The literature on environmental exposures and risk of non-Hodgkin lymphoma (NHL) is inconsistent and no occupational exposures have been conclusively identified as causal factors. We used job exposure matrices to assess the association between occupational exposure to solvents in a population-based case-control study of NHL (n = 1,591 cases; n = 2,515 controls) in the San Francisco Bay Area between 1988 and 1995. Occupational histories were collected during in-person interviews and were coded according to the 1980 U.S. Department of Commerce Alphabetic Index of Industries and Occupations. Odds ratios and 95% confidence intervals were adjusted for potential confounders. Our results have provided no support for an association between NHL and occupational exposure to solvents. (Cancer Epidemiol Biomarkers Prev 2009;18(11):3130–2)

In 2009, in the United States approximately 66,000 newly diagnosed cases and 19,500 deaths from non-Hodgkin lymphoma (NHL) are expected (1). Few risk factors for NHL have been identified to explain the increase in NHL incidence since the 1970s (2-7). The literature on risk of NHL and environmental exposures, including viral, chemical, lifestyle, and occupational, has identified few etiologic factors (2, 8), with no occupational exposures, including solvents (9-17), conclusively established as causal factors (2, 8, 18-20). To address these inconsistent results in previous studies, we used job exposure matrices to estimate the effect of occupational solvent exposure on NHL risk in our large population-based case-control study of NHL in the San Francisco Bay Area.

Detailed methods of patient recruitment previously have been reported (21-25). Briefly, a rapid case-finding system was used to identify NHL patients within approximately 1 mo of diagnosis in hospitals in six San Francisco Bay Area counties. Eligible patients were diagnosed between 1987 and 1993, were between 21 and 74 y of age, and resided in six Bay Area counties at the time of diagnosis. Diagnostic pathology materials were re-reviewed and classified using the Working Formulation by the expert study pathologist. Results are presented for all NHL and common subtypes reflecting recent WHO classifications (26): diffuse large-cell and immunoblastic large-cell (DLCL); follicular lymphomas (FL); chronic lymphocytic leukemia/small-lymphocytic lymphoma (CLL/SLL); and “other” NHL. A total of 1,591 (72%) eligible NHL patients completed interviews. Control participants were identified using random digit dial (27, 28) and were frequency matched to the cases by sex, county of residence, and age in 5-y groups. Eligibility criteria were the same as for cases with the exception of NHL diagnosis. A total of 2,515 (78%) eligible control participants completed interviews.

The University of California-San Francisco Committee on Human Research approved the study protocols and procedures and all participants provided written informed consent before interview. Structured interviews were conducted in-person by trained interviewers. No proxy interviews were conducted. Detailed questions were asked about history of occupational and other exposures and lifestyle factors. Occupational history included jobs held for ≥6 mo when ≥18 y old. Most questions pertained to incidence of exposures or activities up until 1 y before diagnosis (cases) or interview (controls).

The 1980 U.S. Department of Commerce Alphabetical Index of Industries and Occupations was used to code 231 industries and 509 occupations (29). Exposure to any organic solvent and to benzene and formaldehyde was assessed by linking the coded occupation and industry data with job exposure matrices developed by Dosemeci et al. (30, 31) and as described by Wang et al. (14). Each occupation and industry was assigned an estimate of exposure intensity (I) and probability (P) (0, none; 1, low; 2, medium; and 3, high exposure). Exposure I and P were estimated on the expected exposure level for a worker in that industry or occupation. If the exposure depended on occupation or industry only, then the exposure score was the square of the exposure estimation for that occupation or industry (I = I2 and P = P2). If the exposure depended on occupation and industry, then the exposure score was the product of the occupational and industrial exposure estimation (I = Ioccupation × Iindustry and P = Poccupation × Pindustry). For each study participant, this information was combined with job duration in years (D) to estimate average exposure intensity, Σ[(Ijob × Djob) / Dexposure], and probability, Σ[(Pjob × Djob) / Dexposure]. Average exposure intensity and probability were summarized over multiple jobs and categorized as never exposed (0), low (<3), medium (3-5), and high intensity/probability (≥6).

