race 
European-American 922 (75.1) 1,074 (81.1) 0.0003 
African-American 305 (24.9) 251 (18.9)  
Drinking (lifetime ethanol intake in mL) <0.0001 
Never-drinkers 117 (9.5) 280 (21.1)  
>0 to <134,699 210 (17.1) 467 (35.2)  
134,699 to <757,550 318 (25.9) 360 (27.2)  
757,550+ 505 (41.2) 173 (13.1)  
Missing 77 (6.3) 45 (3.4)  
Smoking (duration in y) <0.0001 
160 (13.0) 497 (37.5)  
1–19 104 (8.5) 266 (20.1)  
20–39 435 (35.5) 314 (23.7)  
40–49 295 (24.0) 131 (9.9)  
50+ 155 (12.6) 71 (5.4)  
Missing 78 (6.4) 46 (3.5)  
Poverty group (at or above, or below, federal poverty guideline) <0.0001 
≥Poverty guideline 816 (66.5) 1,088 (82.1)  
<Poverty guideline 356 (29.0) 187 (14.1)  
Had a routine dental visit in past 10 years? <0.0001 
Yes 781 (63.7) 1,115 (84.2)  
No 438 (35.7) 210 (15.8)  
Drank alcoholic beverages in prior 20 years? 0.8851 
No 24 (2.0) 27 (2.0)  
Yes 1,202 (98.0) 1,298 (98.0)  
Ever exposed to environmental tobacco smoke at work 0.0024 
No 316 (25.8) 414 (31.2)  
Yes 909 (74.1) 911 (68.8)  
Ever exposed to environmental tobacco smoke at home <0.0001 
No 399 (32.5) 592 (44.7)  
Yes 827 (67.4) 732 (55.2)  
Ever used non-cigarette tobacco products 0.1165 
No 754 (61.5) 854 (64.5)  
Yes 473 (38.5) 471 (35.5)  
Had health insurance at reference date <0.0001 
Yes 1,068 (87.0) 1,250 (94.3)  
No 154 (12.6) 74 (5.6)  
Highest education level attained <0.0001 
≥High school 828 (67.5) 1,123 (84.8)  
<High school 399 (32.5) 202 (15.2)  
Ever had loose permanent tooth due to disease <0.0001 
No 765 (62.3) 1,018 (76.8)  
Yes 455 (37.1) 305 (23.0)  
Ever regularly used mouthwash 0.8572 
No 502 (40.9) 549 (41.4)  
Yes 719 (58.6) 775 (58.5)  
Family history of SCCHN among first-degree relatives 0.3848 
No 1,206 (98.3) 1,296 (97.8)  
Yes 21 (1.7) 29 (2.2)  
Mean African ancestry, % 23.8 19.7 0.0008 

aFrequencies for all variables may not sum to the total number of cases and controls, due to missing values.

A Bonferroni correction was used to adjust P values and interaction contrast ratios (ICR) confidence intervals (CI) to control for type 1 error introduced by multiple statistical testing, for either 64 tests (for 64 SNPs) or for 12 or 13 tests (for haplotypes).

Departures from additive interaction were evaluated by computing ICRs and Bonferroni-corrected CIs. ICRs were calculated using cancer ORs of subjects in 3 categories: (i) the highest drinking category and no minor allele (OR01); (ii) never-drinkers with at least one minor allele (OR10); and (iii) subjects in the highest drinking category and at least one minor allele (OR11), compared with never-drinkers homozygous for the major allele (i.e., the referent: OR00 = 1.0). ICR is calculated as follows: ICR = OR11 − OR01 − OR10 + 1. ICRs significantly different from zero indicate departure from additive interaction.

Description of study population

Although controls were somewhat older and more likely to be female and European-American than cases (Table 1), the percentages of cases versus controls in each of the 28 age–sex–race cross-categories, as a proportion of the entire study population, differed by less than 2%. Compared with controls, cases smoked and drank more, and were poorer, less likely to have completed high school or have health insurance, less likely to have had a routine dental visit in the past 10 years, and more likely to have lost a permanent tooth to disease. Cases were also more likely to have been exposed to environmental tobacco smoke at home and work. Mean proportion of African ancestry was slightly higher in cases than controls.

Sixty-four of 75 SNPs (45 alcohol metabolism, 19 oxidative stress) were successfully genotyped. Assay intensity data and genotype cluster images for all SNPs were individually reviewed; as a result, 9 of the original 75 tag SNPs and 12 AIMs (9% of SNPs) were excluded due to inadequate signal or indistinguishable genotype clusters. Blind duplicates of 109 samples were genotyped to verify call reliability; none of our SNPs were discrepant. Two of the original 75 tag SNPs were judged to be out of Hardy–Weinberg Equilibrium (SAS PROC ALLELE) in both European- and African-American controls due to an exact P value <0.001, and were eliminated from analysis.

There were no large differences in allele frequencies between cases and controls, when stratified by race (Supplementary Table S1). However there are large allele frequency differences between African- and European-Americans.

Cancer risk from alcohol consumption

The odds of developing SCCHN increase monotonically as lifetime alcohol consumption increases (Table 2). Subjects in the lowest consumption category experienced reduced SCCHN odds compared with nondrinkers (OR = 0.8; 95% CI, 0.6–1.0), driven largely by laryngeal and oral cavity tumors (OR = 0.7; 95% CI, 0.4–1.1 and OR = 0.4; 95% CI, 0.2–0.9, respectively).

Table 2.

Effect of lifetime alcohol consumption on odds of developing cancer

SCCHN (all 5 sub sites combined)Oral cavity cancerOropharyngeal cancerOral cavity, oropharyngeal, hypopharyngeal cancer NOSHypopharyngeal cancerLaryngeal cancer
Lifetime alcohol Consumption, mLNo. of cases/controlsaAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)
Missing 74/43  6/43  22/43  15/43  3/43 28/43  
117/280 1.00 (ref) 22/280 1.00 (ref) 27/280 1.00 (ref) 23/280 1.00 (ref) 1/280 1.00 (ref) 44/280 1.00 (ref) 
>0–133,294 209/466 0.75 (0.56–1.02) 19/466 0.45 (0.23–0.89) 69/466 0.87 (0.53–1.44) 48/466 0.93 (0.54–1.62) 5/466 2.25 (0.26–19.84) 68/466 0.67 (0.42–1.08) 
133,294–757,550 318/360 1.29 (0.95–1.76) 41/360 1.28 (0.68–2.41) 94/360 1.47 (0.89–2.45) 51/360 1.48 (0.83–2.64) 9/360 5.13 (0.61–43.04) 123/360 1.25 (0.78–2.00) 
757,550+ 505/173 3.22 (2.29–4.52) 84/173 5.34 (2.67–10.67) 120/173 3.47 (2.00–6.04) 86/173 4.49 (2.40–8.39) 36/173 28.74 (3.42–241.40) 179/173 2.26 (1.38–3.70) 
SCCHN (all 5 sub sites combined)Oral cavity cancerOropharyngeal cancerOral cavity, oropharyngeal, hypopharyngeal cancer NOSHypopharyngeal cancerLaryngeal cancer
Lifetime alcohol Consumption, mLNo. of cases/controlsaAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)No. of cases/controlsAdjusted ORb (95% CI)
Missing 74/43  6/43  22/43  15/43  3/43 28/43  
117/280 1.00 (ref) 22/280 1.00 (ref) 27/280 1.00 (ref) 23/280 1.00 (ref) 1/280 1.00 (ref) 44/280 1.00 (ref) 
>0–133,294 209/466 0.75 (0.56–1.02) 19/466 0.45 (0.23–0.89) 69/466 0.87 (0.53–1.44) 48/466 0.93 (0.54–1.62) 5/466 2.25 (0.26–19.84) 68/466 0.67 (0.42–1.08) 
133,294–757,550 318/360 1.29 (0.95–1.76) 41/360 1.28 (0.68–2.41) 94/360 1.47 (0.89–2.45) 51/360 1.48 (0.83–2.64) 9/360 5.13 (0.61–43.04) 123/360 1.25 (0.78–2.00) 
757,550+ 505/173 3.22 (2.29–4.52) 84/173 5.34 (2.67–10.67) 120/173 3.47 (2.00–6.04) 86/173 4.49 (2.40–8.39) 36/173 28.74 (3.42–241.40) 179/173 2.26 (1.38–3.70) 

aCases and controls do not sum to 1,227 and 1,325, respectively, because 4 cases and 3 controls are missing information on duration of cigarette smoking.

bConditional logistic regression models for estimating main effects of categorized lifetime ethanol consumption were conditioned on sex, race, and age category, and adjusted for continuous smoking duration rounded to whole years.

Successively higher levels of alcohol consumption were associated with increasing odds. The middle tertile of lifetime consumption was associated with 30% higher SCCHN odds than never-drinkers, and the highest tertile of consumption with tripled odds. In the highest drinking category, all subsites experienced significantly increased odds: doubled odds of laryngeal cancer, and tripled or greater odds for oropharyngeal and oral cavity tumors.

Cancer risk from genetic variants

None of the SNP associations with SCCHN or any of the subsite cancers had a significant Bonferroni-corrected P value, although 5 SNPs in ADH1B, ALDH2, and SOD2 showed evidence of reduced or increased cancer ORs overall and in oral cavity, laryngeal, and hypopharyngeal subsites (Table 3; remaining subsite effects in Supplementary Table S2). In ADH1B, the rs1229984 A allele was associated with 30% decreased SCCHN odds, and the rs17028834 C allele with 50% increased odds of laryngeal tumors. In ALDH2, the rs2238151 C allele was associated with 10% increased odds of SCCHN, driven largely by 20% increased risk of laryngeal tumors. In SOD2, the rs4342445 A allele was associated with 30% greater odds for oral cavity tumors, and the rs5746134 T allele with doubled odds for hypopharyngeal cancer.

Table 3.

