Because taller men are at increased risk of developing testicular germ cell tumors (TGCT), it is conceivable that factors that influence adult height could be related to risk of TGCT. Because common genetic variation in genes of the insulin-like growth factor (IGF) pathway could influence somatic growth, 43 single nucleotide polymorphisms in four IGF genes (IGF-1, IGF-1R, IGF-2, and IGFALS) were genotyped in 577 case and 707 control participants from the U.S. Servicemen's Testicular Tumor Environmental and Endocrine Determinants Study to assess relationships with TGCT risk; additionally, associations between polymorphisms and adult height were examined. Relationships between polymorphisms and adult height were assessed using adjusted linear regression models, and associations between polymorphisms and TGCT risk were determined by adjusted logistic regression models estimating odds ratios. Although four IGF-1R polymorphisms (rs907806, rs3743258, rs229765, and rs9282714) were associated with height (Ptrend < 0.05), there were no relationships with any other polymorphism. Overall, there were no associations among polymorphisms or haplotypes in the IGF genes and TGCT risk, with odds ratios ranging from 0.55 to 1.50. Similarly, there was no association among the polymorphisms and risk of specific TGCT histologies (seminoma and nonseminoma). There was a suggestion, however, that adult height may modify the relationship between an IGF-1 haplotype and TGCT risk. These results suggest that, in aggregate, genetic variation in IGF loci is not associated with TGCT risk. (Cancer Epidemiol Biomarkers Prev 2008;17(3):721–6)

With the exception of cryptorchidism, family history, and prior diagnosis of testicular germ cell tumors (TGCT), other risk factors for TGCT are not well identified (1). Several studies, however, implicate increased adult stature as a risk factor (2-4), suggesting that determinants of stature may also be related to TGCT. One possible mechanism may be the insulin-like growth factor (IGF) pathway (5), which contributes to many regulatory processes, including somatic growth and cellular proliferation (6).

Critical components of the IGF pathway include two ligand proteins (IGF-1 and IGF-2), their receptors, binding proteins, and an acid labile subunit (IGFALS). IGF-1, a mitogen that initiates signaling cascades via binding to its receptor, IGF-1R (6), may also have antiapoptotic properties (7). Alterations in the structure of IGF-1R and IGFALS, which binds IGF-1 to IGF-binding protein-3, may affect availability of bioavailable IGF-1 concentrations. Although there are no studies on relationships with TGCT risk, IGF-1 concentrations have been positively associated with prostate, colon, and premenopausal breast cancer risk (8).

Associations between IGF-1 polymorphisms and serum concentrations are not as clear, as relationships have been observed in some (9, 10) but not all (11, 12) studies. There is evidence, however, that IGF polymorphisms are associated with both cancer (12, 13) and childhood height (14). No published studies have examined the relationship between these polymorphisms and TGCT risk. A case-control study was conducted to determine associations of polymorphisms in IGF-1, IGF-2, IGF-1R, and IGFALS and risk of TGCT; relationships between these polymorphisms and adult height were also explored.

Study Population

Study participants, enrolled from 2002 to 2005 in the U.S. Servicemen's Testicular Tumor Environmental and Endocrine Determinants Study, have been described previously in detail (2). Briefly, all men who had at least one serum sample stored in the Department of Defense Serum Repository, were ages ≤45 years, and were on active duty from 1988 to 2003 were eligible for the study. Cases included men who developed TGCT after serum sample donation, and diagnoses were limited to classic seminomas or nonseminomas. Eligible controls, men who did not develop TGCT, were pair matched to cases based on age (<1 year), ethnicity (White, Black, other), and date of serum sample donation (<30 days). Of the eligible cases (n = 853) and controls (n = 1,182), 767 (90%) cases and 928 (79%) controls agreed to participate and completed the study. The study was approved by the institutional review boards of the National Cancer Institute and the Walter Reed Army Institute for Research.

Through a computer-assisted telephone interview, each participant completed a questionnaire, eliciting information on demographic factors, including height and weight, and on known or suspected risk factors for TGCT. Buccal cell samples for DNA were also provided by 590 cases and 711 controls.