Unconditional logistic regression was used to obtain odds ratios (OR) as estimates of relative risk (hereafter called risk) and 95% confidence intervals (95% CI) in SAS (v. 9.1, SAS Institute). All statistical tests were two-sided. All models were adjusted for age in 5-y groups, sex, race/ethnicity (Hispanic White, non-Hispanic White, African American, Asian, other), and education level (≤12, >12 y). Analyses were restricted to HIV-negative participants (n = 1,262 cases; n = 2,094 controls).

The mean age for NHL and control participants was 57 and 54 years, respectively, after removal of HIV-positive cases. Cases were somewhat less educated and a greater proportion were men. The median lifetime number of jobs for NHL and control participants was four and five, respectively. There was no association between average intensity (Table 1) and probability (Table 2) of solvent, benzene, or formaldehyde exposure and NHL risk for all NHL, DLCL, FL, CLL/SLL, or other NHL. Results did not differ when men and women were analyzed separately, and there were few women in the various exposure subgroups (data not shown).

Table 1.

ORs and 95% CIs for NHL and NHL subtypes associated with average intensity of solvent exposure, San Francisco Bay Area, California

TotalControls, n = 2,094*Total NHL, n = 1,262*DLCL, n = 497FL, n = 340CLL/SLL, n = 148Other NHL, n = 277
n (%)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)
Solvents 
Never 526 (25) 344 (27) 1.0 140 (28) 1.0 92 (27) 1.0 41 (28) 1.0 71 (26) 1.0 
Ever 1,568 (75) 918 (73) 0.95 (0.80-1.1) 357 (72) 0.93 (0.74-1.2) 248 (73) 1.1 (0.79-1.4) 107 (72) 0.95 (0.63-1.4) 206 (74) 0.87 (0.64-1.2) 
Low 1,147 (55) 662 (52) 0.95 (0.79-1.2) 250 (50) 0.89 (0.69-1.1) 181 (53) 1.0 (0.77-1.4) 80 (54) 0.97 (0.63-1.5) 151 (55) 0.87 (0.62-1.2) 
Med-high 421 (20) 256 (20) 0.95 (0.78-1.2) 107 (22) 1.1 (0.78-1.4) 67 (20) 1.1 (0.75-1.5) 27 (18) 0.90 (0.53-1.5) 55 (20) 0.88 (0.59-1.3) 
Benzene 
Never 726 (35) 479 (38) 1.0 191 (38) 1.0 138 (41) 1.0 57 (39) 1.0 93 (34) 1.0 
Ever 1,368 (65) 783 (62) 0.93 (0.79-1.1) 306 (62) 0.93 (0.74-1.2) 202 (59) 0.90 (0.69-1.2) 91 (61) 0.90 (0.61-1.3) 184 (66) 0.95 (0.70-1.3) 
Low 967 (46) 551 (44) 0.92 (0.77-1.1) 208 (42) 0.89 (0.70-1.1) 142 (42) 0.89 (0.67-1.1) 67 (45) 0.93 (0.61-1.4) 134 (48) 0.97 (0.71-1.3) 
Med-high 401 (19) 232 (18) 0.95 (0.77-1.2) 98 (20) 1.0 (0.76-1.4) 60 (18) 0.92 (0.64-1.3) 24 (16) 0.84 (0.50-1.4) 50 (18) 0.89 (0.6-1.3) 