SNP effects on odds of developing cancer (dominant genetic model)

SCCHN (all 5 anatomic subsites, combined)Oral cavity cancerHypopharyngeal cancerLaryngeal cancer
No. of cases/controlsaAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)Pc
GeneSNPMajor/minor allelesHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor allele
Alcohol metabolism genes 
ADH1B rs12507573 C/A 371/386 852/935 0.96 (0.87–1.06) 1.00 57/386 115/935 0.94 (0.78–1.14) 1.00 15/386 39/935 1.03 (0.74–1.42) 1.00 137/386 305/935 0.94 (0.82–1.08) 1.00 
 rs1042026 A/G 712/744 511/578 1.00 (0.91–1.10) 1.00 94/744 78/578 1.06 (0.88–1.26) 1.00 36/744 18/578 0.89 (0.65–1.22) 1.00 264/744 178/578 0.96 (0.84–1.10) 1.00 
 rs7673353 C/T 1,124/1,239 99/83 1.01 (0.83–1.23) 1.00 161/1,239 11/83 0.88 (0.60–1.30) 1.00 48/1,239 6/83 0.84 (0.51–1.40) 1.00 402/1,239 40/83 1.04 (0.79–1.36) 1.00 
 rs17028834 T/C 1,138/1,265 85/57 1.28 (1.03–1.59) 1.00 159/1,265 13/57 1.50 (1.01–2.25) 1.00 48/1,265 6/57 1.71 (1.00–2.95) 1.00 408/1,265 34/57 1.49 (1.11–2.01) 0.54 
 rs1693457 T/C 803/860 419/461 1.01 (0.92–1.11) 1.00 114/860 58/461 0.99 (0.82–1.19) 1.00 36/860 18/461 0.94 (0.69–1.28) 1.00 294/860 148/461 1.02 (0.89–1.17) 1.00 
 rs1229984d G/A 1,192/1,243 31/79 0.72 (0.57–0.91) 0.35 169/1,243 3/79 0.63 (0.35–1.15) 1.00 53/1,243 1/79 0.62 (0.22–1.70) 1.00 429/1,243 13/79 0.79 (0.57–1.12) 1.00 
 rs1159918 G/T 402/468 821/854 1.07 (0.97–1.18) 1.00 60/468 112/854 1.03 (0.86–1.24) 1.00 14/468 40/854 1.17 (0.83–1.64) 1.00 154/468 288/854 1.05 (0.91–1.21) 1.00 
 rs1229982 G/T 699/775 524/547 1.00 (0.91–1.10) 1.00 97/775 75/547 0.95 (0.80–1.14) 1.00 35/775 19/547 0.80 (0.59–1.09) 1.00 241/775 201/547 1.05 (0.92–1.19) 1.00 
ADH1C rs2298753 T/C 1,002/1,117 221/205 1.12 (1.00–1.27) 1.00 140/1,117 32/205 1.12 (0.89–1.41) 1.00 46/1,117 8/205 1.16 (0.78–1.75) 1.00 366/1,117 76/205 1.10 (0.93–1.31) 1.00 
 rs1614972 C/T 539/585 684/737 1.00 (0.92–1.09) 1.00 85/585 87/737 0.93 (0.78–1.10) 1.00 26/585 28/737 0.83 (0.61–1.11) 1.00 192/585 250/737 0.96 (0.85–1.10) 1.00 
 rs1391088 C/A 1,045/1,119 178/203 1.01 (0.89–1.14) 1.00 142/1,119 30/203 1.07 (0.85–1.34) 1.00 50/1,119 4/203 0.71 (0.41–1.20) 1.00 381/1,119 61/203 1.05 (0.88–1.26) 1.00 
 rs1693482e C/T 527/585 694/735 1.05 (0.95–1.15) 1.00 75/585 97/735 1.00 (0.83–1.20) 1.00 24/585 30/735 1.18 (0.87–1.60) 1.00 186/585 256/735 1.09 (0.95–1.25) 1.00 
 rs1631460 C/G 519/574 703/748 1.04 (0.95–1.14) 1.00 74/574 97/748 0.99 (0.83–1.19) 1.00 24/574 30/748 1.17 (0.86–1.58) 1.00 184/574 258/748 1.08 (0.94–1.23) 1.00 
 rs11936869 C/G 611/645 612/676 0.98 (0.90–1.07) 1.00 90/645 82/676 0.96 (0.81–1.14) 1.00 28/645 26/676 0.86 (0.64–1.16) 1.00 221/645 221/676 0.93 (0.82–1.06) 1.00 
ADH4 rs29001227 A/T 1,119/1,253 104/69 1.25 (1.02–1.53) 1.00 157/1,253 15/69 1.31 (0.90–1.91) 1.00 48/1,253 6/69 1.38 (0.81–2.34) 1.00 401/1,253 41/69 1.39 (1.05–1.84) 1.00 
 rs1126672 C/T 720/758 503/564 1.01 (0.92–1.10) 1.00 93/758 79/564 1.08 (0.90–1.28) 1.00 38/758 16/564 0.82 (0.60–1.13) 1.00 257/758 185/564 1.06 (0.93–1.21) 1.00 
 rs4699710 T/C 640/684 583/638 1.01 (0.93–1.11) 1.00 77/684 95/638 1.12 (0.94–1.33) 1.00 34/684 20/638 0.86 (0.64–1.16) 1.00 230/684 212/638 1.05 (0.93–1.20) 1.00 
 rs10017466 T/C 556/632 666/690 1.05 (0.97–1.15) 1.00 67/632 105/690 1.16 (0.97–1.38) 1.00 30/632 24/690 0.90 (0.68–1.20) 1.00 196/632 246/690 1.12 (0.99–1.27) 1.00 
 rs1800759 C/A 357/412 866/910 1.02 (0.92–1.12) 1.00 46/412 126/910 1.09 (0.90–1.33) 1.00 13/412 41/910 1.05 (0.75–1.48) 1.00 122/412 320/910 1.09 0.94–1.25) 1.00 
 rs1800761 G/A 750/830 473/492 1.02 (0.93–1.12) 1.00 112/830 60/492 0.92 (0.77–1.10) 1.00 35/830 19/492 0.90 (0.66–1.22) 1.00 276/830 166/492 0.99 (0.87–1.13) 1.00 
 rs3762894 T/C 839/906 384/416 0.98 (0.89–1.08) 1.00 126/906 46/416 0.89 (0.74–1.08) 1.00 38/906 16/416 0.89 (0.65–1.23) 1.00 307/906 135/416 0.94 (0.82–1.08) 1.00 
ADH7 rs284787 C/T 739/817 484/505 1.06 (0.96–1.16) 1.00 112/817 60/505 0.94 (0.79–1.13) 1.00 29/817 25/505 1.18 (0.88–1.59) 1.00 264/817 178/505 1.09 (0.96–1.25) 1.00 
 rs894369 C/G 832/849 391/472 0.92 (0.84–1.01) 1.00 116/849 56/472 0.96 (0.80–1.15) 1.00 42/849 12/472 0.75 (0.54–1.05) 1.00 304/849 138/472 0.93 (0.81–1.06) 1.00 
 rs17588403 T/A 837/887 386/435 0.96 (0.87–1.05) 1.00 116/887 56/435 0.95 (0.79–1.14) 1.00 37/887 17/435 0.94 (0.69–1.28) 1.00 297/887 145/435 0.96 (0.84–1.10) 1.00 
 rs1154454 T/C 756/808 467/514 0.94 (0.86–1.04) 1.00 117/808 55/514 0.80 (0.66–0.98) 1.00 37/808 17/514 0.69 (0.49–0.97) 1.00 260/808 182/514 1.00 (0.87–1.15) 1.00 
 rs1154456 T/C 577/629 646/693 1.03 (0.94–1.13) 1.00 86/629 86/693 0.97 (0.81–1.15) 1.00 26/629 28/693 1.04 (0.78–1.40) 1.00 207/629 235/693 1.07 0.94–1.21) 1.00 
 rs1154460 G/A 329/377 891/944 1.04 (0.95–1.15) 1.00 49/377 123/944 1.03 (0.85–1.25) 1.00 13/377 41/944 1.11 (0.80–1.55) 1.00 118/377 322/944 1.12 (0.97–1.29) 1.00 
 rs971074 G/A 943/1,027 280/295 1.01 (0.91–1.12) 1.00 131/1,027 41/295 1.09 (0.89–1.34) 1.00 39/1,027 15/295 1.14 (0.83–1.58) 1.00 348/1,027 94/295 1.00 (0.85–1.16) 1.00 
 rs1573496d C/G 1,056/1,117 166/205 0.99 (0.87–1.12) 1.00 147/1,117 25/205 1.09 (0.86–1.39) 1.00 48/1,117 6/205 0.91 (0.57–1.44) 1.00 383/1,117 59/205 1.02 (0.85–1.23) 1.00 
ALDH2 rs4767939 A/G 694/806 528/516 1.08 (0.98–1.18) 1.00 101/806 71/516 1.04 (0.87–1.25) 1.00 29/806 25/516 1.10 (0.81–1.49) 1.00 238/806 204/516 1.12 (0.98–1.28) 1.00 
 rs2238151 T/C 364/482 855/837 1.13 (1.03–1.25) 0.84 51/482 121/837 1.18 (0.97–1.44) 1.00 16/482 38/837 1.00 (0.70–1.42) 1.00 117/482 323/837 1.24 (1.07–1.43) 0.32 
 rs7312055 G/A 1,081/1,201 142/121 0.93 (0.78–1.12) 1.00 150/1,201 22/121 0.95 (0.67–1.34) 1.00 44/1,201 10/121 0.92 (0.57–1.50) 1.00 390/1,201 52/121 0.87 (0.67–1.12) 1.00 
 rs2158029 G/A 1,166/1,269 57/53 0.95 (0.75–1.19) 1.00 165/1,269 7/53 0.76 (0.48–1.21) 1.00 50/1,269 4/53 0.98 (0.52–1.82) 1.00 419/1,269 23/53 0.99 (0.72–1.36) 1.00 
 rs16941667 C/T 985/1,097 238/224 1.10 (0.98–1.23) 1.00 142/1,097 30/224 1.11 (0.88–1.40) 1.00 41/1,097 13/224 1.24 (0.88–1.75) 1.00 347/1,097 95/224 1.17 (0.99–1.37) 1.00 
 rs16941669 T/G 984/1,084 239/236 1.06 (0.95–1.19) 1.00 134/1,084 38/236 1.20 (0.97–1.48) 1.00 45/1,084 9/236 1.00 (0.68–1.47) 1.00 358/1,084 84/236 1.10 (0.93–1.29) 1.00 
CYP2E1 rs3813865 G/C 1,098/1,215 125/106 1.08 (0.92–1.27) 1.00 155/1,215 17/106 1.16 (0.85–1.58) 1.00 48/1,215 6/106 1.09 (0.67–1.77) 1.00 393/1,215 49/106 1.11 (0.89–1.38) 1.00 
 rs3813867d G/C 1,139/1,237 83/84 0.97 (0.82–1.16) 1.00 160/1,237 12/84 0.98 (0.70–1.38) 1.00 51/1,237 3/84 0.87 (0.47–1.62) 1.00 405/1,237 36/84 1.09 (0.86–1.39) 1.00 
 rs8192772 T/C 1,023/1,114 199/208 1.07 (0.95–1.21) 1.00 142/1,114 30/208 1.09 (0.87–1.38) 1.00 44/1,114 9/208 1.11 (0.75–1.64) 1.00 363/1,114 79/208 1.14 (0.96–1.35) 1.00 
 rs915908 G/A 974/1,006 249/316 0.93 (0.84–1.04) 1.00 139/1,006 33/316 0.92 (0.74–1.14) 1.00 46/1,006 8/316 0.77 (0.51–1.15) 1.00 362/1,006 80/316 0.87 (0.74–1.02) 1.00 
 rs915909 C/T 1,164/1,271 58/46 1.00 (0.79–1.27) 1.00 164/1,271 7/46 0.88 (0.54–1.44) 1.00 50/1,271 4/46 1.09 (0.60–1.99) 1.00 421/1,271 21/46 0.92 (0.66–1.28) 1.00 
 rs7092584 C/T 959/1,052 262/269 1.05 (0.95–1.17) 1.00 131/1,052 41/269 1.12 (0.91–1.38) 1.00 45/1,052 8/269 0.86 (0.58–1.28) 1.00 340/1,052 101/269 1.11 (0.96–1.30) 1.00 
 rs743535 C/T 966/1,071 248/243 1.06 (0.95–1.19) 1.00 134/1,071 38/243 1.09 (0.88–1.35) 1.00 40/1,071 13/243 1.18 (0.84–1.66) 1.00 342/1,071 96/243 1.10 (0.94–1.29) 1.00 
