Background: Genome-wide association studies identified novel breast cancer susceptibility variants that could be used to predict breast cancer in asymptomatic women. This review and modeling study aimed to investigate the current and potential predictive performance of genetic risk models.

Methods: Genotypes and disease status were simulated for a population of 10,000 women. Genetic risk models were constructed from polymorphisms from meta-analysis including, in separate scenarios, all polymorphisms or statistically significant polymorphisms only. We additionally investigated the magnitude of the odds ratios (OR) for 1 to 100 hypothetical polymorphisms that would be needed to achieve similar discriminative accuracy as available prediction models [modeled range of area under the receiver operating characteristic curve (AUC) 0.70–0.80].

Results: Of the 96 polymorphisms that had been investigated in meta-analyses, 41 showed significant associations. AUC was 0.68 for the genetic risk model based on all 96 polymorphisms and 0.67 for the 41 significant polymorphisms. Addition of 50 additional variants, each with risk allele frequencies of 0.30, requires per-allele ORs of 1.2 to increase this AUC to 0.70, 1.3 to increase AUC to 0.75, and 1.5 to increase AUC to 0.80. To achieve AUC of 0.80, even 100 additional variants would need per-allele ORs of 1.3 to 1.7, depending on risk allele frequencies.

Conclusion: The predictive ability of genetic risk models in breast cancer has the potential to become comparable to that of current breast cancer risk models.

Impact: Risk prediction based on low susceptibility variants becomes a realistic tool in prevention of nonfamilial breast cancer. Cancer Epidemiol Biomarkers Prev; 20(1); 9–22. ©2011 AACR.

Recent genome-wide association studies (GWAS) have identified various novel breast cancer susceptibility variants (1–4). In contrast to BRCA1 and BRCA2, these susceptibility variants mainly have weak effects and contribute to small increases in breast cancer risk individually. It is commonly agreed that testing single susceptibility genes is not useful for prediction of breast cancer risk, but the question remains whether combining susceptibility loci in risk models could accurately identify women with markedly higher breast cancer risks. Genetic risk models could be useful in the general population to select at risk women for screening or preventive interventions, such as intensified mammography or MRI screening, the use of chemopreventive agents (tamoxifen or raloxifene), and surgical interventions such as oophorectomy and mastectomy. The predictive performance of genetic risk models has been investigated in simulation studies (5–8) and in many empirical studies, including studies on bladder, prostate, and breast cancers (9–12).

Whether genetic risk models will potentially be used in clinical or public health practice to select women at increased risk of breast cancer, first and foremost depends on the availability of an intervention that needs to be targeted. Pharoah and colleagues (13) proposed that the starting age of mammography screening can be varied according to women's genetic risks, rather than recommending screening to all women aged 50 years and more. Accordingly, women at higher genetic risk will have their first mammogram at a younger age and women at lower risk at a higher age than average. An alternative strategy is to vary the frequency of mammograms: women at higher risk will undergo screening more frequently than women at lower risk.

Such differentiation of screening programs requires a risk model that can identify women at increased risk among all women in the population (14). For evaluations at the population level, this predictive performance of a test is assessed as the accuracy of tests to discriminate between women who will develop breast cancer and those who will not. The discriminative accuracy is generally expressed as the area under the receiver operating characteristics curve (AUC). Compared with the measures of reclassification that have been proposed (15–17), AUC is an overall measure of the predictive ability and reclassification a measure of the clinical relevance. Assessment of reclassification only is meaningful when clinically established risk thresholds are available.

Several simulation studies have demonstrated that to accurately classify individuals at high risk of disease, a risk model should either at least include a few genetic variants with strong effects or a high number of variants with small effects (6, 8, 18). We investigated the extent to which breast cancer risk in the general population can be predicted using genetic risk models. In a simulation study, we constructed risk models on the basis of currently identified polymorphisms and hypothetical variants to investigate the future potential in terms of AUC. For this purpose, we reviewed all meta-analyses of genetic association studies on breast cancer. Additionally, we investigated the magnitude of the odds ratios (OR) of 1 to 100 hypothetical polymorphisms that would be needed to achieve similar discriminative accuracy as available breast cancer risk prediction models (19–24).

Modeling strategy

We used a modeling procedure that has been developed and published previously (6), and which has also been used by others (8). Briefly, the procedure creates a data set with information on genotypes and disease status for a population of 10,000 women. The data set is constructed in such a way that the ORs and frequencies of the genotypes and the disease risk match the specified values, which are obtained from the literature. Predicted breast cancer risks are calculated using Bayes' theorem, which states that the posterior odds of breast cancer for each woman is obtained by multiplying the prior odds by the likelihood ratio (LR) of their genotype status on all polymorphisms. The prior odds is calculated from the baseline population breast cancer risk (p) using the formula p/(1 − p). Under the assumption of independent genetic effects, that is, no linkage disequilibrium (LD) between the genetic variants, the LR is obtained by multiplying the LRs of all individual genotypes that are included in the risk model (25). The LRs of the genotypes of each single genetic variant are calculated from a genotype by disease status contingency table (6). This table is constructed from the frequencies and ORs of the genotypes and the population breast cancer risk. The table can also be constructed from allele frequencies and per-allele ORs when Hardy–Weinberg equilibrium is assumed for the distribution of the genotypes. The frequencies and ORs all are specified as study parameters and varied between the simulation scenarios (see below). The posterior odds are converted into breast cancer risks using the formula odds/(1 + odds). Our model does not include gene–gene and gene–environment interaction, because so far there is no strong empirical evidence for this.

Discriminative accuracy

The discriminative accuracy is the extent to which test results can discriminate between women who will develop breast cancer and those who will not (26). The AUC is the probability that the test correctly identifies the woman who will develop the disease from a pair of whom 1 will be affected and 1 will remain unaffected, and ranges from 0.5 (total lack of discrimination) to 1.0 (perfect discrimination). The AUC was obtained as the c-statistics by the R function somers2, which is available in the Hmisc library of R software. All simulations were repeated 20 times to obtain robust estimates of the AUC. In each repetition, the OR of each published variant will be obtained as a new random value from the 95% confidence interval (CI), assuming a normal distribution around the point estimate of the OR. All results are presented as averages of the repeated simulations with 95% CIs. Despite that we take a random OR for the published variants at each new simulation, the CIs of the ORs are small because it is theoretically possible to derive the ORs by a formula and due to the fact that a sample size of 10,000 women was used for this calculation. We choose a simulation approach, because the formula is extremely complex when different genetic models (per allele, dominant/recessive, and per genotype) are considered at the same time. Analyses were performed using R software (version 2.6.1; ref. 27).

Simulation scenarios

Three different scenarios were considered. In each scenario, genotypes and breast cancer status were simulated for 10,000 women, assuming a breast cancer lifetime risk of 10%. It is noted that this lifetime risk varies between populations (14), but our primary outcome measure, AUC, is independent of the magnitude of disease risk, that is, modeling a lower or higher risk will give similar results. The first scenario assessed the AUC for a risk model based on all polymorphisms that were investigated in published meta-analyses (see below), and for a risk model based on statistically significant polymorphisms only. The second scenario assessed the expected AUC when 2 to 5 times as many statistically significant polymorphisms with the same distribution of ORs and genotype frequencies would be known. The final scenario investigated the magnitude of the per-allele ORs of 1 to 100 polymorphisms that need to be added to the risk model to obtain AUCs similar to those of available breast cancer risk prediction models. Table 1 shows that the AUC of currently available breast cancer risk models ranges from 0.555 to 0.762. Therefore, we investigated AUC thresholds of 0.70, 0.75, or 0.80. The ORs of hypothetical variants needed to reach these thresholds were obtained for different frequencies of the risk alleles.

Table 1.

Area under the receiver operating characteristic curve of breast cancer risk models

AuthorRisk factors in modelPopulation for model developmentPopulation for validationAUC (95% CI)
Clauset al. (21) Age and family history (number and typea of first/second-degree relatives with breast cancer and their age at onset) Population-based case–control data: 4,730 breast cancer cases and 4,688 matched controlsb 1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.716 (0.648–0.784) 
Costatino et al. (22) Age, age at menarche, age at first live birth, number of previous breast biopsies, number of first-degree relatives with breast cancer, atypical hyperplasia 2,852 breast cancer cases and 3,146 controls; from population- based screening program 82,109 women in Nurses Health Study; 5-year risk (35) 0.58 (0.56–0.60) 
   10,031 women from the Florence EPIC case–control study; 5-year risk (36) 0.588 (0.564–0.631) 
   1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.735 (0.666–0.803) 
Antoniou et al. (19) Age, BRCA1/2 mutation status and family history (breast or ovarian cancer in relatives and their age at onset) 1,484 breast cancer cases from population-based screening program and 156 high-risk families. NA NA 
Tyrer et al. (24) Age at menarche, parity, age at first child birth, age at menopause, atypical hyperplasia, lobular carcinoma in situ, height, body mass index, presence of BRCA1/2 mutation, and family history (breast/ovarian cancer in first/second/third-degree relatives and their age at onset) National cancer incidence rates, published risk figures, and cohort of daughters of patients with breast cancer 1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.762 (0.700–0.824) 
Barlow et al. (20) Premenopausal: age, prior breast procedure, first-degree family history of breast cancer, breast density; Postmenopausal: age, ethnicity, body mass index, age at birth first child, prior breast procedure, first-degree family history of breast cancer, current hormone therapy use, surgical menopause, previous mammographic outcome, breast density Women participating in a mammography screening program (>million mammograms) 251,789 Women participating in a mammography screening program (>million mammograms), 5.3-year follow-up risk (37) 0.66 (0.651–0.669) 
Gail et al. (23) Age at menarche, number of affected mother or sisters and number of previous benign biopsy examinations African American women participating in the Women's CARE Study: 1,622 cases and 1,647 controls 14,059 African American women who entered the Women's Health Initiative without a prior history of breast cancer, 7.57-year follow-up risk (23) 0.555 (0.535–0.575) 
AuthorRisk factors in modelPopulation for model developmentPopulation for validationAUC (95% CI)
Clauset al. (21) Age and family history (number and typea of first/second-degree relatives with breast cancer and their age at onset) Population-based case–control data: 4,730 breast cancer cases and 4,688 matched controlsb 1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.716 (0.648–0.784) 
Costatino et al. (22) Age, age at menarche, age at first live birth, number of previous breast biopsies, number of first-degree relatives with breast cancer, atypical hyperplasia 2,852 breast cancer cases and 3,146 controls; from population- based screening program 82,109 women in Nurses Health Study; 5-year risk (35) 0.58 (0.56–0.60) 
   10,031 women from the Florence EPIC case–control study; 5-year risk (36) 0.588 (0.564–0.631) 
   1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.735 (0.666–0.803) 
Antoniou et al. (19) Age, BRCA1/2 mutation status and family history (breast or ovarian cancer in relatives and their age at onset) 1,484 breast cancer cases from population-based screening program and 156 high-risk families. NA NA 
Tyrer et al. (24) Age at menarche, parity, age at first child birth, age at menopause, atypical hyperplasia, lobular carcinoma in situ, height, body mass index, presence of BRCA1/2 mutation, and family history (breast/ovarian cancer in first/second/third-degree relatives and their age at onset) National cancer incidence rates, published risk figures, and cohort of daughters of patients with breast cancer 1,933 women attending a family history evaluation and screening program; 5.27-year follow-up risk (34) 0.762 (0.700–0.824) 
Barlow et al. (20) Premenopausal: age, prior breast procedure, first-degree family history of breast cancer, breast density; Postmenopausal: age, ethnicity, body mass index, age at birth first child, prior breast procedure, first-degree family history of breast cancer, current hormone therapy use, surgical menopause, previous mammographic outcome, breast density Women participating in a mammography screening program (>million mammograms) 251,789 Women participating in a mammography screening program (>million mammograms), 5.3-year follow-up risk (37) 0.66 (0.651–0.669) 
Gail et al. (23) Age at menarche, number of affected mother or sisters and number of previous benign biopsy examinations African American women participating in the Women's CARE Study: 1,622 cases and 1,647 controls 14,059 African American women who entered the Women's Health Initiative without a prior history of breast cancer, 7.57-year follow-up risk (23) 0.555 (0.535–0.575) 