Formaldehyde 
Never 839 (40) 505 (40) 1.0 201 (40) 1.0 134 (39) 1.0 58 (39) 1.0 112 (40) 1.0 
Ever 1,255 (60) 757 (60) 1.0 (0.87-1.2) 296 (60) 1.0 (0.82-1.2) 206 (61) 1.1 (0.85-1.4) 90 (61) 1.0 (0.73-1.5) 165 (60) 0.94 (0.73-1.2) 
Low 781 (37) 485 (38) 1.0 (0.88-1.2) 202 (41) 1.1 (0.88-1.4) 123 (36) 1.0 (0.78-1.3) 59 (40) 1.1 (0.73-1.6) 101 (36) 0.92 (0.69-1.2) 
Med-high 474 (23) 272 (22) 1.0 (0.81-1.2) 94 (19) 0.85 (0.65-1.1) 83 (24) 1.2 (0.87-1.6) 31 (21) 0.99 (0.63-1.6) 64 (23) 0.99 (0.71-1.4) 
TotalControls, n = 2,094*Total NHL, n = 1,262*DLCL, n = 497FL, n = 340CLL/SLL, n = 148Other NHL, n = 277
n (%)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)
Solvents 
Never 526 (25) 344 (27) 1.0 140 (28) 1.0 92 (27) 1.0 41 (28) 1.0 71 (26) 1.0 
Ever 1,568 (75) 918 (73) 0.95 (0.80-1.1) 357 (72) 0.93 (0.74-1.2) 248 (73) 1.1 (0.79-1.4) 107 (72) 0.95 (0.63-1.4) 206 (74) 0.87 (0.64-1.2) 
Low 1,147 (55) 662 (52) 0.95 (0.79-1.2) 250 (50) 0.89 (0.69-1.1) 181 (53) 1.0 (0.77-1.4) 80 (54) 0.97 (0.63-1.5) 151 (55) 0.87 (0.62-1.2) 
Med-high 421 (20) 256 (20) 0.95 (0.78-1.2) 107 (22) 1.1 (0.78-1.4) 67 (20) 1.1 (0.75-1.5) 27 (18) 0.90 (0.53-1.5) 55 (20) 0.88 (0.59-1.3) 
Benzene 
Never 726 (35) 479 (38) 1.0 191 (38) 1.0 138 (41) 1.0 57 (39) 1.0 93 (34) 1.0 
Ever 1,368 (65) 783 (62) 0.93 (0.79-1.1) 306 (62) 0.93 (0.74-1.2) 202 (59) 0.90 (0.69-1.2) 91 (61) 0.90 (0.61-1.3) 184 (66) 0.95 (0.70-1.3) 
Low 967 (46) 551 (44) 0.92 (0.77-1.1) 208 (42) 0.89 (0.70-1.1) 142 (42) 0.89 (0.67-1.1) 67 (45) 0.93 (0.61-1.4) 134 (48) 0.97 (0.71-1.3) 
Med-high 401 (19) 232 (18) 0.95 (0.77-1.2) 98 (20) 1.0 (0.76-1.4) 60 (18) 0.92 (0.64-1.3) 24 (16) 0.84 (0.50-1.4) 50 (18) 0.89 (0.6-1.3) 
Formaldehyde 
Never 839 (40) 505 (40) 1.0 201 (40) 1.0 134 (39) 1.0 58 (39) 1.0 112 (40) 1.0 
Ever 1,255 (60) 757 (60) 1.0 (0.87-1.2) 296 (60) 1.0 (0.82-1.2) 206 (61) 1.1 (0.85-1.4) 90 (61) 1.0 (0.73-1.5) 165 (60) 0.94 (0.73-1.2) 
Low 781 (37) 485 (38) 1.0 (0.88-1.2) 202 (41) 1.1 (0.88-1.4) 123 (36) 1.0 (0.78-1.3) 59 (40) 1.1 (0.73-1.6) 101 (36) 0.92 (0.69-1.2) 
Med-high 474 (23) 272 (22) 1.0 (0.81-1.2) 94 (19) 0.85 (0.65-1.1) 83 (24) 1.2 (0.87-1.6) 31 (21) 0.99 (0.63-1.6) 64 (23) 0.99 (0.71-1.4) 

*The number of participants may vary because of missing data.

Age-, sex-, education-, race-, and ethnicity-adjusted values.