 rs2249695 C/T 622/682 600/639 0.93 (0.85–1.03) 1.00 87/682 84/639 0.93 (0.77–1.12) 1.00 24/682 30/639 0.95 (0.68–1.33) 1.00 223/682 219/639 0.93 (0.81–1.08) 1.00 
 rs28969387 A/T 1,198/1,302 25/20 0.98 (0.70–1.37) 1.00 170/1,302 2/20 0.69 (0.31–1.56) 1.00 54/1,302 0/20  1.00 429/1,302 13/20 1.08 (0.70–1.68) 1.00 
 rs11101812 T/C 1,194/1,300 26/20 1.11 (0.79–1.56) 1.00 170/1,300 2/20 0.79 (0.35–1.77) 1.00 51/1,300 3/20 1.79 (0.86–3.71) 1.00 427/1,300 14/20 1.38 (0.89–2.13) 1.00 
Oxidative stress metabolism genes 
CAT rs1049982d C/T 521/589 700/726 1.02 (0.93–1.11) 1.00 78/589 94/726 0.95 (0.80–1.14) 1.00 27/589 26/726 0.82 (0.61–1.11) 1.00 182/589 260/726 1.05 (0.92–1.19) 1.00 
GPX1 rs8179172 T/A 1,172/1,271 51/51 0.92 (0.73–1.17) 1.00 166/1,271 6/51 0.86 (0.52–1.41) 1.00 51/1,271 3/51 0.67 (0.32–1.39) 1.00 423/1,271 19/51 0.86 (0.62–1.19) 1.00 
 rs1800668 C/T 635/672 588/646 1.04 (0.95–1.14) 1.00 84/672 88/646 1.14 (0.96–1.35) 1.00 29/672 25/646 1.01 (0.76–1.35) 1.00 237/672 205/646 1.03 (0.91–1.17) 1.00 
 rs3811699 A/G 609/649 614/673 1.04 (0.95–1.13) 1.00 77/649 95/673 1.16 (0.98–1.38) 1.00 26/649 28/673 1.07 (0.81–1.43) 1.00 230/649 212/673 1.02 (0.90–1.16) 1.00 
 rs3448 C/T 648/729 575/593 1.03 (0.95–1.13) 1.00 96/729 76/593 1.02 (0.86–1.21) 1.00 27/729 27/593 1.18 (0.88–1.58) 1.00 222/729 220/593 1.12 (0.99–1.28) 1.00 
GPX2 rs11623705 G/T 996/1,069 227/253 1.00 (0.89–1.12) 1.00 139/1,069 33/253 0.99 (0.79–1.23) 1.00 44/1,069 10/253 1.01 (0.70–1.47) 1.00 360/1,069 82/253 1.01 (0.86–1.19) 1.00 
 rs2412065 G/C 694/733 529/589 0.94 (0.86–1.03) 1.00 96/733 76/589 0.94 (0.79–1.13) 1.00 32/733 22/589 0.81 (0.60–1.10) 1.00 251/733 191/589 0.97 (0.85–1.11) 1.00 
 rs2737844 C/T 493/511 725/806 0.89 (0.81–0.99) 1.00 72/511 98/806 0.86 (0.71–1.04) 1.00 20/511 34/806 0.87 (0.63–1.21) 1.00 177/511 265/806 0.91 (0.80–1.05) 1.00 
GPX4 rs757229d G/C 300/358 922/963 1.03 (0.93–1.14) 1.00 39/358 133/963 1.08 (0.88–1.32) 1.00 13/358 41/963 0.93 (0.66–1.31) 1.00 103/358 339/963 1.04 (0.90–1.21) 1.00 
SOD1 rs11910115 A/C 1,161/1,257 62/65 0.93 (0.74–1.17) 1.00 165/1,257 7/65 0.76 (0.48–1.20) 1.00 51/1,257 3/65 0.80 (0.41–1.58) 1.00 418/1,257 24/65 0.94 (0.69–1.30) 1.00 
 rs4998557 G/A 829/959 393/360 1.09 (0.99–1.21) 1.00 123/959 49/360 0.98 (0.80–1.21) 1.00 31/959 23/360 1.28 (0.93–1.78) 1.00 288/959 154/360 1.17 (1.01–1.36) 1.00 
 rs10432782 T/G 874/992 348/329 1.07 (0.97–1.18) 1.00 131/992 41/329 0.93 (0.76–1.15) 1.00 34/992 20/329 1.24 (0.90–1.71) 1.00 306/992 136/329 1.13 (0.97–1.31) 1.00 
 rs2070424 A/G 1,003/1,120 220/202 1.06 (0.94–1.20) 1.00 142/1,120 30/202 1.02 (0.80–1.30) 1.00 46/1,120 8/202 0.85 (0.55–1.31) 1.00 354/1,120 88/202 1.09 (0.92–1.29) 1.00 
 rs1041740 C/T 682/705 541/617 0.98 (0.90–1.07) 1.00 95/705 77/617 1.00 (0.84–1.20) 1.00 36/705 18/617 0.82 (0.60–1.12) 1.00 250/705 192/617 0.97 (0.85–1.11) 1.00 
SOD2 rs4342445 G/A 752/850 471/472 1.11 (1.02–1.22) 1.00 95/850 77/472 1.33 (1.12–1.59) 0.09 42/850 12/472 0.84 (0.60–1.18) 1.00 268/850 174/472 1.16 (1.01–1.32) 1.00 
 rs2842980 A/T 715/807 508/515 1.02 (0.94–1.12) 1.00 97/807 75/515 1.05 (0.88–1.25) 1.00 31/807 23/515 0.98 (0.73–1.31) 1.00 269/807 173/515 0.97 (0.85–1.10) 1.00 
 rs8031 T/A 387/382 836/940 0.98 (0.89–1.08) 1.00 52/382 120/940 1.00 (0.83–1.21) 1.00 16/382 38/940 1.12 (0.80–1.55) 1.00 140/382 302/940 1.02 (0.89–1.17) 1.00 
 rs5746134 C/T 1,125/1,257 98/65 1.20 (0.98–1.48) 1.00 162/1,257 10/65 0.98 (0.64–1.50) 1.00 43/1,257 11/65 2.14 (1.25–3.67) 0.34 409/1,257 33/65 1.13 (0.84–1.50) 1.00 
 rs2758331 C/A 422/419 801/903 0.99 (0.90–1.09) 1.00 61/419 111/903 0.99 (0.82–1.20) 1.00 17/419 37/903 1.22 (0.88–1.70) 1.00 150/419 292/903 1.04 (0.91–1.20) 1.00 
SCCHN (all 5 anatomic subsites, combined)Oral cavity cancerHypopharyngeal cancerLaryngeal cancer
No. of cases/controlsaAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)PcNo. of cases/controlsAdjusted ORb (95% CI)Pc
GeneSNPMajor/minor allelesHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor alleleHomozygous for major alleleOne or two copies of minor allele
Alcohol metabolism genes 
ADH1B rs12507573 C/A 371/386 852/935 0.96 (0.87–1.06) 1.00 57/386 115/935 0.94 (0.78–1.14) 1.00 15/386 39/935 1.03 (0.74–1.42) 1.00 137/386 305/935 0.94 (0.82–1.08) 1.00 
 rs1042026 A/G 712/744 511/578 1.00 (0.91–1.10) 1.00 94/744 78/578 1.06 (0.88–1.26) 1.00 36/744 18/578 0.89 (0.65–1.22) 1.00 264/744 178/578 0.96 (0.84–1.10) 1.00 
 rs7673353 C/T 1,124/1,239 99/83 1.01 (0.83–1.23) 1.00 161/1,239 11/83 0.88 (0.60–1.30) 1.00 48/1,239 6/83 0.84 (0.51–1.40) 1.00 402/1,239 40/83 1.04 (0.79–1.36) 1.00 
 rs17028834 T/C 1,138/1,265 85/57 1.28 (1.03–1.59) 1.00 159/1,265 13/57 1.50 (1.01–2.25) 1.00 48/1,265 6/57 1.71 (1.00–2.95) 1.00 408/1,265 34/57 1.49 (1.11–2.01) 0.54 
 rs1693457 T/C 803/860 419/461 1.01 (0.92–1.11) 1.00 114/860 58/461 0.99 (0.82–1.19) 1.00 36/860 18/461 0.94 (0.69–1.28) 1.00 294/860 148/461 1.02 (0.89–1.17) 1.00 
 rs1229984d G/A 1,192/1,243 31/79 0.72 (0.57–0.91) 0.35 169/1,243 3/79 0.63 (0.35–1.15) 1.00 53/1,243 1/79 0.62 (0.22–1.70) 1.00 429/1,243 13/79 0.79 (0.57–1.12) 1.00 
 rs1159918 G/T 402/468 821/854 1.07 (0.97–1.18) 1.00 60/468 112/854 1.03 (0.86–1.24) 1.00 14/468 40/854 1.17 (0.83–1.64) 1.00 154/468 288/854 1.05 (0.91–1.21) 1.00 
 rs1229982 G/T 699/775 524/547 1.00 (0.91–1.10) 1.00 97/775 75/547 0.95 (0.80–1.14) 1.00 35/775 19/547 0.80 (0.59–1.09) 1.00 241/775 201/547 1.05 (0.92–1.19) 1.00 
ADH1C rs2298753 T/C 1,002/1,117 221/205 1.12 (1.00–1.27) 1.00 140/1,117 32/205 1.12 (0.89–1.41) 1.00 46/1,117 8/205 1.16 (0.78–1.75) 1.00 366/1,117 76/205 1.10 (0.93–1.31) 1.00 
 rs1614972 C/T 539/585 684/737 1.00 (0.92–1.09) 1.00 85/585 87/737 0.93 (0.78–1.10) 1.00 26/585 28/737 0.83 (0.61–1.11) 1.00 192/585 250/737 0.96 (0.85–1.10) 1.00 
 rs1391088 C/A 1,045/1,119 178/203 1.01 (0.89–1.14) 1.00 142/1,119 30/203 1.07 (0.85–1.34) 1.00 50/1,119 4/203 0.71 (0.41–1.20) 1.00 381/1,119 61/203 1.05 (0.88–1.26) 1.00 
 rs1693482e C/T 527/585 694/735 1.05 (0.95–1.15) 1.00 75/585 97/735 1.00 (0.83–1.20) 1.00 24/585 30/735 1.18 (0.87–1.60) 1.00 186/585 256/735 1.09 (0.95–1.25) 1.00 
 rs1631460 C/G 519/574 703/748 1.04 (0.95–1.14) 1.00 74/574 97/748 0.99 (0.83–1.19) 1.00 24/574 30/748 1.17 (0.86–1.58) 1.00 184/574 258/748 1.08 (0.94–1.23) 1.00 
 rs11936869 C/G 611/645 612/676 0.98 (0.90–1.07) 1.00 90/645 82/676 0.96 (0.81–1.14) 1.00 28/645 26/676 0.86 (0.64–1.16) 1.00 221/645 221/676 0.93 (0.82–1.06) 1.00 
ADH4 rs29001227 A/T 1,119/1,253 104/69 1.25 (1.02–1.53) 1.00 157/1,253 15/69 1.31 (0.90–1.91) 1.00 48/1,253 6/69 1.38 (0.81–2.34) 1.00 401/1,253 41/69 1.39 (1.05–1.84) 1.00 
 rs1126672 C/T 720/758 503/564 1.01 (0.92–1.10) 1.00 93/758 79/564 1.08 (0.90–1.28) 1.00 38/758 16/564 0.82 (0.60–1.13) 1.00 257/758 185/564 1.06 (0.93–1.21) 1.00 
 rs4699710 T/C 640/684 583/638 1.01 (0.93–1.11) 1.00 77/684 95/638 1.12 (0.94–1.33) 1.00 34/684 20/638 0.86 (0.64–1.16) 1.00 230/684 212/638 1.05 (0.93–1.20) 1.00 
 rs10017466 T/C 556/632 666/690 1.05 (0.97–1.15) 1.00 67/632 105/690 1.16 (0.97–1.38) 1.00 30/632 24/690 0.90 (0.68–1.20) 1.00 196/632 246/690 1.12 (0.99–1.27) 1.00 
 rs1800759 C/A 357/412 866/910 1.02 (0.92–1.12) 1.00 46/412 126/910 1.09 (0.90–1.33) 1.00 13/412 41/910 1.05 (0.75–1.48) 1.00 122/412 320/910 1.09 0.94–1.25) 1.00 
 rs1800761 G/A 750/830 473/492 1.02 (0.93–1.12) 1.00 112/830 60/492 0.92 (0.77–1.10) 1.00 35/830 19/492 0.90 (0.66–1.22) 1.00 276/830 166/492 0.99 (0.87–1.13) 1.00 