Abbreviation: NA, not available.

aType of relative indicates whether mother, sister, or aunts were affected.

bMatched for geographic region and 5-year age category.

Literature search

PubMed and HuGE Navigator were searched for meta-analyses on genetic association studies on breast cancer published before May 2010. The PubMed search strategy was based on the keywords “breast cancer,” “meta-analysis” in combination with “gene,” “polymorphism,” or “allele.” Meta-analyses were selected if they were based on genetic association studies that applied a case–control design, included women only, focused on breast cancer risk and were written in English. Meta-analyses were excluded when the reported data were reused in a larger study on the same polymorphism. Summary ORs and genotype frequencies were extracted for all genetic models reported in this article, which could refer to per-allele analyses, comparisons of dominant or recessive effects, or comparisons of homozygous and heterozygous carriers with noncarriers. Summary ORs of the total population were extracted, because not all meta-analysis stratified their data for factors such as age or ethnicity. Therefore, all findings will predominantly apply to European and European American women.

For the simulation study, we calculated the AUC for a prediction model based on all polymorphisms and for a model based on statistically significant polymorphisms. For the latter, we selected polymorphisms for which at least 1 comparison yielded a statistically significant result. When multiple comparisons were statistically significant, we preferred the OR of the homozygous/heterozygous comparisons as the comparison of our first choice, the dominant/recessive comparisons as our second choice and the per-allele analysis as our last choice. Statistical significance was based on the nominal P value (P < 0.05) of the OR per comparison. For the statistically nonsignificant polymorphisms that were included in the simulation study, we also preferred the OR and genotypes for homozygous/heterozygous comparisons over the other comparisons. Because the modeling approach assumes independent effects of the polymorphisms in the risk model, we examined whether polymorphisms were in LD. When R2 > 0.40, only the polymorphism with the lowest P value was included in the simulation analyses.

Of the 217 retrieved articles from the literature, 107 met the inclusion criteria (Fig. 1). These articles described 199 meta-analyses on 103 polymorphisms in 70 genes. Ninety-six meta-analyses were excluded because the data had been reused in a larger meta-analysis on the same polymorphism and 3 because polymorphisms were in LD. Of the 96 polymorphisms, in 70 genes that were eligible for inclusion in the simulation analysis, 41 showed statistically significant results for at least 1 genetic model. Eleven of the 96 variants and 5 of the 41 statistically significant variants were in slight LD (R2 < 0.40) with other variants in the model.

Figure 1.

Selection of polymorphisms for inclusion in the simulation study.

Figure 1.

Selection of polymorphisms for inclusion in the simulation study.

Close modal

The AUC was 0.68 for the risk model based on all 96 published polymorphisms and 0.67 for the risk model based on the 41 polymorphisms that were significantly associated with breast cancer risk (Table 2). When 2, 3, 4, or 5 times as many polymorphisms with the same distribution of ORs and genotype frequencies would be identified and included, AUCs were 0.73, 0.77, 0.80, and 0.82, respectively. As a comparison, the AUCs for the combinations of the 7 polymorphisms investigated by Gail et al. (5) and Pharoah et al. (13) were both 0.55.

Table 2.