Table 2.

ORs and 95% CIs for NHL and NHL subtypes associated with average probability of solvent exposure, San Francisco Bay Area, California

TotalControls, n = 2,094*Total NHL, n = 1,262*DLCL, n = 497FL, n = 340CLL/SLL, n = 148Other NHL, n = 277
n (%)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)
Solvents 
Never 526 (25) 344 (27) 1.0 140 (28) 1.0 92 (27) 1.0 41 (28) 1.0 71 (26) 1.0 
Ever 1,568 (75) 918 (73) 0.95 (0.8-1.1) 357 (72) 0.93 (0.74-1.2) 248 (73) 1.1 (0.79-1.4) 107 (72) 0.95 (0.63-1.4) 206 (74) 0.87 (0.64-1.2) 
Low 727 (35) 427 (34) 0.95 (0.79-1.2) 168 (34) 0.95 (0.73-1.2) 117 (34) 1.1 (0.77-1.5) 52 (35) 1.0 (0.64-1.6) 90 (32) 0.83 (0.59-1.2) 
Med-high 841 (40) 491 (39) 0.95 (0.78-1.2) 189 (38) 0.92 (0.71-1.2) 131 (39) 1.0 (0.76-1.4) 55 (37) 0.90 (0.57-1.4) 116 (42) 0.90 (0.64-1.3) 
Benzene 
Never 726 (35) 479 (38) 1.0 191 (38) 1.0 138 (41) 1.0 57 (39) 1.0 93 (34) 1.0 
Ever 1,368 (65) 783 (62) 0.93 (0.79-1.1) 306 (62) 0.93 (0.74-1.2) 202 (59) 0.90 (0.69-1.2) 91 (61) 0.90 (0.61-1.3) 184 (66) 0.95 (0.70-1.3) 
Low 672 (32) 377 (30) 0.90 (0.75-1.1) 148 (30) 0.92 (0.71-1.2) 98 (29) 0.88 (0.65-1.2) 47 (32) 0.96 (0.61-1.5) 84 (30) 0.89 (0.63-1.2) 
Med-high 696 (33) 406 (32) 0.95 (0.79-1.1) 158 (32) 0.94 (0.73-1.2) 104 (31) 0.91 (0.67-1.2) 44 (30) 0.85 (0.54-1.3) 100 (36) 1.0 (0.72-1.4) 
Formaldehyde 
Never 839 (40) 505 (40) 1.0 201 (40) 1.0 134 (39) 1.0 58 (39) 1.0 112 (40) 1.0 
Ever 1,255 (60) 757 (60) 1.0 (0.87-1.2) 296 (60) 1.0 (0.82-1.2) 206 (61) 1.1 (0.85-1.4) 90 (61) 1.0 (0.73-1.5) 165 (60) 0.94 (0.73-1.2) 
Low 885 (42) 552 (44) 1.0 (0.89-1.2) 232 (47) 1.1 (0.91-1.4) 139 (41) 1.0 (0.80-1.4) 61 (41) 0.98 (0.67-1.4) 120 (43) 0.96 (0.73-1.3) 
Med-high 370 (18) 205 (16) 0.93 (0.76-1.1) 64 (13) 0.73 (0.54-1.0) 67 (20) 1.2 (0.85-1.6) 29 (20) 1.2 (0.73-1.9) 45 (16) 0.91 (0.63-1.3) 
TotalControls, n = 2,094*Total NHL, n = 1,262*DLCL, n = 497FL, n = 340CLL/SLL, n = 148Other NHL, n = 277
n (%)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)n (%)OR (95% CI)
Solvents 
Never 526 (25) 344 (27) 1.0 140 (28) 1.0 92 (27) 1.0 41 (28) 1.0 71 (26) 1.0 
Ever 1,568 (75) 918 (73) 0.95 (0.8-1.1) 357 (72) 0.93 (0.74-1.2) 248 (73) 1.1 (0.79-1.4) 107 (72) 0.95 (0.63-1.4) 206 (74) 0.87 (0.64-1.2) 
Low 727 (35) 427 (34) 0.95 (0.79-1.2) 168 (34) 0.95 (0.73-1.2) 117 (34) 1.1 (0.77-1.5) 52 (35) 1.0 (0.64-1.6) 90 (32) 0.83 (0.59-1.2) 
Med-high 841 (40) 491 (39) 0.95 (0.78-1.2) 189 (38) 0.92 (0.71-1.2) 131 (39) 1.0 (0.76-1.4) 55 (37) 0.90 (0.57-1.4) 116 (42) 0.90 (0.64-1.3) 
Benzene 
Never 726 (35) 479 (38) 1.0 191 (38) 1.0 138 (41) 1.0 57 (39) 1.0 93 (34) 1.0 
Ever 1,368 (65) 783 (62) 0.93 (0.79-1.1) 306 (62) 0.93 (0.74-1.2) 202 (59) 0.90 (0.69-1.2) 91 (61) 0.90 (0.61-1.3) 184 (66) 0.95 (0.70-1.3) 
Low 672 (32) 377 (30) 0.90 (0.75-1.1) 148 (30) 0.92 (0.71-1.2) 98 (29) 0.88 (0.65-1.2) 47 (32) 0.96 (0.61-1.5) 84 (30) 0.89 (0.63-1.2) 
Med-high 696 (33) 406 (32) 0.95 (0.79-1.1) 158 (32) 0.94 (0.73-1.2) 104 (31) 0.91 (0.67-1.2) 44 (30) 0.85 (0.54-1.3) 100 (36) 1.0 (0.72-1.4) 
Formaldehyde 
Never 839 (40) 505 (40) 1.0 201 (40) 1.0 134 (39) 1.0 58 (39) 1.0 112 (40) 1.0 
Ever 1,255 (60) 757 (60) 1.0 (0.87-1.2) 296 (60) 1.0 (0.82-1.2) 206 (61) 1.1 (0.85-1.4) 90 (61) 1.0 (0.73-1.5) 165 (60) 0.94 (0.73-1.2) 
Low 885 (42) 552 (44) 1.0 (0.89-1.2) 232 (47) 1.1 (0.91-1.4) 139 (41) 1.0 (0.80-1.4) 61 (41) 0.98 (0.67-1.4) 120 (43) 0.96 (0.73-1.3) 
Med-high 370 (18) 205 (16) 0.93 (0.76-1.1) 64 (13) 0.73 (0.54-1.0) 67 (20) 1.2 (0.85-1.6) 29 (20) 1.2 (0.73-1.9) 45 (16) 0.91 (0.63-1.3) 