 rs3762894 T/C 839/906 384/416 0.98 (0.89–1.08) 1.00 126/906 46/416 0.89 (0.74–1.08) 1.00 38/906 16/416 0.89 (0.65–1.23) 1.00 307/906 135/416 0.94 (0.82–1.08) 1.00 
ADH7 rs284787 C/T 739/817 484/505 1.06 (0.96–1.16) 1.00 112/817 60/505 0.94 (0.79–1.13) 1.00 29/817 25/505 1.18 (0.88–1.59) 1.00 264/817 178/505 1.09 (0.96–1.25) 1.00 
 rs894369 C/G 832/849 391/472 0.92 (0.84–1.01) 1.00 116/849 56/472 0.96 (0.80–1.15) 1.00 42/849 12/472 0.75 (0.54–1.05) 1.00 304/849 138/472 0.93 (0.81–1.06) 1.00 
 rs17588403 T/A 837/887 386/435 0.96 (0.87–1.05) 1.00 116/887 56/435 0.95 (0.79–1.14) 1.00 37/887 17/435 0.94 (0.69–1.28) 1.00 297/887 145/435 0.96 (0.84–1.10) 1.00 
 rs1154454 T/C 756/808 467/514 0.94 (0.86–1.04) 1.00 117/808 55/514 0.80 (0.66–0.98) 1.00 37/808 17/514 0.69 (0.49–0.97) 1.00 260/808 182/514 1.00 (0.87–1.15) 1.00 
 rs1154456 T/C 577/629 646/693 1.03 (0.94–1.13) 1.00 86/629 86/693 0.97 (0.81–1.15) 1.00 26/629 28/693 1.04 (0.78–1.40) 1.00 207/629 235/693 1.07 0.94–1.21) 1.00 
 rs1154460 G/A 329/377 891/944 1.04 (0.95–1.15) 1.00 49/377 123/944 1.03 (0.85–1.25) 1.00 13/377 41/944 1.11 (0.80–1.55) 1.00 118/377 322/944 1.12 (0.97–1.29) 1.00 
 rs971074 G/A 943/1,027 280/295 1.01 (0.91–1.12) 1.00 131/1,027 41/295 1.09 (0.89–1.34) 1.00 39/1,027 15/295 1.14 (0.83–1.58) 1.00 348/1,027 94/295 1.00 (0.85–1.16) 1.00 
 rs1573496d C/G 1,056/1,117 166/205 0.99 (0.87–1.12) 1.00 147/1,117 25/205 1.09 (0.86–1.39) 1.00 48/1,117 6/205 0.91 (0.57–1.44) 1.00 383/1,117 59/205 1.02 (0.85–1.23) 1.00 
ALDH2 rs4767939 A/G 694/806 528/516 1.08 (0.98–1.18) 1.00 101/806 71/516 1.04 (0.87–1.25) 1.00 29/806 25/516 1.10 (0.81–1.49) 1.00 238/806 204/516 1.12 (0.98–1.28) 1.00 
 rs2238151 T/C 364/482 855/837 1.13 (1.03–1.25) 0.84 51/482 121/837 1.18 (0.97–1.44) 1.00 16/482 38/837 1.00 (0.70–1.42) 1.00 117/482 323/837 1.24 (1.07–1.43) 0.32 
 rs7312055 G/A 1,081/1,201 142/121 0.93 (0.78–1.12) 1.00 150/1,201 22/121 0.95 (0.67–1.34) 1.00 44/1,201 10/121 0.92 (0.57–1.50) 1.00 390/1,201 52/121 0.87 (0.67–1.12) 1.00 
 rs2158029 G/A 1,166/1,269 57/53 0.95 (0.75–1.19) 1.00 165/1,269 7/53 0.76 (0.48–1.21) 1.00 50/1,269 4/53 0.98 (0.52–1.82) 1.00 419/1,269 23/53 0.99 (0.72–1.36) 1.00 
 rs16941667 C/T 985/1,097 238/224 1.10 (0.98–1.23) 1.00 142/1,097 30/224 1.11 (0.88–1.40) 1.00 41/1,097 13/224 1.24 (0.88–1.75) 1.00 347/1,097 95/224 1.17 (0.99–1.37) 1.00 
 rs16941669 T/G 984/1,084 239/236 1.06 (0.95–1.19) 1.00 134/1,084 38/236 1.20 (0.97–1.48) 1.00 45/1,084 9/236 1.00 (0.68–1.47) 1.00 358/1,084 84/236 1.10 (0.93–1.29) 1.00 
CYP2E1 rs3813865 G/C 1,098/1,215 125/106 1.08 (0.92–1.27) 1.00 155/1,215 17/106 1.16 (0.85–1.58) 1.00 48/1,215 6/106 1.09 (0.67–1.77) 1.00 393/1,215 49/106 1.11 (0.89–1.38) 1.00 
 rs3813867d G/C 1,139/1,237 83/84 0.97 (0.82–1.16) 1.00 160/1,237 12/84 0.98 (0.70–1.38) 1.00 51/1,237 3/84 0.87 (0.47–1.62) 1.00 405/1,237 36/84 1.09 (0.86–1.39) 1.00 
 rs8192772 T/C 1,023/1,114 199/208 1.07 (0.95–1.21) 1.00 142/1,114 30/208 1.09 (0.87–1.38) 1.00 44/1,114 9/208 1.11 (0.75–1.64) 1.00 363/1,114 79/208 1.14 (0.96–1.35) 1.00 
 rs915908 G/A 974/1,006 249/316 0.93 (0.84–1.04) 1.00 139/1,006 33/316 0.92 (0.74–1.14) 1.00 46/1,006 8/316 0.77 (0.51–1.15) 1.00 362/1,006 80/316 0.87 (0.74–1.02) 1.00 
 rs915909 C/T 1,164/1,271 58/46 1.00 (0.79–1.27) 1.00 164/1,271 7/46 0.88 (0.54–1.44) 1.00 50/1,271 4/46 1.09 (0.60–1.99) 1.00 421/1,271 21/46 0.92 (0.66–1.28) 1.00 
 rs7092584 C/T 959/1,052 262/269 1.05 (0.95–1.17) 1.00 131/1,052 41/269 1.12 (0.91–1.38) 1.00 45/1,052 8/269 0.86 (0.58–1.28) 1.00 340/1,052 101/269 1.11 (0.96–1.30) 1.00 
 rs743535 C/T 966/1,071 248/243 1.06 (0.95–1.19) 1.00 134/1,071 38/243 1.09 (0.88–1.35) 1.00 40/1,071 13/243 1.18 (0.84–1.66) 1.00 342/1,071 96/243 1.10 (0.94–1.29) 1.00 
 rs2249695 C/T 622/682 600/639 0.93 (0.85–1.03) 1.00 87/682 84/639 0.93 (0.77–1.12) 1.00 24/682 30/639 0.95 (0.68–1.33) 1.00 223/682 219/639 0.93 (0.81–1.08) 1.00 
 rs28969387 A/T 1,198/1,302 25/20 0.98 (0.70–1.37) 1.00 170/1,302 2/20 0.69 (0.31–1.56) 1.00 54/1,302 0/20  1.00 429/1,302 13/20 1.08 (0.70–1.68) 1.00 
 rs11101812 T/C 1,194/1,300 26/20 1.11 (0.79–1.56) 1.00 170/1,300 2/20 0.79 (0.35–1.77) 1.00 51/1,300 3/20 1.79 (0.86–3.71) 1.00 427/1,300 14/20 1.38 (0.89–2.13) 1.00 
Oxidative stress metabolism genes 
CAT rs1049982d C/T 521/589 700/726 1.02 (0.93–1.11) 1.00 78/589 94/726 0.95 (0.80–1.14) 1.00 27/589 26/726 0.82 (0.61–1.11) 1.00 182/589 260/726 1.05 (0.92–1.19) 1.00 
GPX1 rs8179172 T/A 1,172/1,271 51/51 0.92 (0.73–1.17) 1.00 166/1,271 6/51 0.86 (0.52–1.41) 1.00 51/1,271 3/51 0.67 (0.32–1.39) 1.00 423/1,271 19/51 0.86 (0.62–1.19) 1.00 
 rs1800668 C/T 635/672 588/646 1.04 (0.95–1.14) 1.00 84/672 88/646 1.14 (0.96–1.35) 1.00 29/672 25/646 1.01 (0.76–1.35) 1.00 237/672 205/646 1.03 (0.91–1.17) 1.00 
 rs3811699 A/G 609/649 614/673 1.04 (0.95–1.13) 1.00 77/649 95/673 1.16 (0.98–1.38) 1.00 26/649 28/673 1.07 (0.81–1.43) 1.00 230/649 212/673 1.02 (0.90–1.16) 1.00 
 rs3448 C/T 648/729 575/593 1.03 (0.95–1.13) 1.00 96/729 76/593 1.02 (0.86–1.21) 1.00 27/729 27/593 1.18 (0.88–1.58) 1.00 222/729 220/593 1.12 (0.99–1.28) 1.00 
GPX2 rs11623705 G/T 996/1,069 227/253 1.00 (0.89–1.12) 1.00 139/1,069 33/253 0.99 (0.79–1.23) 1.00 44/1,069 10/253 1.01 (0.70–1.47) 1.00 360/1,069 82/253 1.01 (0.86–1.19) 1.00 
 rs2412065 G/C 694/733 529/589 0.94 (0.86–1.03) 1.00 96/733 76/589 0.94 (0.79–1.13) 1.00 32/733 22/589 0.81 (0.60–1.10) 1.00 251/733 191/589 0.97 (0.85–1.11) 1.00 
 rs2737844 C/T 493/511 725/806 0.89 (0.81–0.99) 1.00 72/511 98/806 0.86 (0.71–1.04) 1.00 20/511 34/806 0.87 (0.63–1.21) 1.00 177/511 265/806 0.91 (0.80–1.05) 1.00 
GPX4 rs757229d G/C 300/358 922/963 1.03 (0.93–1.14) 1.00 39/358 133/963 1.08 (0.88–1.32) 1.00 13/358 41/963 0.93 (0.66–1.31) 1.00 103/358 339/963 1.04 (0.90–1.21) 1.00 
SOD1 rs11910115 A/C 1,161/1,257 62/65 0.93 (0.74–1.17) 1.00 165/1,257 7/65 0.76 (0.48–1.20) 1.00 51/1,257 3/65 0.80 (0.41–1.58) 1.00 418/1,257 24/65 0.94 (0.69–1.30) 1.00 
 rs4998557 G/A 829/959 393/360 1.09 (0.99–1.21) 1.00 123/959 49/360 0.98 (0.80–1.21) 1.00 31/959 23/360 1.28 (0.93–1.78) 1.00 288/959 154/360 1.17 (1.01–1.36) 1.00 
 rs10432782 T/G 874/992 348/329 1.07 (0.97–1.18) 1.00 131/992 41/329 0.93 (0.76–1.15) 1.00 34/992 20/329 1.24 (0.90–1.71) 1.00 306/992 136/329 1.13 (0.97–1.31) 1.00 
 rs2070424 A/G 1,003/1,120 220/202 1.06 (0.94–1.20) 1.00 142/1,120 30/202 1.02 (0.80–1.30) 1.00 46/1,120 8/202 0.85 (0.55–1.31) 1.00 354/1,120 88/202 1.09 (0.92–1.29) 1.00 
 rs1041740 C/T 682/705 541/617 0.98 (0.90–1.07) 1.00 95/705 77/617 1.00 (0.84–1.20) 1.00 36/705 18/617 0.82 (0.60–1.12) 1.00 250/705 192/617 0.97 (0.85–1.11) 1.00 
SOD2 rs4342445 G/A 752/850 471/472 1.11 (1.02–1.22) 1.00 95/850 77/472 1.33 (1.12–1.59) 0.09 42/850 12/472 0.84 (0.60–1.18) 1.00 268/850 174/472 1.16 (1.01–1.32) 1.00 
 rs2842980 A/T 715/807 508/515 1.02 (0.94–1.12) 1.00 97/807 75/515 1.05 (0.88–1.25) 1.00 31/807 23/515 0.98 (0.73–1.31) 1.00 269/807 173/515 0.97 (0.85–1.10) 1.00 
 rs8031 T/A 387/382 836/940 0.98 (0.89–1.08) 1.00 52/382 120/940 1.00 (0.83–1.21) 1.00 16/382 38/940 1.12 (0.80–1.55) 1.00 140/382 302/940 1.02 (0.89–1.17) 1.00 
 rs5746134 C/T 1,125/1,257 98/65 1.20 (0.98–1.48) 1.00 162/1,257 10/65 0.98 (0.64–1.50) 1.00 43/1,257 11/65 2.14 (1.25–3.67) 0.34 409/1,257 33/65 1.13 (0.84–1.50) 1.00 
 rs2758331 C/A 422/419 801/903 0.99 (0.90–1.09) 1.00 61/419 111/903 0.99 (0.82–1.20) 1.00 17/419 37/903 1.22 (0.88–1.70) 1.00 150/419 292/903 1.04 (0.91–1.20) 1.00 