Meta-analyses of genetic susceptibility variants for breast cancer risk

GeneVariantNo. of studiesNo. of casesNo. of controlsReferent variantComparison 1Comparison 2Referenceb
Associated variantOR95% CIFrequency (%)Associated variantOR95% CIFrequency (%)
1p11 rs11249433 (T/C) 9,335 10,263 TT TC 1.16 1.09–1.24 46.7 CC 1.30 1.19–1.41 16.0 31 
2q35 rs13387042 (G/A) 4,533 17,513 GG GA 1.11 1.03–1.20 50.0a AA 1.44 1.30–1.58 24.7a 
3p24 rs4973768 (C/T) 32 30,256 34,063 CC CT 1.12 1.08–1.17 49.7a TT 1.23 1.17–1.29 22.1a 30 
5p12 rs2067980 (A/G) 9,391 10,309 AA AG 1.08 1.02–1.15 26.6 GG 1.29 1.09–1.52 2.7 31 
5p12 rs7716600 (C/A) 9,400 10,321 CC CA 1.10 1.04–1.17 34.3 AA 1.28 1.13–1.45 4.9 31 
6q25 rs2046210 (G/A) 6,472 3,962 GG GA 1.36 1.24–1.49 45.7 AA 1.59 1.40–1.82 13.6 32 
8q24 rs13281615 (T/C) 20 21,860 22,578 TT TC 1.06 1.01–1.11 48.0a CC 1.18 1.10–1.25 16.0a 
Chr 9 rs1011970 (C/A) 12,253 12,000 CC CA 1.07 1.01–1.13 27.9 AA 1.29 1.12–1.50 2.8 
Chr 10 rs2380205 (G/A) 12,235 11,961 GG GA 0.95 0.90–1.01 49.3 AA 0.89 0.82–0.95 18.3 
Chr 10 rs10995190 (G/A) 12,261 12,000 GG GA 0.84 0.79–0.89 25.6 AA 0.83 0.69–1.00 2.1 
Chr 10 rs704010 (G/A) 12,222 11,992 GG GA 1.11 1.05–1.17 46.9 AA 1.13 1.04–1.21 16.0 
Chr 11 rs614367 (G/A) 12,114 11,967 GG GA 1.16 1.10–1.23 24.4 AA 1.27 1.10–1.47 3.0 
14q24 rs999737 (T/C) 9,395 10,298 TT TC 0.94 0.88–0.99 35.5 CC 0.70 0.62–0.80 6.1 31 
17q23 rs6504950 (G/A) 33 30,470 33,302 GG GA 1.04 1.01–1.09 39.4a AA 1.12 1.05–1.21 7.3a 30 
ADH1C I350V 7,805 7,320 II IV 0.97 0.85–1.10 48.0 VV 1.00 0.83–1.21 17.1 38 
AKAP9 M463I (G/T) 9,523 13,770 GG GT 1.08 1.02–1.15 46.4 TT 1.17 1.08–1.27 13.4 39 
AR CAG repeat 6,622 7,160 SS SL 0.61 0.38–0.97 47.6 LL 0.62 0.39–0.97 30.1 40 
AURKA T91A 10 14,361 17,780 AA + TA TT 0.99 0.96–1.01 17.5     41 
BID rs8190315 (A/G) 11 13,664 14,193 AA AG 0.99 0.87–1.14 0.03     42 
BRCA2 N372H 22 22,515 22,388 NN NH 1.01 0.97–1.05 39.2 HH 1.05 0.97–1.13 7.5 43/44 
CASP8 D302H 15 16,909 17,654 DD DH 0.89 0.85–0.94 22.8 HH 0.74 0.61–0.89 33.0 45 
CASP10 rs13010627 (G/A) 28 26,917 30,429 GG GA 1.03 0.98–1.09 12.2 AA 0.94 0.72–1.22 0.4 42 
CCND1 G870A 5,371 5,336 GG GA 1.12 1.01–1.23 49.7 AA 1.18 1.06–1.32 21.1 46 
CDKN1A rs1801270 (C/A) 21 22,109 29,127 CC CA 1.03 0.96–1.11 12.0 AA 1.32 0.99–1.76 0.3 47/48 
CHEK2 1100delC 12 18,329 18,580 CC delC 2.40 1.80–3.20 0.5     49 
COMT G472A 41 25,627 34,222 GG GA 0.99 0.93–1.04 47.8 AA 0.96 0.88–1.04 23.8 50 
CYP17 MspA1 15 4,227 4,730 A1/A1 A1/A2 + A2A2 0.98 0.89–1.07 64.2     51/52 
CYP19 R264C (C/T) 2,355 3,592 1.06 0.93–1.21 9.4     53 
CYP19 3-bp del/ins 10 7,720 7,454 Ins Del 1.00 0.93–1.08 29.2     53 
CYP19 TTTAn 14 4,198 4,644  TTTA12 0.91 0.72–1.15 5.1     53 
      TTTA10 1.52 1.12–2.06 2.4     53 
CYP1A1 Ile462Val (A/G) 13 9,552 9,320 AA AG 1.01 0.82–1.23 21.4 GG 1.04c 0.61–1.76 2.6 54 
CYP1A1 T3801C 23 10,520 14,567 CC TC 0.95 0.79–1.14 27.6 TT 0.93 0.72–1.19 66.7 55 
CYP1A1 Thr461Asp (C/A) 2,245 1,139 CC CA 1.12 0.87–1.43 8.0 AA 0.95 0.20–4.49 0.2 56 
CYP1A2 A(−164)C 7,580 10,020 AA AC 1.02 0.92–1.13 42.8 CC 1.17 0.83–1.64 9.2 57 
CYP1B1 G119T 11 10,715 11,678 GG GT 0.99 0.90–1.10 43.6 TT 0.93 0.73–1.20 9.4 58/59 
CYP1B1 Arg48Gly 10 11,321 13,379 AA AG 0.93 0.81–1.08 42.9 GG 0.82 0.61–1.10 8.4 58/59 
CYP1B1 Asn453Ser (A/G) 12 11,630 14,053 AA AG 0.96 0.91–1.02 29.3 GG 0.98 0.85–1.14 3.5 58/59 
CYP1B1 Val432Leu (G/C) 13 4,167 3,187 GG GC 1.6 1.1–2.3 46.9 CC 1.1 0.8–1.4 31.0 60 
ECCR4 rs744154 (G/C) 27 25,743 29,074 GG GC 1.00 0.97–1.04 39.9 CC 0.97 0.91–1.04 7.5 42 
eNOS G894T 11 4,665 4,842 GG GT 1.00 0.91–1.10 33.1 TT 1.22 1.02–1.44 6.4 61 
eNOS T(−786)C 1,856 1,470 CC CT 0.74 0.51–1.05 27.5 TT 0.60 0.42–0.86 68.4 62 
ERCC2 A751C 32 14,545 15,352 AA AC + CC 1.13 1.02–1.24 63.4     63/64 
ERCC2 G312A 24 16,254 14,006 GG + GA AA 0.83 0.65–1.05 35.5     63/64 
ESR1 G351A 3,555 10,924 GG GA 0.94 0.71–1.25 45.6 AA 1.07 0.90–1.27 16.5 65 
ESR1 rs3020314 (T/C) 21 25,034 29,460 TT TC 1.05 1.02–1.09 43.3 CC 1.06 1.02–1.09 9.4 66 
ESR2 rs3020450 (C/T) 5,789 7,761 CC CT 1.01 0.94–1.08 43.0 TT 0.95 0.85–1.06 11.0 67 
ESR2 rs1256031 (A/G) 5,789 7,761 AA AG 0.99 0.92–1.07 49.0 GG 0.93 0.85–1.02 22.0 67 
ESR2 rs1256049 (G/A) 11,652 15,726 GG GA 1.04 0.96–1.12 12.6 AA 1.00 0.82–1.22 1.5 68 
ESR2 rs4986938 (A/G) 10,837 16,021 AA AG 0.94 0.90–1.00 44.4 GG 0.94 0.87–1.02 13.9 68 
FAS G(−1377)A 2,396 2,442 GG GA 1.18 1.04–1.35 25.2a AA 1.29 1.00–1.67 2.2a 69 
FAS A(−670)G 2,386 2,430 AA AG 1.01 0.89–1.16 49.8a GG 1.00 0.85–1.18 21.9a 69 
FGFR2 rs2981582 (C/T) 11 40,292 51,598 CC CT 1.18 1.09–1.27 47.0 TT 1.48 1.35–1.61 14.4 70/71 
GPX1 C198T 5,509 6,542 CC + CT TT 1.04 0.92–1.18 10.1     72 
GSTM1 Deletions 41 14,207 15,281 Present Null 1.10 1.05–1.15 56.5     73 
GSTP1 Ile105Val (A/G) 10 2,163 2,282 AA AG  Not reported  GG 1.04 0.87–1.25 2.6 74 
GSTT1 Deletions 15 4,873 5,245 Present Null 1.11 1.01–1.22 49.3     74 
HER2 I655V (G/A) 27 11,504 12,538 GG GA 1.05 1.00–1.12 30.3 AA 1.15 0.92–1.43 4.6 75 
hOGG1 C326G 11 6,804 6,725 CC CG 0.99 0.91–1.07 34.1 GG 1.07 0.94–1.20 4.8 76/77 
HSD17B1 A312G 13,987 17,066 AA AG 0.97 0.92–1.02 49.5 GG 0.96 0.90–1.03 22.6 78 
IGFBP3 A(−202)C 27 33,557 45,254 AA AC 1.03 0.99–1.07 49.7 CC 1.06 1.02–1.11 24.1 79/80/81 
IGF-I (CA) 19 repeats 3,828 8,999 Absent Present 1.03 0.90–1.17 57.9     82 
IL-B1 rs16944 (C/T) 1,744 1,342 CC CT 0.91 0.77–1.07 46.3 TT 0.91 0.60–1.37 19.9 83 
LIG4 D501D (T/C) 8,933 9,874 TT CT 0.96 0.90–1.02 28.6 CC 1.02 0.80–1.30 3.3 38 
LSP1 rs3817198 (T/C) 20 21,860 22,578 TT TC 1.06 1.02–1.11 42.0a CC 1.17 1.08–1.25 9.0a 
MAP3K1 rs889312 (A/C) 20 21,860 22,578 AA AC 1.13 1.09–1.18 40.3a CC 1.27 1.19–1.36 7.8a 
MDM2 T309G 5,191 3,834 TT TG 1.04 0.95–1.13 45.3 GG 0.90 0.80–1.02 15.0 84 
MTHFR A1298C 20 12,170 15,685 0.99 0.94–1.04 26.6     85 
MTHFR C677T 41 16,480 22,388 1.04 1.01–1.07 33.6     85 
MTRR A66G 6,084 6,756 AA + AG GG 1.00 0.91–1.09 21.2     86 
NAT2 NAT2 20 7,479 8,612 Rapid Slow 1.02 0.95–1.08 54.3     87 
NBS1 G8360C 10 4,452 5,665 GG GC 0.97 0.85–1.11 43.0 CC 0.75 0.74–0.98 10.5 88 
NBS1 I171V (A/G) 2,954 2,531 AA AG 1.05 0.64–1.74 1.0     89 
PGR G331A 10 13,702 14,726 GG GA 1.06 0.89–1.27 9.4 AA 0.94 0.57–1.56 0.3 90 
PGR rs1042838 (G/T) 24 23,129 27,507 GG GT 1.02 0.98–1.06 25.8 TT 1.04 0.93–1.17 2.4 42 
RAD51 G135C 13,241 13,203 GG CG 0.94 0.88–1.01 14.0 CC 1.02 0.65–1.60 2.5 91 
SOD2 V16A 32 26,022 32,426 VV VA 1.02 0.98–1.06 24.2 AA 1.01 0.93–1.08 1.9 92/93 
TGFB1 L10P 30 20,401 27,416 LL LP 1.05 1.00–1.09 51.7 PP 1.05 0.97–1.13 26.8 79/94 
TGFBR1 *6A 1,533 2,066 9A/9A 6A/9A 1.20a 0.73–1.96 12.5 6A/6A 2.21 0.29–16.90 0.2 95 
TNF rs361525 (G/A) 28 28,333 31,901 GG GA 0.99 0.94–1.05 9.3 AA 1.14 0.85–1.52 0.3 42 
TNRC9 rs3803662 (C/T) 20 21,860 22,578 CC CT 1.23 1.18–1.29 37.5a TT 1.39 1.26–1.45 6.3a 
TP53 G72C 17 12,226 10,782 GC + CC GG 1.13 0.98–1.31 47.4     96 
UGT1A1 TA repeat 5,746 8,365 7/7 7/6 0.90 0.80–1.01 40.1 6/6 0.90 0.80–1.01 49.9 97 
VDR Apa1 1,138 1,198 AA Aa + aa 1.06 0.73–1.54 69.3     98 
VDR Bsm1 14 5,586 7,943 BB Bb + bb 0.97 0.83–1.13 83.4     98 
VDR Fok1 5,284 7,500 FF + Ff ff 1.14 1.03–1.26 14.6     98 
VDR Taq1 10 4,459 5,485 TT Tt + tt 1.02 0.94–1.11 64.5     98 
WDR79 R68G C/G) 2,692 3,367 CC CG 1.08 0.95–1.23 21.7 GG 1.60 1.04–2.47 1.2 99 
XPC L939G (A/C) 3,073 3,048 0.96 0.86–1.07 35.4     100 
XPC A499V (C/T) 408 426 1.06 0.80–1.41 33.2     100 
XRCC1 R194W (C/T) 21 10,465 10,888 CC CT 0.96 0.89–1.04 15.7 TT 0.83 0.66–1.04 82.6 101 
XRCC1 R280H (G/A) 6,165 5,806 GG GA 1.08 0.95–1.22 1.2 AA 1.64 0.85–3.16 87.8 101 
XRCC1 R399Q (A/G) 40 21,467 22,766 GG GA 1.00 0.96–1.05 44.2 AA 1.12 1.02–1.23 43.9 101 
XRCC2 R188H (G/A) 16 18,341 19,028 RR RH 0.93 0.86–1.02 14.3 HH 0.90 0.69–1.18 0.6 102 
XRCC3 5′UTR (A/G) 8,343 9,703 AA AG 1.04 0.95–1.13 31.9 GG 0.95 0.82–1.10 4.7 38 
XRCC3 IVS5-14 (A/G) 10,537 10,970 AA AG 1.00 0.88–1.13 43.7 GG 0.90 0.81–1.10 11.2 38 
XRCC3 T241M (C/T) 12,365 13,138 TT TC 1.04 0.98–1.14 45.3 CC 1.08 0.98–1.19 13.5 38 