*The number of participants may vary because of missing data.

Age-, sex-, education-, race-, and ethnicity-adjusted values.

This large population-based case-control study provides no support for an association between occupational exposure to solvents and NHL. Several factors may contribute to the inconsistent results across previous studies that have evaluated the relationship between occupational solvent exposure and NHL (8, 16, 18, 32, 33). Studies that assume exposures based on job titles lack specific individual-level exposure information. Many occupational settings entail exposure to multiple chemicals that, when coupled with exposure levels presumed by specific job titles, can lead to substantial measurement error and exposure misclassification. Exposure studies often lack complete job and lifestyle histories that may confound or modify the main occupational effects.

This study has several strengths, including its large sample size, study design diminishing potential selection bias (e.g., random digit dial to identify age-, sex-, and county-matched controls from the same population from which the cases arose), and rapid case ascertainment to identify all incident NHL cases diagnosed in six Bay Area counties between 1988 and 1993. To diminish interviewer bias, the study hypotheses were not known to the experienced interviewers who conducted in-person interviews with participants. Because specific occupations are not known to be risk factors for NHL, there was less likelihood of response bias. The design of this case-control study allowed us to adjust for potential confounders and examine potential risk factors by NHL subtype. With our large sample size, we had 80% power to detect an OR of ≥1.5 for the lowest frequency exposure (5%).