Single Nucleotide Polymorphism Selection and Genotyping

Forty-three single nucleotide polymorphisms (SNP) in four genes (IGF-1, IGF-2, IGF-1R, and IGFALS) in the IGF pathway were examined (Supplementary Table). SNPs were selected if they were reported previously as functionally relevant, had been identified as a haplotype-tagging SNP, had a minor allele frequency ≥0.05, and if there was a valid genotyping assay available at the National Cancer Institute Core Genotyping Facility. TaqMan assays (Applied Biosystems) were optimized on the ABI 7900 HT detection system and were 100% concordant with the sequence analysis of 102 individuals from the SNP500Cancer Web site (15). Success rates for genotyping ranged from 96% to 100%, and concordance for 99 quality-control samples was ≥96% for all SNPs, except IGF-1 rs5742714 (94%), IGF-2 rs2373721 (91%), IGF-1R rs2272037 (94%), and IGFALS rs3751893 (94%). Accuracy of these assays was confirmed by rechecking the quality-control data. All SNPs were found to be in Hardy-Weinberg equilibrium in White controls.

Statistical Analysis

Of the 577 cases and 707 controls that were successfully genotyped, 547 were matched case-control pairs. For all analyses, the most common genotype or haplotype was considered the reference group. Data analysis was conducted for all TGCT together and for each histologic type [seminoma (n = 254) and nonseminoma (n = 323)], separately.

General linear models were used to assess the relationship between IGF polymorphisms and height among controls. Using logistic regression and adjusting for age at reference date, ethnicity, and serum date, odds ratios (OR) and 95% confidence intervals (95% CI) were used to estimate log-additive associations between IGF polymorphisms and TGCT risk. Conditional logistic regression models for matched-pairs data were also conducted and yielded similar results; these data are not shown in the current article. Trends across genotype were evaluated by including the categorical genotype as an ordinal integer valued variable, specifying the number of minor alleles, in the regression model. Separate analyses were also conducted for seminomas and nonseminomas compared with controls. Associations stratified by height (in cm) at the median cut point (177.8 cm) for controls were also examined; tests of effect modification were determined by including a cross-product of height and genotype. All genotype analyses were conducted using SAS (SAS Institute).

For White men, haplotypes were constructed and relationships with TGCT risk were assessed. Haplotypes among men of other ethnicities were not constructed due to small numbers. Haplotype block construction for IGF-1 was determined by the Gabriel method (16) in Haploview (Broad Institute, MIT). There was no strong linkage disequilibrium between SNPs in IGF-1R, IGF-2, and IGFALS; thus, haplotype blocks were not assessed for these genes. Haplotypes, within blocks for IGF-1 and overall for the others, were inferred by maximum likelihood using HaploStats (17) in R (University of Auckland), and adjusted ORs and 95% CIs were estimated. Only results for haplotypes with control frequencies greater than 5% are presented. All tests of significance were two sided.

Selected characteristics of cases and controls are presented in Table 1. Cases and controls had a mean age of 28 years. As anticipated, >85% of participants were White. Compared with controls, cases had a higher frequency of prior cryptorchidism and family history of testicular cancer. There were some differences between the ethnic groups in minor allele frequencies of the polymorphisms (Supplementary Table).

Table 1.

Characteristics of study participants, U.S. Servicemen's Testicular Tumor Environmental and Endocrine Determinants Study, 2002-2005