GeneVariantNo. of studiesNo. of casesNo. of controlsReferent variantComparison 1Comparison 2Referenceb
Associated variantOR95% CIFrequency (%)Associated variantOR95% CIFrequency (%)
1p11 rs11249433 (T/C) 9,335 10,263 TT TC 1.16 1.09–1.24 46.7 CC 1.30 1.19–1.41 16.0 31 
2q35 rs13387042 (G/A) 4,533 17,513 GG GA 1.11 1.03–1.20 50.0a AA 1.44 1.30–1.58 24.7a 
3p24 rs4973768 (C/T) 32 30,256 34,063 CC CT 1.12 1.08–1.17 49.7a TT 1.23 1.17–1.29 22.1a 30 
5p12 rs2067980 (A/G) 9,391 10,309 AA AG 1.08 1.02–1.15 26.6 GG 1.29 1.09–1.52 2.7 31 
5p12 rs7716600 (C/A) 9,400 10,321 CC CA 1.10 1.04–1.17 34.3 AA 1.28 1.13–1.45 4.9 31 
6q25 rs2046210 (G/A) 6,472 3,962 GG GA 1.36 1.24–1.49 45.7 AA 1.59 1.40–1.82 13.6 32 
8q24 rs13281615 (T/C) 20 21,860 22,578 TT TC 1.06 1.01–1.11 48.0a CC 1.18 1.10–1.25 16.0a 
Chr 9 rs1011970 (C/A) 12,253 12,000 CC CA 1.07 1.01–1.13 27.9 AA 1.29 1.12–1.50 2.8 
Chr 10 rs2380205 (G/A) 12,235 11,961 GG GA 0.95 0.90–1.01 49.3 AA 0.89 0.82–0.95 18.3 
Chr 10 rs10995190 (G/A) 12,261 12,000 GG GA 0.84 0.79–0.89 25.6 AA 0.83 0.69–1.00 2.1 
Chr 10 rs704010 (G/A) 12,222 11,992 GG GA 1.11 1.05–1.17 46.9 AA 1.13 1.04–1.21 16.0 
Chr 11 rs614367 (G/A) 12,114 11,967 GG GA 1.16 1.10–1.23 24.4 AA 1.27 1.10–1.47 3.0 
14q24 rs999737 (T/C) 9,395 10,298 TT TC 0.94 0.88–0.99 35.5 CC 0.70 0.62–0.80 6.1 31 
17q23 rs6504950 (G/A) 33 30,470 33,302 GG GA 1.04 1.01–1.09 39.4a AA 1.12 1.05–1.21 7.3a 30 
ADH1C I350V 7,805 7,320 II IV 0.97 0.85–1.10 48.0 VV 1.00 0.83–1.21 17.1 38 
AKAP9 M463I (G/T) 9,523 13,770 GG GT 1.08 1.02–1.15 46.4 TT 1.17 1.08–1.27 13.4 39 
AR CAG repeat 6,622 7,160 SS SL 0.61 0.38–0.97 47.6 LL 0.62 0.39–0.97 30.1 40 
AURKA T91A 10 14,361 17,780 AA + TA TT 0.99 0.96–1.01 17.5     41 
BID rs8190315 (A/G) 11 13,664 14,193 AA AG 0.99 0.87–1.14 0.03     42 
BRCA2 N372H 22 22,515 22,388 NN NH 1.01 0.97–1.05 39.2 HH 1.05 0.97–1.13 7.5 43/44 
CASP8 D302H 15 16,909 17,654 DD DH 0.89 0.85–0.94 22.8 HH 0.74 0.61–0.89 33.0 45 
CASP10 rs13010627 (G/A) 28 26,917 30,429 GG GA 1.03 0.98–1.09 12.2 AA 0.94 0.72–1.22 0.4 42 
CCND1 G870A 5,371 5,336 GG GA 1.12 1.01–1.23 49.7 AA 1.18 1.06–1.32 21.1 46 
CDKN1A rs1801270 (C/A) 21 22,109 29,127 CC CA 1.03 0.96–1.11 12.0 AA 1.32 0.99–1.76 0.3 47/48 
CHEK2 1100delC 12 18,329 18,580 CC delC 2.40 1.80–3.20 0.5     49 
COMT G472A 41 25,627 34,222 GG GA 0.99 0.93–1.04 47.8 AA 0.96 0.88–1.04 23.8 50 
CYP17 MspA1 15 4,227 4,730 A1/A1 A1/A2 + A2A2 0.98 0.89–1.07 64.2     51/52 
CYP19 R264C (C/T) 2,355 3,592 1.06 0.93–1.21 9.4     53 
CYP19 3-bp del/ins 10 7,720 7,454 Ins Del 1.00 0.93–1.08 29.2     53 
CYP19 TTTAn 14 4,198 4,644  TTTA12 0.91 0.72–1.15 5.1     53 
      TTTA10 1.52 1.12–2.06 2.4     53 
CYP1A1 Ile462Val (A/G) 13 9,552 9,320 AA AG 1.01 0.82–1.23 21.4 GG 1.04c 0.61–1.76 2.6 54 
CYP1A1 T3801C 23 10,520 14,567 CC TC 0.95 0.79–1.14 27.6 TT 0.93 0.72–1.19 66.7 55 
CYP1A1 Thr461Asp (C/A) 2,245 1,139 CC CA 1.12 0.87–1.43 8.0 AA 0.95 0.20–4.49 0.2 56 
CYP1A2 A(−164)C 7,580 10,020 AA AC 1.02 0.92–1.13 42.8 CC 1.17 0.83–1.64 9.2 57 
CYP1B1 G119T 11 10,715 11,678 GG GT 0.99 0.90–1.10 43.6 TT 0.93 0.73–1.20 9.4 58/59 
CYP1B1 Arg48Gly 10 11,321 13,379 AA AG 0.93 0.81–1.08 42.9 GG 0.82 0.61–1.10 8.4 58/59 
CYP1B1 Asn453Ser (A/G) 12 11,630 14,053 AA AG 0.96 0.91–1.02 29.3 GG 0.98 0.85–1.14 3.5 58/59 
CYP1B1 Val432Leu (G/C) 13 4,167 3,187 GG GC 1.6 1.1–2.3 46.9 CC 1.1 0.8–1.4 31.0 60 
ECCR4 rs744154 (G/C) 27 25,743 29,074 GG GC 1.00 0.97–1.04 39.9 CC 0.97 0.91–1.04 7.5 42 
eNOS G894T 11 4,665 4,842 GG GT 1.00 0.91–1.10 33.1 TT 1.22 1.02–1.44 6.4 61 
eNOS T(−786)C 1,856 1,470 CC CT 0.74 0.51–1.05 27.5 TT 0.60 0.42–0.86 68.4 62 
ERCC2 A751C 32 14,545 15,352 AA AC + CC 1.13 1.02–1.24 63.4     63/64 
ERCC2 G312A 24 16,254 14,006 GG + GA AA 0.83 0.65–1.05 35.5     63/64 
ESR1 G351A 3,555 10,924 GG GA 0.94 0.71–1.25 45.6 AA 1.07 0.90–1.27 16.5 65 
ESR1 rs3020314 (T/C) 21 25,034 29,460 TT TC 1.05 1.02–1.09 43.3 CC 1.06 1.02–1.09 9.4 66 
ESR2 rs3020450 (C/T) 5,789 7,761 CC CT 1.01 0.94–1.08 43.0 TT 0.95 0.85–1.06 11.0 67 
ESR2 rs1256031 (A/G) 5,789 7,761 AA AG 0.99 0.92–1.07 49.0 GG 0.93 0.85–1.02 22.0 67 
ESR2 rs1256049 (G/A) 11,652 15,726 GG GA 1.04 0.96–1.12 12.6 AA 1.00 0.82–1.22 1.5 68 
ESR2 rs4986938 (A/G) 10,837 16,021 AA AG 0.94 0.90–1.00 44.4 GG 0.94 0.87–1.02 13.9 68 
FAS G(−1377)A 2,396 2,442 GG GA 1.18 1.04–1.35 25.2a AA 1.29 1.00–1.67 2.2a 69 
FAS A(−670)G 2,386 2,430 AA AG 1.01 0.89–1.16 49.8a GG 1.00 0.85–1.18 21.9a 69 
FGFR2 rs2981582 (C/T) 11 40,292 51,598 CC CT 1.18 1.09–1.27 47.0 TT 1.48 1.35–1.61 14.4 70/71 
GPX1 C198T 5,509 6,542 CC + CT TT 1.04 0.92–1.18 10.1     72 
GSTM1 Deletions 41 14,207 15,281 Present Null 1.10 1.05–1.15 56.5     73 
GSTP1 Ile105Val (A/G) 10 2,163 2,282 AA AG  Not reported  GG 1.04 0.87–1.25 2.6 74 
GSTT1 Deletions 15 4,873 5,245 Present Null 1.11 1.01–1.22 49.3     74 
HER2 I655V (G/A) 27 11,504 12,538 GG GA 1.05 1.00–1.12 30.3 AA 1.15 0.92–1.43 4.6 75 
hOGG1 C326G 11 6,804 6,725 CC CG 0.99 0.91–1.07 34.1 GG 1.07 0.94–1.20 4.8 76/77 
HSD17B1 A312G 13,987 17,066 AA AG 0.97 0.92–1.02 49.5 GG 0.96 0.90–1.03 22.6 78 
IGFBP3 A(−202)C 27 33,557 45,254 AA AC 1.03 0.99–1.07 49.7 CC 1.06 1.02–1.11 24.1 79/80/81 
IGF-I (CA) 19 repeats 3,828 8,999 Absent Present 1.03 0.90–1.17 57.9     82 
IL-B1 rs16944 (C/T) 1,744 1,342 CC CT 0.91 0.77–1.07 46.3 TT 0.91 0.60–1.37 19.9 83 
LIG4 D501D (T/C) 8,933 9,874 TT CT 0.96 0.90–1.02 28.6 CC 1.02 0.80–1.30 3.3 38 
LSP1 rs3817198 (T/C) 20 21,860 22,578 TT TC 1.06 1.02–1.11 42.0a CC 1.17 1.08–1.25 9.0a 
MAP3K1 rs889312 (A/C) 20 21,860 22,578 AA AC 1.13 1.09–1.18 40.3a CC 1.27 1.19–1.36 7.8a 
MDM2 T309G 5,191 3,834 TT TG 1.04 0.95–1.13 45.3 GG 0.90 0.80–1.02 15.0 84 
MTHFR A1298C 20 12,170 15,685 0.99 0.94–1.04 26.6     85 
MTHFR C677T 41 16,480 22,388 1.04 1.01–1.07 33.6     85 
MTRR A66G 6,084 6,756 AA + AG GG 1.00 0.91–1.09 21.2     86 
NAT2 NAT2 20 7,479 8,612 Rapid Slow 1.02 0.95–1.08 54.3     87 
NBS1 G8360C 10 4,452 5,665 GG GC 0.97 0.85–1.11 43.0 CC 0.75 0.74–0.98 10.5 88 
NBS1 I171V (A/G) 2,954 2,531 AA AG 1.05 0.64–1.74 1.0     89 
PGR G331A 10 13,702 14,726 GG GA 1.06 0.89–1.27 9.4 AA 0.94 0.57–1.56 0.3 90 
PGR rs1042838 (G/T) 24 23,129 27,507 GG GT 1.02 0.98–1.06 25.8 TT 1.04 0.93–1.17 2.4 42 
RAD51 G135C 13,241 13,203 GG CG 0.94 0.88–1.01 14.0 CC 1.02 0.65–1.60 2.5 91 
SOD2 V16A 32 26,022 32,426 VV VA 1.02 0.98–1.06 24.2 AA 1.01 0.93–1.08 1.9 92/93 
TGFB1 L10P 30 20,401 27,416 LL LP 1.05 1.00–1.09 51.7 PP 1.05 0.97–1.13 26.8 79/94 
TGFBR1 *6A 1,533 2,066 9A/9A 6A/9A 1.20a 0.73–1.96 12.5 6A/6A 2.21 0.29–16.90 0.2 95 
TNF rs361525 (G/A) 28 28,333 31,901 GG GA 0.99 0.94–1.05 9.3 AA 1.14 0.85–1.52 0.3 42 
TNRC9 rs3803662 (C/T) 20 21,860 22,578 CC CT 1.23 1.18–1.29 37.5a TT 1.39 1.26–1.45 6.3a 
TP53 G72C 17 12,226 10,782 GC + CC GG 1.13 0.98–1.31 47.4     96 
UGT1A1 TA repeat 5,746 8,365 7/7 7/6 0.90 0.80–1.01 40.1 6/6 0.90 0.80–1.01 49.9 97 
VDR Apa1 1,138 1,198 AA Aa + aa 1.06 0.73–1.54 69.3     98 
VDR Bsm1 14 5,586 7,943 BB Bb + bb 0.97 0.83–1.13 83.4     98 
VDR Fok1 5,284 7,500 FF + Ff ff 1.14 1.03–1.26 14.6     98 
VDR Taq1 10 4,459 5,485 TT Tt + tt 1.02 0.94–1.11 64.5     98 
WDR79 R68G C/G) 2,692 3,367 CC CG 1.08 0.95–1.23 21.7 GG 1.60 1.04–2.47 1.2 99 
XPC L939G (A/C) 3,073 3,048 0.96 0.86–1.07 35.4     100 
XPC A499V (C/T) 408 426 1.06 0.80–1.41 33.2     100 
XRCC1 R194W (C/T) 21 10,465 10,888 CC CT 0.96 0.89–1.04 15.7 TT 0.83 0.66–1.04 82.6 101 
XRCC1 R280H (G/A) 6,165 5,806 GG GA 1.08 0.95–1.22 1.2 AA 1.64 0.85–3.16 87.8 101 
XRCC1 R399Q (A/G) 40 21,467 22,766 GG GA 1.00 0.96–1.05 44.2 AA 1.12 1.02–1.23 43.9 101 
XRCC2 R188H (G/A) 16 18,341 19,028 RR RH 0.93 0.86–1.02 14.3 HH 0.90 0.69–1.18 0.6 102 
XRCC3 5′UTR (A/G) 8,343 9,703 AA AG 1.04 0.95–1.13 31.9 GG 0.95 0.82–1.10 4.7 38 
XRCC3 IVS5-14 (A/G) 10,537 10,970 AA AG 1.00 0.88–1.13 43.7 GG 0.90 0.81–1.10 11.2 38 
XRCC3 T241M (C/T) 12,365 13,138 TT TC 1.04 0.98–1.14 45.3 CC 1.08 0.98–1.19 13.5 38 