In conclusion, we found no evidence that occupational exposure to solvents was associated with NHL. Examination of other potential risk factors including viral, chemical, lifestyle, and occupational exposures is needed to increase our understanding of the etiology of NHL.

No potential conflicts of interest were disclosed.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Mustafa Dosemeci for contributing the job exposure matrices used for these analyses.

1
American Cancer Society facts and figures 2009
.
Atlanta (GA)
:
American Cancer Society
; 
2009
.
2
Hartge
P
,
Wang
SS
,
Bracci
PM
,
Devesa
SS
,
Holly
EA
. In:
Schottenfeld
D
,
Fraumeni
JF
, editors.
Cancer epidemiology and prevention
. 3rd ed
New York
:
Oxford University Press
; 
2006
, p.
898
918
.
3
Fisher
SG
,
Fisher
RI
. 
The epidemiology of non-Hodgkin's lymphoma
.
Oncogene
2004
;
23
:
6524
34
.
4
Clarke
CA
,
Glaser
SL
. 
Changing incidence of non-Hodgkin lymphomas in the United States
.
Cancer
2002
;
94
:
2015
23
.
5
Devesa
SS
,
Fears
T
. 
Non-Hodgkin's lymphoma time trends: United States and international data
.
Cancer Res
1992
;
52
:
5432
40s
.
6
Hartge
P
,
Devesa
SS
. 
Quantification of the impact of known risk factors on time trends in non-Hodgkin's lymphoma incidence
.
Cancer Res
1992
;
52
:
5566s
9
.
7
Baris
D
,
Zahm
SH
. 
Epidemiology of lymphomas
.
Curr Opin Oncol
2000
;
12
:
383
94
.
8
Alexander
DD
,
Mink
PJ
,
Adami
HO
, et al
. 
The non-Hodgkin lymphomas: a review of the epidemiologic literature
.
Int J Cancer
2007
;
120 Suppl 12
:
1
39
.
9
Blair
A
,
Linos
A
,
Stewart
PA
, et al
. 
Evaluation of risks for non-Hodgkin's lymphoma by occupation and industry exposures from a case-control study
.
Am J Ind Med
1993
;
23
:
301
12
.
10
Olsson
H
,
Brandt
L
. 
Risk of non-Hodgkin's lymphoma among men occupationally exposed to organic solvents
.
Scand J Work Environ Health
1988
;
14
:
246
51
.
11
Rego
MA
. 
Non-Hodgkin's lymphoma risk derived from exposure to organic solvents: a review of epidemiologic studies
.
Cad Saude Publica
1998
;
14 Suppl 3
:
41
66
.
12
Rego
MA
,
Sousa
CS
,
Kato
M
,
de Carvalho
AB
,
Loomis
D
,
Carvalho
FM
. 
Non-Hodgkin's lymphomas and organic solvents
.
J Occup Environ Med
2002
;
44
:
874
81
.
13
Olsson
H
,
Brandt
L
. 
Supradiaphragmatic presentation of non-Hodgkin's lymphoma in men occupationally exposed to organic solvents
.
Acta Med Scand
1981
;
210
:
415
8
.
14
Wang
R
,
Zhang
Y
,
Lan
Q
, et al
. 
Occupational exposure to solvents and risk of non-Hodgkin lymphoma in Connecticut women
.
Am J Epidemiol
2009
;
169
:
176
85
.
15
Lamm
SH
,
Engel
A
,
Byrd
DM
. 
Non-Hodgkin lymphoma and benzene exposure: a systematic literature review
.
Chem Biol Interact
2005
;
153–154
:
231
7
.
16
Smith
MT
,
Jones
RM
,
Smith
AH
. 
Benzene exposure and risk of non-Hodgkin lymphoma
.
Cancer Epidemiol Biomarkers Prev
2007
;
16
:
385
91
.
17
Blair
A
,
Zahm
SH
. 