Controls (n = 707), n (%)All TGCT (n = 577), n (%)Seminomas (n = 254), n (%)Nonseminomas (n = 323), n (%)
Age (y)     
    <25 223 (31.5) 201 (34.8) 47 (15.8) 154 (47.7) 
    25-29 202 (28.6) 157 (27.2) 72 (28.4) 85 (26.3) 
    30-34 141 (19.9) 103 (17.9) 58 (22.8) 45 (13.9) 
    35-39 106 (15.0) 85 (14.7) 56 (22.1) 29 (9.0) 
    ≥40 35 (5.0) 31 (5.4) 21 (8.3) 10 (3.1) 
Race     
    White 608 (86.0) 508 (88.0) 211 (83.1) 297 (92.0) 
    Black 24 (3.4) 13 (2.3) 8 (3.2) 5 (1.6) 
    Other 75 (10.6) 56 (9.7) 35 (13.8) 21 (6.5) 
Height (cm)     
    ≤177.8 398 (56.3) 285 (49.4) 127 (50.0) 158 (48.9) 
    >177.8 309 (43.7) 292 (50.6) 127 (50.0) 165 (51.1) 
Cryptorchidism     
    No 692 (98.6) 544 (95.8) 245 (97.6) 299 (94.3) 
    Yes 10 (1.4) 24 (4.2) 6 (2.4) 18 (5.7) 
Family history of testicular cancer*     
    Absent 694 (98.2) 555 (96.2) 243 (95.7) 312 (96.6) 
    Present 13 (1.8) 22 (3.8) 11 (4.3) 11 (3.4) 
Controls (n = 707), n (%)All TGCT (n = 577), n (%)Seminomas (n = 254), n (%)Nonseminomas (n = 323), n (%)
Age (y)     
    <25 223 (31.5) 201 (34.8) 47 (15.8) 154 (47.7) 
    25-29 202 (28.6) 157 (27.2) 72 (28.4) 85 (26.3) 
    30-34 141 (19.9) 103 (17.9) 58 (22.8) 45 (13.9) 
    35-39 106 (15.0) 85 (14.7) 56 (22.1) 29 (9.0) 
    ≥40 35 (5.0) 31 (5.4) 21 (8.3) 10 (3.1) 
Race     
    White 608 (86.0) 508 (88.0) 211 (83.1) 297 (92.0) 
    Black 24 (3.4) 13 (2.3) 8 (3.2) 5 (1.6) 
    Other 75 (10.6) 56 (9.7) 35 (13.8) 21 (6.5) 
Height (cm)     
    ≤177.8 398 (56.3) 285 (49.4) 127 (50.0) 158 (48.9) 
    >177.8 309 (43.7) 292 (50.6) 127 (50.0) 165 (51.1) 
Cryptorchidism     
    No 692 (98.6) 544 (95.8) 245 (97.6) 299 (94.3) 
    Yes 10 (1.4) 24 (4.2) 6 (2.4) 18 (5.7) 
Family history of testicular cancer*     
    Absent 694 (98.2) 555 (96.2) 243 (95.7) 312 (96.6) 
    Present 13 (1.8) 22 (3.8) 11 (4.3) 11 (3.4) 
*

Among first- and second-degree relatives.

When examining relationships between IGF polymorphisms and height, there were significant trends in height associated with increasing number of minor alleles for four IGF-1R polymorphisms. For IVS2-89673 (rs907806), height increased with number of minor alleles (Ptrend = 0.03); mean height (cm) was 174.0, 177.5, and 178.6 cm for the AA, AG, and GG genotypes, respectively. Similar significant trends were seen for the A allele of IVS5+289 (rs3743258). For 3,019 bp 3′ of STP (rs9282714), the inverse effect was observed (Ptrend = 0.01); mean height (cm) was 180.2, 178.7, and 177.8 cm for the TT, T-, and - - genotypes, respectively. Similar but weaker associations were seen for an increasing number of A alleles in Ex16-58 (rs229765).

Overall, no associations were observed between IGF-1 polymorphisms and TGCT risk (Table 2). Similarly, there were no associations when stratified by ethnicity or height. When separating histologic types (seminoma versus nonseminoma), however, there was a suggestion that three intronic SNPs in IGF-1 might be associated with nonseminoma risk only. For IVS3-5895 (rs978458), there was a suggestion that the A allele was associated with a reduced nonseminoma risk (OR, 0.84; 95% CI, 0.63-1.11 for the GA genotype and OR, 0.60; 95% CI, 0.35-1.05 for the AA genotype; Ptrend = 0.05). There was no relationship with seminomas. Similar associations were observed for the IVS2-10010 (rs5742667) and IVS2-13577 (rs2373721) polymorphisms, which were in strong linkage disequilibrium with rs978458.

Table 2.