NOTE: Printed in bold are the polymorphisms for which at least 1 genetic model showed statistically significant association with breast cancer risk. These polymorphisms were included in the modeling study.

aGenotype frequencies are calculated from the allele frequencies assuming Hardy–Weinberg equilibrium.

bWhen 2 references are given, the first is the source for the odds ratios, the second for the genotype frequencies. When 1 reference is given, both were obtained from the same meta-analysis.

cCalculated with Review Manager 5.0 using the raw data provided in this article.

Table 3 shows the magnitude of the ORs and genotype frequencies of genetic variants that would be needed in addition to the original 41 genetic risk variants to obtain AUCs of 0.70, 0.75, and 0.80. The table shows that to achieve an AUC of 0.70, the minimal OR of 5 additional genetic variants should be 1.5 (95% CI: 1.4–1.5) when their risk genotype frequencies are 0.30. To achieve an AUC of 0.75 with 20 to 100 additional genetic variants, the minimal ORs ranged from 1.2 to 2.1 depending on the frequencies of the risk genotypes. These values were 1.3 to 2.7 to achieve an AUC of 0.80.

Table 3.

Minimal odds ratios needed to obtain AUCs of 0.70–0.80 in addition to the 41 statistically significant genetic susceptibility variants (AUC = 0.67)

Risk allele frequencyNumber of extra genetic variantsAUC 0.70AUC 0.75AUC 0.80
0.05 3.2 (2.9–3.6) 10.7 (9.6–11.8) 51.6 (46.8–56.4) 
 2.0 (1.8–2.1) 3.6 (3.5–3.7) 5.8 (5.7–6.0) 
 20 1.5 (1.4–1.6) 2.1 (2.0–2.1) 2.7 (2.7–2.8) 
 50 1.3 (1.3–1.4) 1.6 (1.6–1.7) 2.0 (2.0–2.0) 
 100 1.3 (1.2–1.3) 1.5 (1.4–1.5) 1.7 (1.7–1.7) 
0.30 2.0 (1.9–2.2) 4.0 (3.9–4.1) 7.1 (6.9–7.3) 
 1.5 (1.4–1.5) 2.0 (2.0–2.1) 2.7 (2.7–2.8) 
 20 1.3 (1.2–1.3) 1.5 (1.5–1.5) 1.8 (1.7–1.8) 
 50 1.2 (1.2–1.2) 1.3 (1.3–1.3) 1.5 (1.5–1.5) 
 100 1.1 (1.1–1.2) 1.2 (1.2–1.2) 1.3 (1.3–1.3) 
0.50 2.0 (1.9–2.1) 4.0 (3.8–4.2) 8.7 (8.4–9.0) 
 1.4 (1.4–1.5) 2.0 (2.0–2.0) 2.7 (2.7–2.8) 
 20 1.2 (1.2–1.3) 1.5 (1.4–1.5) 1.7 (1.7–1.7) 
 50 1.2 (1.1–1.2) 1.3 (1.3–1.3) 1.4 (1.4–1.4) 
 100 1.1 (1.1–1.1) 1.2 (1.2–1.2) 1.3 (1.3–1.3) 
Risk allele frequencyNumber of extra genetic variantsAUC 0.70AUC 0.75AUC 0.80
0.05 3.2 (2.9–3.6) 10.7 (9.6–11.8) 51.6 (46.8–56.4) 
 2.0 (1.8–2.1) 3.6 (3.5–3.7) 5.8 (5.7–6.0) 
 20 1.5 (1.4–1.6) 2.1 (2.0–2.1) 2.7 (2.7–2.8) 
 50 1.3 (1.3–1.4) 1.6 (1.6–1.7) 2.0 (2.0–2.0) 
 100 1.3 (1.2–1.3) 1.5 (1.4–1.5) 1.7 (1.7–1.7) 
0.30 2.0 (1.9–2.2) 4.0 (3.9–4.1) 7.1 (6.9–7.3) 
 1.5 (1.4–1.5) 2.0 (2.0–2.1) 2.7 (2.7–2.8) 
 20 1.3 (1.2–1.3) 1.5 (1.5–1.5) 1.8 (1.7–1.8) 
 50 1.2 (1.2–1.2) 1.3 (1.3–1.3) 1.5 (1.5–1.5) 
 100 1.1 (1.1–1.2) 1.2 (1.2–1.2) 1.3 (1.3–1.3) 
0.50 2.0 (1.9–2.1) 4.0 (3.8–4.2) 8.7 (8.4–9.0) 
 1.4 (1.4–1.5) 2.0 (2.0–2.0) 2.7 (2.7–2.8) 
 20 1.2 (1.2–1.3) 1.5 (1.4–1.5) 1.7 (1.7–1.7) 
 50 1.2 (1.1–1.2) 1.3 (1.3–1.3) 1.4 (1.4–1.4) 
 100 1.1 (1.1–1.1) 1.2 (1.2–1.2) 1.3 (1.3–1.3) 

NOTE: Odds ratios are presented as mean (95% CI) of 20 simulations each.

The obtained CIs from the simulation were quite narrow partly due to using a sample size of 10,000 women for this calculation. Therefore, the meaning of these CIs is distinct from the CIs of the AUCs that correspond with existing breast cancer risk prediction models as presented in Table 1, where uncertainty in the CIs is due to variation in the population, sampling, and estimation.