aCases and controls do not sum to 1,227 and 1,325, respectively, because 4 cases and 3 controls are missing information on duration of cigarette smoking, and because a few subjects lack genotype information for some SNPs.

bConditional logistic regression models for estimating main effect of each SNP were conditioned on sex, race, and age category, and adjusted for continuous smoking duration rounded to whole years. ORs are for those with one or more copies of the minor allele versus the referent group of those homozygous for the major allele (dominant genetic model).

cBonferroni corrected for 64 statistical tests. P-values highlighted in BOLD are near statistically significant after Bonferroni correction.

dNot a tag SNP; included in analyses because previous studies had examined it. rs1229984 and rs1573496 have missense variants; rs3813867 and rs757229 are located 5′ near the gene; rs1049982 has a synonymous variant and is located in exon 1.

eSelected as a tag SNP, but had also been studied in the literature because it has a missense variant.

Linkage disequilibrium was strong among SNPs within genes, not between genes, so haplotypes included only SNPs within the same gene (Supplementary Table S3). Four haplotypes in ALDH2, CYP2E1, GPX2, and SOD1 were associated with SCCHN, either in European-Americans or African-Americans, or both (Table 4). One GPX2 haplotype was significantly associated with 30% decreased odds of SCCHN in European-Americans. An ALDH2 haplotype was associated with 50% reduced odds in African-Americans and a CYP2E1 haplotype was associated with 30% reduced odds in European-Americans. The SOD1 AGGC haplotype was associated with increased odds in European-Americans and reduced odds in African-Americans.