IGF-1 polymorphisms and risk of TGCT, overall and by histology

SNPGenotypeControlAll TGCT
Seminoma
Nonseminoma
CaseOR* (95% CI)CaseOR* (95% CI)CaseOR* (95% CI)
Ex4+37716A>G AA 508 415 1.00 (reference) 185 1.00 (reference) 230 1.00 (reference) 
rs1996656 AG 176 147 1.01 (0.78-1.30) 63 0.98 (0.70-1.37) 84 1.01 (0.74-1.37) 
 GG 12 11 1.12 (0.49-2.57) 1.04 (0.36-3.07) 1.11 (0.40-3.06) 
    Ptrend = 0.88  Ptrend = 0.94  Ptrend = 0.90 
39,171 bp 3′ of STP A>G GG 176 148 1.00 (reference) 67 1.00 (reference) 81 1.00 (reference) 
rs4764695 GA 340 271 0.96 (0.73-1.26) 115 0.88 (0.62-1.26) 156 1.04 (0.75-1.45) 
 AA 181 145 0.98 (0.72-1.34) 68 1.00 (0.67-1.51) 77 1.03 (0.70-1.51) 
    Ptrend = 0.92  Ptrend = 0.98  Ptrend = 0.88 
37,582 bp 3′ of STP G>C CC 382 302 1.00 (reference) 138 1.00 (reference) 164 1.00 (reference) 
rs4764876 CG 264 213 1.04 (0.82-1.31) 88 0.95 (0.69-1.30) 125 1.13 (0.85-1.51) 
 GG 53 57 1.43 (0.95-2.16) 27 1.41 (0.84-2.36) 30 1.61 (0.97-2.65) 
    Ptrend = 0.17  Ptrend = 0.46  Ptrend = 0.08 
Ex4+1864A>G GG 322 261 1.00 (reference) 108 1.00 (reference) 153 1.00 (reference) 
rs2946834 GA 296 241 1.02 (0.80-1.29) 110 1.15 (0.84-1.58) 131 0.94 (0.71-1.26) 
 AA 80 71 1.15 (0.80-1.65) 33 1.21 (0.75-1.95) 38 1.14 (0.73-1.78) 
    Ptrend = 0.53  Ptrend = 0.33  Ptrend = 0.81 
Ex4-177C>G GG 565 449 1.00 (reference) 193 1.00 (reference) 256 1.00 (reference) 
rs5742714 GC 109 98 1.13 (0.83-1.52) 46 1.24 (0.84-1.83) 52 1.06 (0.73-1.53) 
 CC — — — 
Ex4+1830G>A AA 355 294 1.00 (reference) 120 1.00 (reference) 174 1.00 (reference) 
rs6220 AG 273 232 1.04 (0.82-1.31) 109 1.17 (0.86-1.60) 123 0.94 (0.70-1.25) 
 GG 71 46 0.80 (0.54-1.21) 23 0.96 (0.57-1.62) 23 0.69 (0.41-1.16) 
    Ptrend = 0.56  Ptrend = 0.69  Ptrend = 0.22 
IVS3-178G>C GG 452 378 1.00 (reference) 157 1.00 (reference) 221 1.00 (reference) 
rs1520220 GC 209 169 0.98 (0.77-1.25) 83 1.17 (0.85-1.61) 86 0.86 (0.63-1.16) 
 CC 37 21 0.72 (0.41-1.26) 10 0.73 (0.35-1.55) 11 0.66 (0.33-1.36) 
    Ptrend = 0.41  Ptrend = 0.87  Ptrend = 0.16 
IVS3-447C>A CC 478 398 1.00 (reference) 167 1.00 (reference) 231 1.00 (reference) 
rs1549593 CA 198 160 0.98 (0.76-1.25) 78 1.09 (0.79-1.50) 82 0.88 (0.65-1.20) 
 AA 23 15 0.76 (0.39-1.48) 0.88 (0.37-2.12) 0.67 (0.29-1.54) 
    Ptrend = 0.55  Ptrend = 0.80  Ptrend = 0.25 
IVS3-5895A>G GG 372 321 1.00 (reference) 130 1.00 (reference) 191 1.00 (reference) 