This study investigated to what degree genetic risk models can predict breast cancer in a general population setting. We estimated that the AUC would be 0.68 when all 96 polymorphisms investigated were included and 0.67 when only statistically significant polymorphisms were considered. These AUC values are comparable to current breast cancer risk prediction models.

Before further interpreting the public health relevance of our findings, 2 methodologic issues need to be disclosed. First, we assumed that genetic variants inherited independently and that the combined effect of the genetic variants on disease risk followed a multiplicative risk model of independent effects (i.e., no statistical interaction terms were included in the model). Although so far no studies have demonstrated gene–gene interactions with breast cancer risk in general populations, it is still possible that these will be discovered in future studies in larger populations. However, gene–gene interactions only improve the breast cancer risk predictions if their effect sizes are substantially high (e.g., OR > 5). When interaction effects are smaller, their effects on the predictive accuracy will be comparable with that of single gene effects, because by definition their frequencies are lower.

Second, we attempted to compare the AUC of the genetic risk models with observed values for available breast cancer risk prediction models, but this comparison should be made with caution. It is important that risk prediction models should be validated in populations that are representative for the population in which the risk model ultimately is applied (28), and that the models address the same time horizon for the risk prediction. We considered application of the risk model in a general population, but many of the available breast cancer risk models were not evaluated in the general population constructed in a similar population. Some have validated risk models in women who have at least 1 affected relative (Table 1), but not in women who have no positive family history. Finally, we modeled lifetime breast cancer risk, where most published models predicted 5-year risks. In principle, this is a valid comparison, because AUC is independent of disease risk, and we assumed that the effects of the polymorphisms do not vary over time, which so far seems to be a reasonable assumption. The comparison may be weakened if the existing models would have had higher AUC when longer follow-up time had been investigated. This is well plausible, but the effect on AUC is unclear because intermediate risk factors may better predict short-term risk of disease and other risk factors may require long follow-up time to demonstrate their effects. Yet, the breast cancer risk models have AUC values between 0.55 and 0.76, and this range is comparable with risk prediction models based on nongenetic risk factors for other diseases (29).

Of the 96 polymorphisms that have been reviewed in meta-analyses or investigated in GWAS, 41 showed statistically significant associations with breast cancer risk (Table 2). These include the 18 polymorphisms that have been identified in recent GWAS (1, 3, 4, 30–32). The heterozygous OR of the polymorphisms identified in GWAS ranged from 0.84 to 1.36. When future GWAS will identify polymorphisms with per-allele ORs around 1.1, theoretically the predictive ability of the genetic risk model can be improved beyond that of existing models. Yet, even such small improvements still require the discovery of hundreds of new variants (6), or the discovery of the true causal variants, which may have stronger effects than the current variants included. Another avenue is to improve breast cancer prediction by combining genetic with nongenetic risk factors. Breast cancer prediction may be further improved when nongenetic risk factors are unrelated to the genetic factors, such as age, lifestyle, and dietary factors, and even the presence of affected relatives, which in nonfamilial breast cancer is unlikely explained by the low-risk susceptibility genes (33). It should not be expected that risk prediction is markedly improved when nongenetic risk factors are potential intermediate factors in a biological pathway linking the genetic factors to breast cancer (29), such as benign breast disease, personal history of breast cancer, and hormonal factors. On the basis of current knowledge of breast cancer risk factors, it is likely that risk prediction models solely based on nongenetic factors will perform better than models based on common single-nucleotide polymorphism (SNP) alone, as ORs for SNPs tend to be smaller than ORs based on nongenetic factors. Investigating the combined predictive performance of genetic and nongenetic factors is of interest to investigate whether available prediction models can be further improved. Yet, also existing prediction models will only be markedly improved when a larger number of susceptibility variants can be added (5).

What level of predictive performance is required for practical implementation of the risk model depends on the intended use. When prediction models are used to make decisions at the individual patient level, higher AUCs are required compared to when models are used to implement population-based prevention or therapeutic strategies. Whether the risk predictions are used as a strategy to determine the age of starting or interval of mammography screening, they will require that the risk model can accurately identify women at increased risk among all women regardless of family history of breast cancer. Other interventions such as MRI screening, the use of chemopreventive agents, lifestyle behavioral changes, and surgical interventions could also be considered. Yet, the more detail that is desired for risk stratification, the better the prediction model should perform. Specifying age of entry in the mammography screening program by year, as suggested by Pharoah and colleagues, requires better predictive performance than specifying age of entry in broader age categories, for example, enter screening at ages 45, 50, or 55 years. What level of AUC is required for this application is a question to be investigated in future modeling studies.

In conclusion, our analyses show that prediction of breast cancer risk based on low susceptibility variants theoretically can achieve similar predictive performance to existing breast cancer risk models, and can even improve prediction of disease when more variants are being discovered. Whether this predictive performance is sufficient for implementation of the risk models in mass prevention programs is ultimately determined by the intended use of the test and the performance of the interventions, weighing the benefits, harms, and costs.

No potential conflicts of interest were disclosed.