Table 4.

Selected haplotypea main effects on SCCHN risk, additive genetic model

Gene (haplotype definition)HaplotypeRaceb (% prevalence)OR (95% CI)c
ALDH2 (rs4767939, rs2238151, rs7312055, rs2158029, rs16941667, rs16941669) ACAGCT AA (26) 1.0 (ref) 
 ATGGCT AA (11) 0.5 (0.3–0.8) 
CYP2E1 (rs915908, rs7092584, rs743535, rs2249695) GCCC EA (65) 1.0 (ref) 
 GCCT EA (10) 0.7 (0.6–0.9) 
GPX2 (rs11623705, rs2412065, rs2737844) GGC EA (70) 1.0 (ref) 
 GCT EA (9) 0.7 (0.5–0.9) 
SOD1 (rs4998557, rs10432782, rs2070424, rs1041740) GTAC EA (58) 1.0 (ref) 
 AGGC EA (6) 1.4 (1.1–1.9) 
 GTAC AA (52) 1.0 (ref) 
 AGGC AA (6) 0.6 (0.4–0.9) 
Gene (haplotype definition)HaplotypeRaceb (% prevalence)OR (95% CI)c
ALDH2 (rs4767939, rs2238151, rs7312055, rs2158029, rs16941667, rs16941669) ACAGCT AA (26) 1.0 (ref) 
 ATGGCT AA (11) 0.5 (0.3–0.8) 
CYP2E1 (rs915908, rs7092584, rs743535, rs2249695) GCCC EA (65) 1.0 (ref) 
 GCCT EA (10) 0.7 (0.6–0.9) 
GPX2 (rs11623705, rs2412065, rs2737844) GGC EA (70) 1.0 (ref) 
 GCT EA (9) 0.7 (0.5–0.9) 
SOD1 (rs4998557, rs10432782, rs2070424, rs1041740) GTAC EA (58) 1.0 (ref) 
 AGGC EA (6) 1.4 (1.1–1.9) 
 GTAC AA (52) 1.0 (ref) 
 AGGC AA (6) 0.6 (0.4–0.9) 

aCriterion for selecting haplotypes for this table: ORs were statistically significant, or nearly so, after Bonferroni correction for multiple testing (13 for EA, 12 for AA)

bAA, African-American (black), EA, European-American (Caucasian/white).

cUnconditional logistic regression models for estimating main effect of each haplotype were adjusted for matching variables sex and age category and their 2-way interaction, and for continuous smoking duration rounded to whole years. The referent group for each OR was the most common haplotype. ORs highlighted in BOLD are statistically significant after Bonferroni correction of P-value.

To examine the potential impact of multiple at-risk alcohol metabolism alleles, we counted the number of previously studied risk alleles (0–4) for each individual, including these alleles: ADH1B rs1229984 ‘G’, ADH1C rs1693482 ‘T’, ADH7 rs1573496 ‘G’, and CYP2E1 rs3813867 ‘C’. The numbers of risk alleles was not associated with an increased or decreased risk of SCCHN (data not shown).

Cancer risk from alcohol interaction with SNPs

Four SNPs showed evidence of synergistic additive interaction with alcohol consumption (Table 5). All met the following 2 characteristics: (i) statistically significant or near-significant Bonferroni-corrected CI for ICR (64 tests), and (ii) at least 10 cases and 10 controls in each of the 3 comparison groups OR01, OR10, and OR11. For example, heavy drinkers carrying the C allele of rs2238151 in ALDH2 showed statistically significant evidence of synergistic additive interaction. Also the T allele at rs1159918 in ADH1B, the A allele at rs1154460 in ADH7, and the T allele at rs2249695 in CYP2E1 showed some evidence for synergistic additive interaction between alcohol consumption and SNP. (Evaluations of additive interaction with alcohol for remaining SNPs can be found in Supplementary Table S4.)

Table 5.

Additive interactive effects of alcohol with selected SNPsa

Homozygous for major alleleOne or two copies of minor allele
Gene, SNP, major/minor allelesLifetime ethanol, mLNo. of cases/controlsAdjusted OR (95% CI)bNo. of cases/controlsAdjusted OR (95% CI)bICRc (CIBonferroni corrected)
ALDH2, rs2238151, T/C 
Never-drinkers 50/95 1.0 (ref) 67/184 0.7 (0.4–1.1) 1.9 (0.1–3.8) 
>0 to <134,699 75/173 0.5 (0.3–0.9) 133/293 0.6 (0.4–1.0)  
134,699 to <757,550 97/138 0.8 (0.5–1.3) 220/222 1.2 (0.8–1.9)  
757,550+ 122/65 1.7 (1.0–2.8) 381/106 3.3 (2.0–5.3)  
ADH1B, rs1159918, G/T      
Never-drinkers 49/101 1.0 (ref) 68/179 0.9 (0.6-1.5) 1.0 (-0.9 to 3.0) 
>0 to <134,699 80/168 0.7 (0.4-1.1) 129/298 0.7 (0.5-1.1)  
134,699 to <757,550 107/129 1.1 (0.7-1.8) 211/231 1.3 (0.8-2.0)  
757,550+ 140/58 2.4 (1.4–4.1) 365/115 3.3 (2.1-5.4)  
ADH7, rs1154460, G/A 
Never-drinkers 35/65 1.0 (ref) 81/215 0.6 (0.4-1.1) 0.9 (-0.6 to 2.4) 
>0 to <134,699 57/131 0.5 (0.3-0.9) 152/334 0.6 (0.3-0.9)  
134,699 to <757,550 88/111 0.8 (0.5-1.4) 229/249 1.0 (0.6-1.6)  
757,550+ 133/54 1.9 (1.1-3.5) 371/119 2.5 (1.5-4.2)  
CYP2E1, rs2249695, C/T 
Never-drinkers 73/136 1.0 (ref) 44/144 0.6 (0.4–0.9) 1.2 (-0.6 to 3.0) 
>0 to <134,699 127/253 0.6 (0.4–0.9) 82/213 0.5 (0.3–0.8)  
134,699 to <757,550 160/178 1.1 (0.7–1.6) 158/181 1.0 (0.6–1.4)  
757,550+ 218/92 2.1 (1.4–3.3) 286/81 2.9 (1.8–4.6)  
Homozygous for major alleleOne or two copies of minor allele
Gene, SNP, major/minor allelesLifetime ethanol, mLNo. of cases/controlsAdjusted OR (95% CI)bNo. of cases/controlsAdjusted OR (95% CI)bICRc (CIBonferroni corrected)
ALDH2, rs2238151, T/C 
Never-drinkers 50/95 1.0 (ref) 67/184 0.7 (0.4–1.1) 1.9 (0.1–3.8) 
>0 to <134,699 75/173 0.5 (0.3–0.9) 133/293 0.6 (0.4–1.0)  
134,699 to <757,550 97/138 0.8 (0.5–1.3) 220/222 1.2 (0.8–1.9)  
757,550+ 122/65 1.7 (1.0–2.8) 381/106 3.3 (2.0–5.3)  
ADH1B, rs1159918, G/T      
Never-drinkers 49/101 1.0 (ref) 68/179 0.9 (0.6-1.5) 1.0 (-0.9 to 3.0) 
>0 to <134,699 80/168 0.7 (0.4-1.1) 129/298 0.7 (0.5-1.1)  
134,699 to <757,550 107/129 1.1 (0.7-1.8) 211/231 1.3 (0.8-2.0)  
757,550+ 140/58 2.4 (1.4–4.1) 365/115 3.3 (2.1-5.4)  
ADH7, rs1154460, G/A 
Never-drinkers 35/65 1.0 (ref) 81/215 0.6 (0.4-1.1) 0.9 (-0.6 to 2.4) 
>0 to <134,699 57/131 0.5 (0.3-0.9) 152/334 0.6 (0.3-0.9)  
134,699 to <757,550 88/111 0.8 (0.5-1.4) 229/249 1.0 (0.6-1.6)  
757,550+ 133/54 1.9 (1.1-3.5) 371/119 2.5 (1.5-4.2)  
CYP2E1, rs2249695, C/T 
Never-drinkers 73/136 1.0 (ref) 44/144 0.6 (0.4–0.9) 1.2 (-0.6 to 3.0) 
>0 to <134,699 127/253 0.6 (0.4–0.9) 82/213 0.5 (0.3–0.8)  
134,699 to <757,550 160/178 1.1 (0.7–1.6) 158/181 1.0 (0.6–1.4)  
757,550+ 218/92 2.1 (1.4–3.3) 286/81 2.9 (1.8–4.6)  

aSelected SNPs meet two criteria. They have (1) ICR confidence interval that either does not include 0 or nearly so, after Bonferroni correction, and (2) genotype information on sufficient numbers of cases and controls (at least 10 each) for calculating each of the 3 ORs highlighted in bold for that SNP. If ICR CI seemed significant but numbers of cases and controls were too sparse, SNP was judged to have insufficient evidence of interaction with alcohol, and was not included in this table.

bORs for each SNP*drinking category were calculated from conditional logistic regression models including one SNP coded for dominant genetic model, categorized lifetime ethanol consumption, conditioned on sex, race, and age category, and adjusted for continuous smoking duration rounded to whole years. ORs highlighted in bold were used to calculate the ICR.

cICRs that are statistically significant after Bonferroni correction are highlighted in bold. Bonferroni correction for 64 statistical tests.

No interactions with alcohol were detected for anatomic subsites.