rs978458 GA 267 214 0.94 (0.74-1.19) 103 1.09 (0.80-1.48) 111 0.84 (0.63-1.11) 
 AA 64 39 0.73 (0.47-1.12) 20 0.88 (0.51-1.54) 19 0.60 (0.35-1.05) 
    Ptrend = 0.19  Ptrend = 0.99  Ptrend = 0.05 
IVS3+6982G>A AA 343 292 1.00 (reference) 118 1.00 (reference) 174 1.00 (reference) 
rs4764883 AG 276 228 0.99 (0.78-1.25) 106 1.11 (0.81-1.52) 122 0.89 (0.67-1.19) 
 GG 76 48 0.78 (0.52-1.17) 24 0.91 (0.53-1.54) 24 0.68 (0.41-1.13) 
    Ptrend = 0.36  Ptrend = 0.84  Ptrend = 0.13 
IVS2-2290C>T CC 481 396 1.00 (reference) 172 1.00 (reference) 224 1.00 (reference) 
rs5742671 CT 192 159 1.00 (0.78-1.28) 73 1.04 (0.75-1.44) 86 0.96 (0.71-1.31) 
 TT 26 17 0.77 (0.41-1.44) 0.90 (0.40-2.06) 0.68 (0.31-1.48) 
    Ptrend = 0.62  Ptrend = 0.98  Ptrend = 0.45 
IVS2-10010C>T CC 368 321 1.00 (reference) 129 1.00 (reference) 192 1.00 (reference) 
rs5742667 CT 270 211 0.91 (0.72-1.15) 101 1.05 (0.77-1.43) 110 0.81 (0.61-1.08) 
 TT 62 40 0.76 (0.50-1.17) 20 0.91 (0.52-1.58) 20 0.64 (0.37-1.10) 
    Ptrend = 0.18  Ptrend = 0.95  Ptrend = 0.05 
IVS2-10082C>G GG 549 431 1.00 (reference) 190 1.00 (reference) 241 1.00 (reference) 
rs5742665 GC 144 133 1.17 (0.89-1.53) 60 1.21 (0.85-1.71) 73 1.18 (0.85-1.64) 
 CC 10 12 1.50 (0.64-3.51) — 2.07 (0.79-5.46) 
    Ptrend = 0.16    Ptrend = 0.12 
IVS2-13577G>C GG 386 331 1.00 (reference) 138 1.00 (reference) 193 1.00 (reference) 
rs2373721 GC 252 190 0.88 (0.69-1.12) 95 1.05 (0.77-1.43) 95 0.74 (0.55-1.00) 
 CC 47 31 0.77 (0.48-1.24) 16 0.93 (0.51-1.72) 15 0.61 (0.33-1.13) 
    Ptrend = 0.16  Ptrend = 0.98  Ptrend = 0.02 
IVS2-16540A>G GG 400 341 1.00 (reference) 140 1.00 (reference) 201 1.00 (reference) 
rs2288378 GA 256 198 0.91 (0.72-1.15) 96 1.06 (0.78-1.44) 102 0.78 (0.58-1.05) 
 AA 46 34 0.86 (0.54-1.37) 17 1.05 (0.58-1.92) 17 0.68 (0.38-1.23) 
    Ptrend = 0.35  Ptrend = 0.74  Ptrend = 0.06 
IVS2-26989A>G GG 601 504 1.00 (reference) 219 1.00 (reference) 285 1.00 (reference) 
rs2373722 GA 93 61 0.78 (0.55-1.10) 31 0.92 (0.59-1.43) 30 0.63 (0.40-0.98) 
 AA — — — 
IVS2+25185G>A AA 373 313 1.00 (reference) 130 1.00 (reference) 183 1.00 (reference) 
rs10735380 AG 268 212 0.94 (0.74-1.19) 100 1.05 (0.77-1.43) 112 0.83 (0.62-1.11) 
 GG 51 40 0.92 (0.59-1.43) 20 1.13 (0.64-1.98) 20 0.75 (0.43-1.31) 
    Ptrend = 0.56  Ptrend = 0.64  Ptrend = 0.15 
IVS2+12719C>G GG 395 332 1.00 (reference) 140 1.00 (reference) 192 1.00 (reference) 