This study was financially supported by grants from the Erasmus University Medical Center Rotterdam and by the Center for Medical Systems Biology in the framework of the Netherlands Genomics Initiative (NGI). A.C.J.W. Janssens was additionally sponsored by the Vidi grant of the Netherlands Organisation for Scientific Research (NWO).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Easton
DF
,
Pooley
KA
,
Dunning
AM
,
Pharoah
PD
,
Thompson
D
,
Ballinger
DG
, et al
Genome-wide association study identifies novel breast cancer susceptibility loci
.
Nature
2007
;
447
:
1087
93
.
2.
Hunter
DJ
,
Kraft
P
,
Jacobs
KB
,
Cox
DG
,
Yeager
M
,
Hankinson
SE
, et al
A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer
.
Nat Genet
2007
;
39
:
870
4
.
3.
Stacey
SN
,
Manolescu
A
,
Sulem
P
,
Rafnar
T
,
Gudmundsson
J
,
Gudjonsson
SA
, et al
Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer
.
Nat Genet
2007
;
39
:
865
9
.
4.
Turnbull
C
,
Ahmed
S
,
Morrison
J
,
Pernet
D
,
Renwick
A
,
Maranian
M
, et al
Genome-wide association study identifies five new breast cancer susceptibility loci
.
Nat Genet
2010
;
42
:
504
7
.
5.
Gail
MH
. 
Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk
.
J Natl Cancer Inst
2008
;
100
:
1037
41
.
6.
Janssens
AC
,
Aulchenko
YS
,
Elefante
S
,
Borsboom
GJ
,
Steyerberg
EW
,
van Duijn
CM
. 
Predictive testing for complex diseases using multiple genes: fact or fiction?
Genet Med
2006
;
8
:
395
400
.
7.
Wray
NR
,
Goddard
ME
,
Visscher
PM
. 
Prediction of individual genetic risk of complex disease
.
Curr Opin Genet Dev
2008
;
18
:
257
63
.
8.
Pepe
MS
,
Gu
JW
,
Morris
DE
. 
The potential of genes and other markers to inform about risk
.
Cancer Epidemiol Biomarkers Prev
2010
;
19
:
655
65
.
9.
Salinas
CA
,
Koopmeiners
JS
,
Kwon
EM
,
FitzGerald
L
,
Lin
DW
,
Ostrander
EA
, et al
Clinical utility of five genetic variants for predicting prostate cancer risk and mortality
.
Prostate
2009
;
69
:
363
72
.
10.
Wacholder
S
,
Hartge
P
,
Prentice
R
,
Garcia-Closas
M
,
Feigelson
HS
,
Diver
WR
, et al
Performance of common genetic variants in breast-cancer risk models
.
N Engl J Med
2010
;
362
:
986
93
.
11.
Wu
X
,
Lin
J
,
Grossman
HB
,
Huang
M
,
Gu
J
,
Etzel
CJ
, et al
Projecting individualized probabilities of developing bladder cancer in white individuals
.
J Clin Oncol
2007
;
25
:
4974
81
.
12.
Zheng
SL
,
Sun
J
,
Wiklund
F
,
Smith
S
,
Stattin
P
,
Li
G
, et al
Cumulative association of five genetic variants with prostate cancer
.
N Engl J Med
2008
;
358
:
910
9
.
13.
Pharoah
PD
,
Antoniou
AC
,
Easton
DF
,
Ponder
BA
. 
Polygenes, risk prediction, and targeted prevention of breast cancer
.
N Engl J Med
2008
;
358
:
2796
803
.
14.
Gail
MH
,
Mai
PL
. 
Comparing breast cancer risk assessment models
.
J Natl Cancer Inst
2010
;
102
:
665
8
.
15.
Cook
NR
. 
Use and misuse of the receiver operating characteristic curve in risk prediction
.
Circulation
2007
;
115
:
928
35
.
16.
Pencina
MJ
,
D'Agostino
RB
 Sr
,
D'Agostino
RB
 Jr
,
Vasan
RS
. 
Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
.
Stat Med
2008
;
27
:
157
72
;
discussion 207–12
.
17.
Gail
MH
. 
Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model
.
J Natl Cancer Inst
2009
;
101
:
959
63
.
18.
Wray
NR
,
Goddard
ME
,
Visscher
PM
. 
Prediction of individual genetic risk to disease from genome-wide association studies
.
Genome Res
2007
;
17
:
1520
8
.
19.
Antoniou
AC
,
Pharoah
PD
,
McMullan
G
,
Day
NE
,
Stratton
MR
,
Peto
J
, et al
A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes
.
Br J Cancer
2002
;
86
:
76
83
.
20.
Barlow
WE
,
White
E
,
Ballard-Barbash
R
,
Vacek
PM
,
Titus-Ernstoff
L
,
Carney
PA
, et al
Prospective breast cancer risk prediction model for women undergoing screening mammography
.
J Natl Cancer Inst
2006
;
98
:
1204
14
.
21.
Claus
EB
,
Risch
N
,
Thompson
WD
. 
Autosomal dominant inheritance of early onset breast cancer. Implications for risk prediction
.
Cancer
1994
;
73
:
643
51
.
22.
Costantino
JP
,
Gail
MH
,
Pee
D
,
Anderson
S
,
Redmond
CK
,
Benichou
J
, et al
Validation studies for models projecting the risk of invasive and total breast cancer incidence
.
J Natl Cancer Inst
1999
;
91
:
1541
8
.
23.
Gail
MH
,
Costantino
JP
,
Pee
D
,
Bondy
M
,
Newman
L
,
Selvan
M
, et al
Projecting individualized absolute invasive breast cancer risk in African American women
.
J Natl Cancer Inst
2007
;
99
:
1782
92
.
24.
Tyrer
J
,
Duffy
SW
,
Cuzick
J
. 
A breast cancer prediction model incorporating familial and personal risk factors
.
Stat Med
2004
;
23
:
1111
30
.
25.
Sackett
DL
,
Tugwell
P
. 
Clinical epidemiology: a basic science for clinical medicine
.
Boston/Toronto: Little, Brown and Company;
1985
.
26.
Hanley
JA
,
McNeil
BJ
. 
The meaning and use of the area under a receiver operating characteristic (ROC) curve
.
Radiology
1982
;
143
:
29
36
.
27.
Ihaka
GR
. 
R: A language for data analysis and graphics
.
J Comput Graph Stat
1996
;
5
:
299
314
.
28.
Freedman
AN
,
Seminara
D
,
Gail
MH
,
Hartge
P
,
Colditz
GA
,
Ballard-Barbash
R
, et al
Cancer risk prediction models: a workshop on development, evaluation, and application
.
J Natl Cancer Inst
2005
;
97
:
715
23
.
29.
Janssens
AC
,
van Duijn
CM
. 
Genome-based prediction of common diseases: advances and prospects
.
Hum Mol Genet
2006
;
17
:
166
73
.
30.
Ahmed
S
,
Thomas
G
,
Ghoussaini
M
,
Healey
CS
,
Humphreys
MK
,
Platte
R
, et al
Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2
.
Nat Genet
2009
;
41
:
585
90
.
31.
Thomas
G
,
Jacobs
KB
,
Kraft
P
,
Yeager
M
,
Wacholder
S
,
Cox
DG
, et al
A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1)
.
Nat Genet
2009
;
41
:
579
84
.
32.
Zheng
W
,
Long
J
,
Gao
Y
,
Li
C
,
Zheng
Y
,
Xiang
YB
, et al
Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1
.
Nat Genet
2009
;
41
:
324
8
.
33.
Janssens
AC
,
Khoury
MJ
. 
Predictive value of testing for multiple genetic variants in multifactorial diseases: implications for the discourse on ethical, legal and social issues
.
Ital J Public Health
2006
;
3
:
35
41
.
34.
Amir
E
,
Evans
DG
,
Shenton
A
,
Lalloo
F
,
Moran
A
,
Boggis
C
, et al
Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme
.
J Med Genet
2003
;
40
:
807
14
.
35.
Rockhill
B
,
Spiegelman
D
,
Byrne
C
,
Hunter
DJ
,
Colditz
GA
. 
Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention
.
J Natl Cancer Inst
2001
;
93
:
358
66
.
36.
Decarli
A
,
Calza
S
,
Masala
G
,
Specchia
C
,
Palli
D
,
Gail
MH
. 
Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European Prospective Investigation Into Cancer and Nutrition cohort
.
J Natl Cancer Inst
2006
;
98
:
1686
93
.
37.
Tice
JA
,
Cummings
SR
,
Smith-Bindman
R
,
Ichikawa
L
,
Barlow
WE
,
Kerlikowske
K
. 
Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model
.
Ann Intern Med
2008
;
148
:
337
47
.
38.
Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium
.
J Natl Cancer Inst
2006
;
98
:
1382
96
.
39.
Frank
B
,
Wiestler
M
,
Kropp
S
,
Hemminki
K
,
Spurdle
AB
,
Sutter
C
, et al
Association of a common AKAP9 variant with breast cancer risk: a collaborative analysis
.
J Natl Cancer Inst
2008
;
100
:
437
42
.
40.
Hao
Y
,
Montiel
R
,
Li
B
,
Huang
E
,
Zeng
L
,
Huang
Y
. 
Association between androgen receptor gene CAG repeat polymorphism and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Apr 30, 2010]
.
41.
Sun
H
,
Bai
J
,
Chen
F
,
Jin
Y
,
Yu
Y
,
Fu
S
. 
Lack of an association between AURKA T91A polymorphisms and breast cancer: a meta-analysis involving 32,141 subjects
.
Breast Cancer Res Treat
2010
.
[Epub May 13, 2010]
.
42.
Gaudet
MM
,
Milne
RL
,
Cox
A
,
Camp
NJ
,
Goode
EL
,
Humphreys
MK
, et al
Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium
.
Cancer Epidemiol Biomarkers Prev
2009
;
18
:
1610
6
.
43.
Qiu
LX
,
Yao
L
,
Xue
K
,
Zhang
J
,
Mao
C
,
Chen
B
, et al
BRCA2 N372H polymorphism and breast cancer susceptibility: a meta-analysis involving 44,903 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Feb 5, 2010]
.
44.
Garcia-Closas
M
,
Egan
KM
,
Newcomb
PA
,
Brinton
LA
,
Titus-Ernstoff
L
,
Chanock
S
, et al
Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses
.
Hum Genet
2006
;
119
:
376
88
.
45.
Janssens
AC
,
Gonzalez-Zuloeta Ladd
AM
,
Lopez-Leon
S
,
Ioannidis
JP
,
Oostra
BA
,
Khoury
MJ
, et al
An empirical comparison of meta-analyses of published gene-disease associations versus consortium analyses
.
Genet Med
2009
;
11
:
153
62
.
46.
Lu
C
,
Dong
J
,
Ma
H
,
Jin
G
,
Hu
Z
,
Peng
Y
, et al
CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis
.
Breast Cancer Res Treat
2009
;
116
:
571
5
.
47.
Qiu
LX
,
Zhang
J
,
Zhu
XD
,
Zheng
CL
,
Sun
S
,
Wang
ZH
, et al
The p21 Ser31Arg polymorphism and breast cancer risk: a meta-analysis involving 51,236 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Mar 27, 2010]
.
48.
MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk
. 
Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women
.
Breast Cancer Res Treat
2010
;
120
:
727
36
.
49.
Weischer
M
,
Bojesen
SE
,
Ellervik
C
,
Tybjaerg-Hansen
A
,
Nordestgaard
BG
. 
CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: metaanalyses of 26,000 patient cases and 27,000 controls
.
J Clin Oncol
2008
;
26
:
542
8
.
50.
Mao
C
,
Wang
XW
,
Qiu
LX
,
Liao
RY
,
Ding
H
,
Chen
Q
. 
Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: a meta-analysis of 25,627 cases and 34,222 controls
.
Breast Cancer Res Treat
2010
;
121
:
719
25
.
51.
Ye
Z
,
Parry
JM
. 
The CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis
.
Mutagenesis
2002
;
17
:
119
26
.
52.
Feigelson
HS
,
McKean-Cowdin
R
,
Coetzee
G
,
Stram
DO
,
Kolonel
LN
,