SNP effects by race

SNP effect estimates were similar in European- and African-Americans, with a few exceptions. Two SNPs in SOD1 (rs10432782, rs2070424) were associated with decreased odds of SCCHN in African-Americans and increased odds in European-Americans (Supplementary Table S5; rs10432782, OR = 0.65; 95% CI, 0.42–1.00 in African-Americans, OR = 1.35; 95% CI, 1.07–1.71 in European-Americans; rs2070424, OR = 0.52; 95% CI, 0.33–0.83 in African-Americans, OR = 1.47; 95% CI, 1.10–1.97 in European-Americans). Three additional SNPs, which had sufficient frequency of the minor allele in both races, showed evidence of risk differences by race (ADH1B rs1693457, ADH4 rs10017466, SOD1 rs4998557) though CIs for races overlapped (Supplementary Table S5). The magnitude of the joint effect for the 4 SNPs found to interact additively with alcohol exposure did not differ between races (data not shown).

Alcohol consumption

Most studies report a strong dose–response relationship between higher levels of drinking, both in lifetime frequency of drinking (e.g., drinks per day) and lifetime alcohol intake (e.g., milliliters of ethanol), and increased SCCHN risk. However, the type of alcohol beverage most strongly associated with cancer risk varies substantially by study, and some studies suggest that the most common alcoholic beverage in the geographic region studied produces the highest cancer risk (15). There is some evidence that moderate levels of wine consumption produce lower risk than beer and liquor (comparing 16–30 ethanol-standardized drinks per week of each type), but above 30 drinks per week, all types are associated with increased risk (15).

We found a general pattern of association with alcohol intake that is consistent with previous studies (7), with monotonically increasing cancer risk as lifetime consumption increases. Beer and liquor accounted for about 90% of lifetime alcohol consumption in our study population, and those beverages were associated with higher cancer risk than wine consumption (data not shown). This is consistent with the hypothesis that the most commonly drunk alcoholic beverages are associated with the highest risk.

Alcohol metabolism genes

ADH, ALDH.

Variant ADH and ALDH alleles coding for either superactive or inactive subunits of ADH and ALDH isozymes are common. Numerous studies in Asian populations have reported an association between several presumably functional variants in ADH1B, ADH1C, ADH4, ADH7, and ALDH2 and SCCHN incidence (16–23). However, these studies lacked sufficient power to consistently detect interaction between gene and alcohol drinking. In recent years, these variants and others were investigated in larger studies of Europeans, Latin-Americans, and Indians with similar findings (24–33). However, only a few smaller studies examined risk in European-Americans and African-Americans (5, 34–37), and those included very small numbers of African-Americans.

We discovered an association between rs1229984 in ADH1B and SCCHN odds (ORAA + AG vs. GG = 0.72; 95% CI, 0.57–0.91). It is the same direction of effect for the A allele as reported in a Japanese study (ref. 21; ORGG + GA vs. AA = 2.20; 95% CI, 1.46–3.32) and in European-Caucasians and Latin-Americans (ref. 29; ORAA + GA vs. GG = 0.56; 95% CI, 0.47–0.66), but is the reverse of the effect reported in a few other studies [(18, 27, 28) e.g., (28)]: ORGG + GA vs. AA = 0.36; 95% CI, 0.17–0.77). A recent INHANCE GWAS (38) reported a replicated association of 5 SNPs with SCCHN and esophageal cancer, including rs1229984, for which the A allele under a log-additive genetic model was associated with reduced odds in both the discovery (OR = 0.52; 95% CI, 0.43–0.64) and the replication phases (OR = 0.68; 95% CI, 0.60–0.78). The GWAS replication sample included 2,027 CHANCE subjects as 10% of the replication sample. In our study, only 6 African-American subjects carried the A allele, compared with 104 European-Americans, so most of the effect we observed for rs1229984 occurred in European-Americans.

We found no effect on SCCHN risk of the rs1693482 “slow” allele in ADH1C (ORTT + TC vs. CC = 1.05; 95% CI, 0.95–1.15). The 2 largest studies of this SNP and SCCHN in European-Caucasians (28) and European-Caucasians and Latin-Americans (29) found 20% to 50% increased odds associated with this allele. Also, all 4 studies of rs698 “slow” or G allele in Brazilian, Japanese, European-American, and Latin-American populations (21, 27–29) reported evidence of 16% to 38% increased odds. In CHANCE, rs1631460 is in high LD (r2 = 0.95) with rs698 in both CEU and YRI HapMap populations, but we found no association between it and SCCHN.

No ADH4 and ADH7 SNPs were associated with SCCHN, including the rs1573496 C allele in ADH7. This is in contrast to the one study that investigated this allele and found it to be associated with 30% reduced odds in Europeans and Latin-Americans (29).

No ALDH2 SNPs were associated with SCCHN, and a possible haplotype association was present only in African-Americans (OR = 0.5; 95% CI, 0.3–0.8). Previous studies of rs886205, an ALDH2 SNP that is polymorphic in Europeans, found conflicting results of no association and increased association for the G allele (26, 28).

Our findings may differ from those previously reported due to differences in sample size, the specific population studied, and the composition of tumor subsites included.

Gene interaction with alcohol

We discovered evidence of synergistic additive interaction with alcohol of several SNPs in alcohol metabolism pathway genes, although the SNPs we identified were different from those previously reported in the literature. Specifically, we found 2 SNPs in ADH1B and ADH7—rs1159918 and rs1154460, respectively—that seem to interact with alcohol. We also found one previously unstudied ALDH2 SNP, rs2238151, that showed evidence of additive interaction (OR11actual = 3.3 vs. OR11expected = 1.4). Whereas previous studies reported that rs1229984 in ADH1B, rs4148887 in ADH4, rs1573496 in ADH7, and rs886205, rs441 (both in high LD with our SNP rs4767939), and rs440 in ALDH2 interacted with alcohol drinking (16, 18, 27–29), we did not find evidence for an interaction with these SNPs, probably because we measured alcohol consumption using lifetime alcohol intake instead of drinking frequency.

We also found evidence for synergistic additive interaction for CYP2E1 rs2249695 with alcohol. A recent linkage and association study (39) identified that SNP, among others, to be associated with “tipsiness,” or quick response to alcohol challenge. In CHANCE, the T allele (Table 5, last row) was protective in never-drinkers (OR10 = 0.6; 95% CI, 0.4–0.9) but was associated with 70% greater than expected risk in the heaviest drinkers.

Oxidative stress genes

We found 2 previously unstudied SNPs in SOD2 to be associated with subsite tumors: rs4342445 with oral cavity, and rs5746134 with hypopharynx. One SOD1 haplotype was associated with SCCHN risk in both races, albeit in different directions, due to the effect of multiple individual SNP effects that differed by race in that gene. Finally, we found a GPX2 haplotype to be associated with reduced SCCHN risk in European-Americans only. This may indicate that the haplotype is in high linkage disequilibrium with an unmeasured causal polymorphism in European-Americans but not in African-Americans.

Only one previous study examined effects on SCCHN incidence of any SNPs in oxidative stress pathways (26); it reported that rs2758346 in SOD2 (which we did not study) was not associated with SCCHN.

We found no evidence of interaction with alcohol consumption for any oxidative stress SNP.

Genetic effects by race

Three SNPs in SOD1 that had inverse effects in the 2 races were part of the SOD1 haplotype that was also associated with differential effects by race. The direction of effect for carrying the minor allele of each individual SNP was consistent with the haplotype effect. The same is true for the 2 SNPs in ADH1B and ADH4 that seemed to have different effects in African- and European-Americans.

CHANCE is one of the largest studies of head and neck cancer conducted in both African- and European-Americans. This study examined genetic polymorphisms in genes in the alcohol metabolism and oxidative stress biological pathways and estimated main effects of these polymorphisms along with their interaction with alcohol.

We selected tag SNPs to capture most of the variation in the 12 genes studied, rather than studying only missense SNPs within coding regions. However, an inherent limitation of genotyping common tag SNPs is that the method is likely to miss rare variants.

Because of small numbers of African-Americans compared with European-Americans, we could not definitively evaluate differences in SNP effects between races. We also had insufficient power to detect haplotype-drinking interaction because haplotypes were constructed and analyzed separately for African- and European-Americans. Small numbers overall also precluded precise estimation of interaction between SNPs and alcohol for allele frequencies less than 30%, or in relation to anatomic subsite.

Our study confirms findings of previous studies that the effects of many polymorphisms in alcohol metabolism pathways are modified by alcohol intake. However, most genetic variants in ALDH2 and CYP2E1 have been understudied and warrant additional investigation in light of the new associations that we report.

Our analysis of tag SNPs in GPX2, SOD1, and SOD2 has identified several that are associated with SCCHN, hypopharyngeal, and oral cavity tumors. Confirmation of these findings in diverse populations is warranted.

No potential conflicts of interest were disclosed.