rs2195239 GC 252 209 1.00 (0.79-1.27) 95 1.05 (0.77-1.43) 114 1.00 (0.75-1.33) 
 CC 50 32 0.50-1.28 17 0.92 (0.51-1.68) 15 0.71 (0.38-1.32) 
    Ptrend = 0.56  Ptrend = 0.99  Ptrend = 0.48 
IVS2+12158A>G AA 367 300 1.00 (reference) 129 1.00 (reference) 171 1.00 (reference) 
rs5742629 AG 273 229 0.83-1.32 99 1.03 (0.75-1.40) 130 1.07 (0.80-1.42) 
 GG 58 42 0.60-1.42 22 1.05 (0.61-1.80) 20 0.84 (0.48-1.46) 
    Ptrend = 0.97  Ptrend = 0.83  Ptrend = 0.90 
IVS2+4996G>T GG 526 434 1.00 (reference) 191 1.00 (reference) 243 1.00 (reference) 
rs1019731 GT 167 133 0.74-1.24 59 0.97 (0.68-1.37) 74 0.92 (0.67-1.27) 
 TT 12 0.32-1.96 — 0.77 (0.26-2.26) 
    Ptrend = 0.60    Ptrend = 0.52 
IVS2+1754G>A GG 417 344 1.00 (reference) 151 1.00 (reference) 193 1.00 (reference) 
rs12821878 GA 238 187 0.73-1.19 85 0.97 (0.71-1.33) 102 0.88 (0.65-1.18) 
 AA 39 37 0.70-1.81 12 0.83 (0.42-1.65) 25 1.28 (0.74-2.20) 
    Ptrend = 0.97  Ptrend = 0.65  Ptrend = 0.96 
IVS1-1682A>G AA 492 408 1.00 (reference) 170 1.00 (reference) 238 1.00 (reference) 
rs2162679 AG 188 149 0.75-1.26 73 1.12 (0.81-1.56) 76 0.90 (0.66-1.24) 
 GG 23 16 0.47-1.83 1.17 (0.51-2.71) 0.80 (0.32-2.05) 
    Ptrend = 0.81  Ptrend = 0.48  Ptrend = 0.45 
-1409A>G GG 483 407 1.00 (reference) 167 1.00 (reference) 240 1.00 (reference) 
rs35767 GA 192 151 0.74-1.24 77 1.17 (0.85-1.62) 74 0.82 (0.60-1.13) 
 AA 21 16 0.51-2.04 1.39 (0.60-3.24) 0.86 (0.34-2.20) 
    Ptrend = 0.82  Ptrend = 0.26  Ptrend = 0.26 
-17526T>C TT 619 508 1.00 (reference) 221 1.00 (reference) 287 1 (reference) 
rs7965399 TC 62 54 0.76-1.69 26 1.17 (0.70-1.95) 28 1.22 (0.73-2.02) 
 CC — — — 
SNPGenotypeControlAll TGCT
Seminoma
Nonseminoma
CaseOR* (95% CI)CaseOR* (95% CI)CaseOR* (95% CI)
Ex4+37716A>G AA 508 415 1.00 (reference) 185 1.00 (reference) 230 1.00 (reference) 
rs1996656 AG 176 147 1.01 (0.78-1.30) 63 0.98 (0.70-1.37) 84 1.01 (0.74-1.37) 
 GG 12 11 1.12 (0.49-2.57) 1.04 (0.36-3.07) 1.11 (0.40-3.06) 
    Ptrend = 0.88  Ptrend = 0.94  Ptrend = 0.90 
39,171 bp 3′ of STP A>G GG 176 148 1.00 (reference) 67 1.00 (reference) 81 1.00 (reference) 
rs4764695 GA 340 271 0.96 (0.73-1.26) 115 0.88 (0.62-1.26) 156 1.04 (0.75-1.45) 
 AA 181 145 0.98 (0.72-1.34) 68 1.00 (0.67-1.51) 77 1.03 (0.70-1.51) 
    Ptrend = 0.92  Ptrend = 0.98  Ptrend = 0.88 
37,582 bp 3′ of STP G>C CC 382 302 1.00 (reference) 138 1.00 (reference) 164 1.00 (reference) 