Agricultural exposures and cancer
.
Environ Health Perspect
1995
;
103 Suppl 8
:
205
8
.
18
Boffetta
P
,
de Vocht
F
. 
Occupation and the risk of non-Hodgkin lymphoma
.
Cancer Epidemiol Biomarkers Prev
2007
;
16
:
369
72
.
19
Dich
J
,
Zahm
SH
,
Hanberg
A
,
Adami
HO
. 
Pesticides and cancer
.
Cancer Causes Control
1997
;
8
:
420
43
.
20
Zahm
SH
. 
Mortality study of pesticide applicators and other employees of a lawn care service company
.
J Occup Environ Med
1997
;
39
:
1055
67
.
21
Holly
EA
,
Lele
C
. 
Non-Hodgkin's lymphoma in HIV-positive and HIV-negative homosexual men in the San Francisco Bay Area: allergies, prior medication use, and sexual practices
.
J Acquir Immune Defic Syndr Hum Retrovirol
1997
;
15
:
211
22
.
22
Holly
EA
,
Lele
C
,
Bracci
PM
,
McGrath
MS
. 
Case-control study of non-Hodgkin's lymphoma among women and heterosexual men in the San Francisco Bay Area, California
.
Am J Epidemiol
1999
;
150
:
375
89
.
23
Holly
EA
,
Bracci
PM
. 
Population-based study of non-Hodgkin lymphoma, histology, and medical history among human immunodeficiency virus-negative participants in San Francisco
.
Am J Epidemiol
2003
;
158
:
316
27
.
24
Holly
EA
,
Gautam
M
,
Bracci
PM
. 
Comparison of interviewed and non-interviewed non-Hodgkin's lymphoma (NHL) patients in the San Francisco Bay Area
.
Ann Epidemiol
2002
;
12
:
419
25
.
25
Holly
EA
,
Lele
C
,
Bracci
P
. 
Non-Hodgkin's lymphoma in homosexual men in the San Francisco Bay Area: occupational, chemical, and environmental exposures
.
J Acquir Immune Defic Syndr Hum Retrovirol
1997
;
15
:
223
31
.
26
Hamilton
SR
,
Aaltonen
LA
.
World Health Organization classification of tumours. Pathology and genetics of tumours of the digestive system
.
Lyon
:
IARC Press
; 
2000
.
27
Lele
C
,
Holly
EA
,
Roseman
DS
,
Thomas
DB
. 
Comparison of control subjects recruited by random digit dialing and area survey
.
Am J Epidemiol
1994
;
140
:
643
8
.
28
Hartge
P
,
Brinton
LA
,
Rosenthal
JF
,
Cahill
JI
,
Hoover
RN
,
Waksberg
J
. 
Random digit dialing in selecting a population-based control group
.
Am J Epidemiol
1984
;
120
:
825
33
.
29
U.S. Department of Commerce
.
Alphabetical index of industries and occupations
.
Washington (DC)
:
U.S. Government Printing Office
; 
1980
.
30
Dosemeci
M
,
Cocco
P
,
Gomez
M
,
Stewart
PA
,
Heineman
EF
. 
Effects of three features of a job-exposure matrix on risk estimates
.
Epidemiology
1994
;
5
:
124
7
.
31
Gomez
MR
,
Cocco
P
,
Dosemeci
M
,
Stewart
PA
. 
Occupational exposure to chlorinated aliphatic hydrocarbons: job exposure matrix
.
Am J Ind Med
1994
;
26
:
171
83
.
32
Blair
A
. 
Occupational exposures and non-Hodgkin lymphoma: where do we stand?
Occup Environ Med
2006
;
63
:
1
3
.
33
Steinmaus
C
,
Smith
AH
,
Jones
RM
,
Smith
MT
. 
Meta-analysis of benzene exposure and non-Hodgkin lymphoma: biases could mask an important association
.
Occup Environ Med
2008
;
65
:
371
8
.