This work was supported in part by the National Cancer Institute (R01-CA90731; 2T32 CA009330-26) and the National Institute of Environmental Health Sciences (P30ES10126).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
American Cancer Society. Cancer facts & figures 2009
.
Atlanta, GA
:
American Cancer Society, Inc.
; 
2009
.
2.
American Cancer Society. Global cancer facts & figures
. 2nd ed.
Atlanta, GA
:
American Cancer Society
; 
2011
.
3.
SEER. Relative survival rates for oral cavity-pharynx and larynx cancers by survival time: all ages, all races, both sexes, 1988-2004
[accessed 2009 Oct 18]. Available from
: http://seer.cancer.gov/faststats/selections.php.
4.
Blot
WJ
,
McLaughlin
JK
,
Winn
DM
,
Austin
DF
,
Greenberg
RS
,
Preston-Martin
S
, et al
Smoking and drinking in relation to oral and pharyngeal cancer
.
Cancer Res
1988
;
48
:
3282
7
.
5.
Olshan
AF
,
Weissler
MC
,
Watson
MA
,
Bell
DA
. 
Risk of head and neck cancer and the alcohol dehydrogenase 3 genotype
.
Carcinogenesis
2001
;
22
:
57
61
.
6.
Divaris
K
,
Olshan
AF
,
Smith
J
,
Bell
ME
,
Weissler
MC
,
Funkhouser
WK
, et al
Oral health and risk for head and neck squamous cell carcinoma: the Carolina Head and Neck Cancer Study
.
Cancer Causes Control
2010
;
21
:
567
75
.
7.
Hashibe
M
,
Brennan
P
,
Benhamou
S
,
Castellsague
X
,
Chen
C
,
Curado
MP
, et al
Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium
.
J Natl Cancer Inst
2007
;
99
:
777
89
.
8.
IARC Working Group on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Alcohol consumption and ethyl carbamate
.
Lyon, France
:
International Agency for Research on Cancer: Distributed by the Secretariat of the World Health Organization
,
IARC Monogr Eval Carcinog Risks Hum
2010
;
96
.
9.
NHLBI Program for Genomic Applications [database on the Internet]
.
Seattle SNPs, Seattle, WA [accessed 2008 Feb 22–2008 Apr 25]. Available from
: http://pga.gs.washington.edu.
10.
Barnholtz-Sloan
JS
,
Chakraborty
R
,
Sellers
TA
,
Schwartz
AG
. 
Examining population stratification via individual ancestry estimates versus self-reported race
.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
1545
51
.
11.
Barnholtz-Sloan
JS
,
McEvoy
B
,
Shriver
MD
,
Rebbeck
TR
. 
Ancestry estimation and correction for population stratification in molecular epidemiologic association studies
.
Cancer Epidemiol Biomarkers Prev
2008
;
17
:
471
7
.
12.
Barnholtz-Sloan
JS
,
Shetty
PB
,
Guan
X
,
Nyante
SJ
,
Luo
J
,
Brennan
DJ
, et al
FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women
.
Carcinogenesis
2010
;
31
:
1417
23
.
13.
Gabriel
SB
,
Schaffner
SF
,
Nguyen
H
,
Moore
JM
,
Roy
J
,
Blumenstiel
B
, et al
The structure of haplotype blocks in the human genome
.
Science
2002
;
296
:
2225
9
.
14.
Sinnwell
J
,
Schaid
D
haplo.stats [software application]: statistical analysis of haplotypes with codominant traits and covariates when subjects are unrelated and haplotype is ambiguous
.
Version 1.4.4, 2009. Available from
: http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm.
15.
Purdue
MP
,
Hashibe
M
,
Berthiller
J
,
La Vecchia
C
,
Dal Maso
L
,
Herrero
R
, et al
Type of alcoholic beverage and risk of head and neck cancer–a pooled analysis within the INHANCE Consortium
.
Am J Epidemiol
2009
;
169
:
132
42
.
16.
Asakage
T
,
Yokoyama
A
,
Haneda
T
,
Yamazaki
M
,
Muto
M
,
Yokoyama
T
, et al
Genetic polymorphisms of alcohol and aldehyde dehydrogenases, and drinking, smoking and diet in Japanese men with oral and pharyngeal squamous cell carcinoma
.
Carcinogenesis
2007
;
28
:
865
74
.
17.
Hashimoto
T
,
Uchida
K
,
Okayama
N
,
Imate
Y
,
Suehiro
Y
,
Ueyama
Y
, et al
ALDH2 1510 G/A (Glu487Lys) polymorphism interaction with age in head and neck squamous cell carcinoma
.
Tumour Biol
2006
;
27
:
334
8
.
18.
Hiraki
A
,
Matsuo
K
,
Wakai
K
,
Suzuki
T
,
Hasegawa
Y
,
Tajima
K
. 
Gene-gene and gene-environment interactions between alcohol drinking habit and polymorphisms in alcohol-metabolizing enzyme genes and the risk of head and neck cancer in Japan
.
Cancer Sci
2007
;
98
:
1087
91
.
19.
Katoh
T
,
Kaneko
S
,
Kohshi
K
,
Munaka
M
,
Kitagawa
K
,
Kunugita
N
, et al
Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and oral cavity cancer
.
Int J Cancer
1999
;
83
:
606
9
.
20.
Morita
S
,
Yano
M
,
Tsujinaka
T
,
Akiyama
Y
,
Taniguchi
M
,
Kaneko
K
, et al
Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to head-and-neck squamous-cell carcinoma
.
Int J Cancer
1999
;
80
:
685
8
.
21.
Oze
I
,
Matsuo
K
,
Suzuki
T
,
Kawase
T
,
Watanabe
M
,
Hiraki
A
, et al
Impact of multiple alcohol dehydrogenase gene polymorphisms on risk of upper aerodigestive tract cancers in a Japanese population
.
Cancer Epidemiol Biomarkers Prev
2009
;
18
:
3097
102
.
22.
Sugimura
T
,
Kumimoto
H
,
Tohnai
I
,
Fukui
T
,
Matsuo
K
,
Tsurusako
S
, et al
Gene-environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms
.
J Oral Pathol Med
2006
;
35
:
11
8
.
23.
Tai
J
,
Yang
M
,
Ni
X
,
Yu
D
,
Fang
J
,
Tan
W
, et al
Genetic polymorphisms in cytochrome P450 genes are associated with an increased risk of squamous cell carcinoma of the larynx and hypopharynx in a Chinese population
.
Cancer Genet Cytogenet
2010
;
196
:
76
82
.
24.
Boccia
S
,
Cadoni
G
,
Sayed-Tabatabaei
FA
,
Volante
M
,
Arzani
D
,
De Lauretis
A
, et al
CYP1A1, CYP2E1, GSTM1, GSTT1, EPHX1 exons 3 and 4, and NAT2 polymorphisms, smoking, consumption of alcohol and fruit and vegetables and risk of head and neck cancer
.
J Cancer Res Clin Oncol
2008
;
134
:
93
100
.
25.
Bouchardy
C
,
Hirvonen
A
,
Coutelle
C
,
Ward
PJ
,
Dayer
P
,
Benhamou
S
. 
Role of alcohol dehydrogenase 3 and cytochrome P-4502E1 genotypes in susceptibility to cancers of the upper aerodigestive tract
.
Int J Cancer
2000
;
87
:
734
40
.
26.
Canova
C
,
Hashibe
M
,
Simonato
L
,
Nelis
M
,
Metspalu
A
,
Lagiou
P
, et al
Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project
.
Cancer Res
2009
;
69
:
2956
65
.
27.
Garcia
SM
,
Curioni
OA
,
de Carvalho
MB
,
Gattas
GJ
. 
Polymorphisms in alcohol metabolizing genes and the risk of head and neck cancer in a Brazilian population
.
Alcohol Alcohol
2010
;
45
:
6
12
.
28.
Hashibe
M
,
Boffetta
P
,
Zaridze
D
,
Shangina
O
,
Szeszenia-Dabrowska
N
,
Mates
D
, et al
Evidence for an important role of alcohol- and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract
.
Cancer Epidemiol Biomarkers Prev
2006
;
15
:
696
703
.
29.
Hashibe
M
,
McKay
JD
,
Curado
MP
,
Oliveira
JC
,
Koifman
S
,
Koifman
R
, et al
Multiple ADH genes are associated with upper aerodigestive cancers
.
Nat Genet
2008
;
40
:
707
9
.
30.
Olivieri
EH
,
da Silva
SD
,
Mendonca
FF
,
Urata
YN
,
Vidal
DO
,
Faria
Mde A
, et al
CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients
.
Oral Oncol
2009
;
45
:
e73
9
.
31.
Risch
A
,
Ramroth
H
,
Raedts
V
,
Rajaee-Behbahani
N
,
Schmezer
P
,
Bartsch
H
, et al
Laryngeal cancer risk in Caucasians is associated with alcohol and tobacco consumption but not modified by genetic polymorphisms in class I alcohol dehydrogenases ADH1B and ADH1C, and glutathione-S-transferases GSTM1 and GSTT1
.
Pharmacogenetics
2003
;
13
:
225
30
.
32.
Ruwali
M
,
Khan
AJ
,
Shah
PP
,
Singh
AP
,
Pant
MC
,
Parmar
D
. 
Cytochrome P450 2E1 and head and neck cancer: interaction with genetic and environmental risk factors
.
Environ Mol Mutagen
2009
;
50
:
473
82
.
33.
Soya
SS
,
Vinod
T
,
Reddy
KS
,
Gopalakrishnan
S
,
Adithan
C
. 
CYP2E1 polymorphisms and gene-environment interactions in the risk of upper aerodigestive tract cancers among Indians
.
Pharmacogenomics
2008
;
9
:
551
60
.
34.
Buch
SC
,
Nazar-Stewart
V
,
Weissfeld
JL
,
Romkes
M
. 
Case-control study of oral and oropharyngeal cancer in whites and genetic variation in eight metabolic enzymes
.
Head Neck
2008
;
30
:
1139
47
.
35.
Peters
ES
,
McClean
MD
,
Liu
M
,
Eisen
EA
,
Mueller
N
,
Kelsey
KT
. 
The ADH1C polymorphism modifies the risk of squamous cell carcinoma of the head and neck associated with alcohol and tobacco use
.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
476
82
.
36.
Schwartz
SM
,
Doody
DR
,
Fitzgibbons
ED
,
Ricks
S
,
Porter
PL
,
Chen
C
. 
Oral squamous cell cancer risk in relation to alcohol consumption and alcohol dehydrogenase-3 genotypes
.
Cancer Epidemiol Biomarkers Prev
2001
;
10
:
1137
44
.
37.
Wang
D
,
Ritchie
JM
,
Smith
EM
,
Zhang
Z
,
Turek
LP
,
Haugen
TH
. 
Alcohol dehydrogenase 3 and risk of squamous cell carcinomas of the head and neck
.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
626
32
.
38.
McKay
JD
,
Truong
T
,
Gaborieau
V
,
Chabrier
A
,
Chuang
SC
,
Byrnes
G
, et al
A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE Consortium
.
PLoS Genet
2011
;
7
:
e1001333
.
39.
Webb
A
,
Lind
PA
,
Kalmijn
J
,
Feiler
HS
,
Smith
TL
,
Schuckit
MA
, et al
The investigation into CYP2E1 in relation to the level of response to alcohol through a combination of linkage and association analysis
.
Alcohol Clin Exp Res
2011
:
35
;
10
8
.

Supplementary data