rs4764876 CG 264 213 1.04 (0.82-1.31) 88 0.95 (0.69-1.30) 125 1.13 (0.85-1.51) 
 GG 53 57 1.43 (0.95-2.16) 27 1.41 (0.84-2.36) 30 1.61 (0.97-2.65) 
    Ptrend = 0.17  Ptrend = 0.46  Ptrend = 0.08 
Ex4+1864A>G GG 322 261 1.00 (reference) 108 1.00 (reference) 153 1.00 (reference) 
rs2946834 GA 296 241 1.02 (0.80-1.29) 110 1.15 (0.84-1.58) 131 0.94 (0.71-1.26) 
 AA 80 71 1.15 (0.80-1.65) 33 1.21 (0.75-1.95) 38 1.14 (0.73-1.78) 
    Ptrend = 0.53  Ptrend = 0.33  Ptrend = 0.81 
Ex4-177C>G GG 565 449 1.00 (reference) 193 1.00 (reference) 256 1.00 (reference) 
rs5742714 GC 109 98 1.13 (0.83-1.52) 46 1.24 (0.84-1.83) 52 1.06 (0.73-1.53) 
 CC — — — 
Ex4+1830G>A AA 355 294 1.00 (reference) 120 1.00 (reference) 174 1.00 (reference) 
rs6220 AG 273 232 1.04 (0.82-1.31) 109 1.17 (0.86-1.60) 123 0.94 (0.70-1.25) 
 GG 71 46 0.80 (0.54-1.21) 23 0.96 (0.57-1.62) 23 0.69 (0.41-1.16) 
    Ptrend = 0.56  Ptrend = 0.69  Ptrend = 0.22 
IVS3-178G>C GG 452 378 1.00 (reference) 157 1.00 (reference) 221 1.00 (reference) 
rs1520220 GC 209 169 0.98 (0.77-1.25) 83 1.17 (0.85-1.61) 86 0.86 (0.63-1.16) 
 CC 37 21 0.72 (0.41-1.26) 10 0.73 (0.35-1.55) 11 0.66 (0.33-1.36) 
    Ptrend = 0.41  Ptrend = 0.87  Ptrend = 0.16 
IVS3-447C>A CC 478 398 1.00 (reference) 167 1.00 (reference) 231 1.00 (reference) 
rs1549593 CA 198 160 0.98 (0.76-1.25) 78 1.09 (0.79-1.50) 82 0.88 (0.65-1.20) 
 AA 23 15 0.76 (0.39-1.48) 0.88 (0.37-2.12) 0.67 (0.29-1.54) 
    Ptrend = 0.55  Ptrend = 0.80  Ptrend = 0.25 
IVS3-5895A>G GG 372 321 1.00 (reference) 130 1.00 (reference) 191 1.00 (reference) 
rs978458 GA 267 214 0.94 (0.74-1.19) 103 1.09 (0.80-1.48) 111 0.84 (0.63-1.11) 
 AA 64 39 0.73 (0.47-1.12) 20 0.88 (0.51-1.54) 19 0.60 (0.35-1.05) 
    Ptrend = 0.19  Ptrend = 0.99  Ptrend = 0.05 
IVS3+6982G>A AA 343 292 1.00 (reference) 118 1.00 (reference) 174 1.00 (reference) 
rs4764883 AG 276 228 0.99 (0.78-1.25) 106 1.11 (0.81-1.52) 122 0.89 (0.67-1.19) 
 GG 76 48 0.78 (0.52-1.17) 24 0.91 (0.53-1.54) 24 0.68 (0.41-1.13) 
    Ptrend = 0.36  Ptrend = 0.84  Ptrend = 0.13 
IVS2-2290C>T CC 481 396 1.00 (reference) 172 1.00 (reference) 224 1.00 (reference) 
rs5742671 CT 192 159 1.00 (0.78-1.28) 73 1.04 (0.75-1.44) 86 0.96 (0.71-1.31) 
 TT 26 17 0.77 (0.41-1.44) 0.90 (0.40-2.06) 0.68 (0.31-1.48) 
    Ptrend = 0.62  Ptrend = 0.98  Ptrend = 0.45 