Henderson
BE
. 
Building a multigenic model of breast cancer susceptibility: CYP17 and HSD17B1 are two important candidates
.
Cancer Res
2001
;
61
:
785
9
.
53.
Ma
X
,
Qi
X
,
Chen
C
,
Lin
H
,
Xiong
H
,
Li
Y
, et al
Association between CYP19 polymorphisms and breast cancer risk: results from 10,592 cases and 11,720 controls
.
Breast Cancer Res Treat
2010
;
122
:
495
501
.
54.
Chen
C
,
Huang
Y
,
Li
Y
,
Mao
Y
,
Xie
Y
. 
Cytochrome P450 1A1 (CYP1A1) T3801C and A2455G polymorphisms in breast cancer risk: a meta-analysis
.
J Hum Genet
2007
;
52
:
423
35
.
55.
Yao
L
,
Yu
X
,
Yu
L
. 
Lack of significant association between CYP1A1 T3801C polymorphism and breast cancer risk: a meta-analysis involving 25,087 subjects
.
Breast Cancer Res Treat
2010
;
122
;
503
7
.
56.
Masson
LF
,
Sharp
L
,
Cotton
SC
,
Little
J
. 
Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review
.
Am J Epidemiol
2005
;
161
:
901
15
.
57.
Qiu
LX
,
Yao
L
,
Mao
C
,
Yu
KD
,
Zhan
P
,
Chen
B
, et al
Lack of association of CYP1A2–164 A/C polymorphism with breast cancer susceptibility: a meta-analysis involving 17,600 subjects
.
Breast Cancer Res Treat
2010
;
122
:
521
5
.
58.
Economopoulos
KP
,
Sergentanis
TN
. 
Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
;
122
:
545
51
.
59.
MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk
. 
Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women
.
Breast Cancer Res Treat
2010
;
119
:
463
74
.
60.
Paracchini
V
,
Raimondi
S
,
Gram
IT
,
Kang
D
,
Kocabas
NA
,
Kristensen
VN
, et al
Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review
.
Am J Epidemiol
2007
;
165
:
115
25
.
61.
Hao
Y
,
Montiel
R
,
Huang
Y
. 
Endothelial nitric oxide synthase (eNOS) 894 G>T polymorphism is associated with breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Mar 19, 2010]
.
62.
Yao
L
,
Fang
F
,
Zhong
Y
,
Yu
L
. 
The association between two polymorphisms of eNOS and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Mar 5, 2010]
.
63.
Pabalan
N
,
Francisco-Pabalan
O
,
Sung
L
,
Jarjanazi
H
,
Ozcelik
H
. 
Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer
.
Breast Cancer Res Treat
2010
.
[Epub Apr 9, 2010]
.
64.
Debniak
T
,
Scott
RJ
,
Huzarski
T
,
Byrski
T
,
Masojc
B
,
van de Wetering
T
, et al
XPD common variants and their association with melanoma and breast cancer risk
.
Breast Cancer Res Treat
2006
;
98
:
209
15
.
65.
Gonzalez-Zuloeta Ladd
AM
,
Vasquez
AA
,
Rivadeneira
F
, et al
Estrogen receptor alpha polymorphisms and postmenopausal breast cancer risk
.
Breast Cancer Res Treat
2008
;
107
:
415
9
.
66.
Dunning
AM
,
Healey
CS
,
Baynes
C
, et al
Association of ESR1 gene tagging SNPs with breast cancer risk
.
Hum Mol Genet
2009
;
18
:
1131
9
.
67.
Breast and Prostate Cancer Cohort
Cox
DG
,
Bretsky
P
,
Kraft
P
,
Pharoah
P
,
Albanes
D
,
Altshuler
D
, et al
Haplotypes of the estrogen receptor beta gene and breast cancer risk
.
Int J Cancer
2008
;
122
:
387
92
.
68.
Yu
KD
,
Rao
NY
,
Chen
AX
,
Fan
L
,
Yang
C
,
Shao
ZM
. 
A systematic review of the relationship between polymorphic sites in the estrogen receptor-beta (ESR2) gene and breast cancer risk
.
Breast Cancer Res Treat
2010
.
[Epub Apr 14, 2010]
.
69.
Zhang
Z
,
Xue
H
,
Gong
W
,
Wang
M
,
Yuan
L
,
Han
S
. 
FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies
.
Carcinogenesis
2009
;
30
:
487
93
.
70.
Jia
C
,
Cai
Y
,
Ma
Y
,
Fu
D
. 
Quantitative assessment of the effect of FGFR2 gene polymorphism on the risk of breast cancer
.
Breast Cancer Res Treat
2010
.
[Epub Apr 4, 2010]
.
71.
Garcia-Closas
M
,
Hall
P
,
Nevanlinna
H
,
Pooley
K
,
Morrison
J
,
Richesson
DA
, et al
Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
.
PLoS Genet
2008
;
4
:
e1000054
.
72.
Hu
J
,
Zhou
GW
,
Wang
N
,
Wang
YJ
. 
GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Mar 21, 2010]
.
73.
Yu
KD
,
Di
GH
,
Fan
L
,
Wu
J
,
Hu
Z
,
Shen
ZZ
, et al
A functional polymorphism in the promoter region of GSTM1 implies a complex role for GSTM1 in breast cancer
.
FASEB J
2009
;
23
:
2274
87
.
74.
Egan
KM
,
Cai
Q
,
Shu
XO
,
Jin
F
,
Zhu
TL
,
Dai
Q
, et al
Genetic polymorphisms in GSTM1, GSTP1, and GSTT1 and the risk for breast cancer: results from the Shanghai Breast Cancer Study and meta-analysis
.
Cancer Epidemiol Biomarkers Prev
2004
;
13
:
197
204
.
75.
Lu
S
,
Wang
Z
,
Liu
H
,
Hao
X
. 
HER2 Ile655Val polymorphism contributes to breast cancer risk: evidence from 27 case-control studies
.
Breast Cancer Res Treat
2010
.
[Epub Apr 17, 2010]
.
76.
Gu
D
,
Wang
M
,
Zhang
Z
,
Chen
J
. 
Lack of association between the hOGG1 Ser326Cys polymorphism and breast cancer risk: evidence from 11 case-control studies
.
Breast Cancer Res Treat
2010
;
122
:
527
31
.
77.
Zhang
Y
,
Newcomb
PA
,
Egan
KM
,
Titus-Ernstoff
L
,
Chanock
S
,
Welch
R
, et al
Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer
.
Cancer Epidemiol Biomarkers Prev
2006
;
15
:
353
8
.
78.
Yao
L
,
Cao
LH
,
Qiu
LX
,
Yu
L
. 
The association between HSD17B1 Ser312Gly polymorphism and breast cancer risk: a meta-analysis including 31,053 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Feb 12, 2010]
.
79.
Qiu
LX
,
Yao
L
,
Mao
C
,
Chen
B
,
Zhan
P
,
Xue
K
, et al
TGFB1 L10P polymorphism is associated with breast cancer susceptibility: evidence from a meta-analysis involving 47,817 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Feb 9, 2010]
.
80.
Patel
AV
,
Cheng
I
,
Canzian
F
,
Le Marchand
L
,
Thun
MJ
,
Berg
CD
, et al
IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3)
.
PLoS One
2008
;
3
:
e2578
.
81.
Qiu
LX
,
Yao
L
,
Yuan
H
,
Mao
C
,
Chen
B
,
Zhan
P
, et al
IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls
.
Breast Cancer Res Treat
2010 Aug
;
122
:
867
71
.
[Epub Jan 19, 2010]
.
82.
Chen
X
,
Guan
J
,
Song
Y
,
Chen
P
,
Zheng
H
,
Tang
C
, et al
IGF-I (CA) repeat polymorphisms and risk of cancer: a meta-analysis
.
J Hum Genet
2008
;
53
:
227
38
.
83.
Liu
X
,
Wang
Z
,
Yu
J
,
Lei
G
,
Wang
S
. 
Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub May 1, 2010]
.
84.
Schmidt
MK
,
Reincke
S
,
Broeks
A
,
Braaf
LM
,
Hogervorst
FB
,
Tollenaar
RA
, et al
Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium
.
Cancer Res
2007
;
67
:
9584
90
.
85.
Qi
X
,
Ma
X
,
Yang
X
,
Fan
L
,
Zhang
Y
,
Zhang
F
, et al
Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls
.
Breast Cancer Res Treat
2010
.
[Epub Feb 5, 2010]
.
86.
Hu
J
,
Zhou
GW
,
Wang
N
,
Wang
YJ
. 
MTRR A66G polymorphism and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Apr 22, 2010]
.
87.
Ochs-Balcom
HM
,
Wiesner
G
,
Elston
RC
. 
A meta-analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer
.
Am J Epidemiol
2007
;
166
:
246
54
.
88.
Wang
Z
,
Cui
D
,
Lu
W
. 
NBS1 8360G > C polymorphism is associated with breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010
.
[Epub Feb 9, 2010]
.
89.
Bogdanova
N
,
Schurmann
P
,
Waltes
R
,
Feshchenko
S
,
Zalutsky
IV
,
Bremer
M
, et al
NBS1 variant I171V and breast cancer risk
.
Breast Cancer Res Treat
2008
;
112
:
75
9
.
90.
Yu
KD
,
Chen
AX
,
Shao
ZM
. 
No association between a progesterone receptor gene promoter polymorphism (+331G>A) and breast cancer risk in Caucasian women: evidence from a literature-based meta-analysis
.
Breast Cancer Res Treat
2010 Aug
;
122
:
853
8
.
[Epub Jan 14, 2010]
.
91.
Wang
Z
,
Dong
H
,
Fu
Y
,
Ding
H
. 
RAD51 135G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Apr 16, 2010]
.
92.
Qiu
LX
,
Yao
L
,
Mao
C
,
Chen
B
,
Zhan
P
,
Yuan
H
, et al
Lack of association between MnSOD Val16Ala polymorphism and breast cancer risk: a meta-analysis involving 58,448 subjects
.
Breast Cancer Res Treat
2010
.
[Epub Feb 9, 2010]
.
93.
Cai
Q
,
Shu
XO
,
Wen
W
,
Cheng
JR
,
Dai
Q
,
Gao
YT
, et al
Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study
.
Breast Cancer Res
2004
;
6
:
R647
55
.
94.
Shin
A
,
Shu
XO
,
Cai
Q
,
Gao
YT
,
Zheng
W
. 
Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages
.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
1567
70
.
95.
Kaklamani
VG
,
Hou
N
,
Bian
Y
,
Reich
J
,
Offit
K
,
Michel
LS
, et al
TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies
.
J Clin Oncol
2003
;
21
:
3236
43
.
96.
Zhuo
W
,
Zhang
Y
,
Xiang
Z
,
Cai
L
,
Chen
Z
. 
Polymorphisms of TP53 codon 72 with breast carcinoma risk: evidence from 12226 cases and 10782 controls
.
J Exp Clin Cancer Res
2009
;
28
:
115
.
97.
Yao
L
,
Qiu
LX
,
Yu
L
,
Yang
Z
,
Yu
XJ
,
Zhong
Y
. 
The association between TA-repeat polymorphism in the promoter region of UGT1A1 and breast cancer risk: a meta-analysis
.
Breast Cancer Res Treat
2010 Aug
;
122
:
879
82
.
[Epub Jan 20, 2010]
.
98.
Tang
C
,
Chen
N
,
Wu
M
,
Yuan
H
,
Du
Y
. 
Fok1 polymorphism of vitamin D receptor gene contributes to breast cancer susceptibility: a meta-analysis
.
Breast Cancer Res Treat
2009
;
117
:
391
9
.
99.
Garcia-Closas
M
,
Kristensen
V
,
Langerod
A
,
Qi
Y
,
Yeager
M
,
Burdett
L
, et al
Common genetic variation in TP53 and its flanking genes, WDR79 and ATP1B2, and susceptibility to breast cancer
.
Int J Cancer
2007
;
121
:
2532
8
.
100.
Francisco
G
,
Menezes
PR
,
Eluf-Neto
J
,
Chammas
R
. 
XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis
.
Eur J Hum Genet
2008
;
16
:
724
34
.
101.
Li
H
,
Ha
TC
,
Tai
BC
. 
XRCC1 gene polymorphisms and breast cancer risk in different populations: a meta-analysis
.
Breast
2009
;
18
:
183
91
.
102.
Yu
KD
,
Chen
AX
,
Qiu
LX
,
Fan
L
,
Yang
C
,
Shao
ZM
. 
XRCC2 Arg188His polymorphism is not directly associated with breast cancer risk: evidence from 37,369 subjects
.
Breast Cancer Res Treat
2010 Aug
;
123
:
219
25
.
[Epub Feb 2, 2010]
.

Supplementary data