IVS2-10010C>T CC 368 321 1.00 (reference) 129 1.00 (reference) 192 1.00 (reference) 
rs5742667 CT 270 211 0.91 (0.72-1.15) 101 1.05 (0.77-1.43) 110 0.81 (0.61-1.08) 
 TT 62 40 0.76 (0.50-1.17) 20 0.91 (0.52-1.58) 20 0.64 (0.37-1.10) 
    Ptrend = 0.18  Ptrend = 0.95  Ptrend = 0.05 
IVS2-10082C>G GG 549 431 1.00 (reference) 190 1.00 (reference) 241 1.00 (reference) 
rs5742665 GC 144 133 1.17 (0.89-1.53) 60 1.21 (0.85-1.71) 73 1.18 (0.85-1.64) 
 CC 10 12 1.50 (0.64-3.51) — 2.07 (0.79-5.46) 
    Ptrend = 0.16    Ptrend = 0.12 
IVS2-13577G>C GG 386 331 1.00 (reference) 138 1.00 (reference) 193 1.00 (reference) 
rs2373721 GC 252 190 0.88 (0.69-1.12) 95 1.05 (0.77-1.43) 95 0.74 (0.55-1.00) 
 CC 47 31 0.77 (0.48-1.24) 16 0.93 (0.51-1.72) 15 0.61 (0.33-1.13) 
    Ptrend = 0.16  Ptrend = 0.98  Ptrend = 0.02 
IVS2-16540A>G GG 400 341 1.00 (reference) 140 1.00 (reference) 201 1.00 (reference) 
rs2288378 GA 256 198 0.91 (0.72-1.15) 96 1.06 (0.78-1.44) 102 0.78 (0.58-1.05) 
 AA 46 34 0.86 (0.54-1.37) 17 1.05 (0.58-1.92) 17 0.68 (0.38-1.23) 
    Ptrend = 0.35  Ptrend = 0.74  Ptrend = 0.06 
IVS2-26989A>G GG 601 504 1.00 (reference) 219 1.00 (reference) 285 1.00 (reference) 
rs2373722 GA 93 61 0.78 (0.55-1.10) 31 0.92 (0.59-1.43) 30 0.63 (0.40-0.98) 
 AA — — — 
IVS2+25185G>A AA 373 313 1.00 (reference) 130 1.00 (reference) 183 1.00 (reference) 
rs10735380 AG 268 212 0.94 (0.74-1.19) 100 1.05 (0.77-1.43) 112 0.83 (0.62-1.11) 
 GG 51 40 0.92 (0.59-1.43) 20 1.13 (0.64-1.98) 20 0.75 (0.43-1.31) 
    Ptrend = 0.56  Ptrend = 0.64  Ptrend = 0.15 
IVS2+12719C>G GG 395 332 1.00 (reference) 140 1.00 (reference) 192 1.00 (reference) 
rs2195239 GC 252 209 1.00 (0.79-1.27) 95 1.05 (0.77-1.43) 114 1.00 (0.75-1.33) 
 CC 50 32 0.50-1.28 17 0.92 (0.51-1.68) 15 0.71 (0.38-1.32) 
    Ptrend = 0.56  Ptrend = 0.99  Ptrend = 0.48 
IVS2+12158A>G AA 367 300 1.00 (reference) 129 1.00 (reference) 171 1.00 (reference) 
rs5742629 AG 273 229 0.83-1.32 99 1.03 (0.75-1.40) 130 1.07 (0.80-1.42) 
 GG 58 42 0.60-1.42 22 1.05 (0.61-1.80) 20 0.84 (0.48-1.46) 
    Ptrend = 0.97  Ptrend = 0.83  Ptrend = 0.90 
IVS2+4996G>T GG 526 434 1.00 (reference) 191 1.00 (reference) 243 1.00 (reference) 
rs1019731 GT 167 133 0.74-1.24 59 0.97 (0.68-1.37) 74 0.92 (0.67-1.27) 
 TT 12 0.32-1.96 — 0.77 (0.26-2.26) 
    Ptrend = 0.60    Ptrend = 0.52 
IVS2+1754G>A GG 417 344 1.00 (reference) 151 1.00 (reference) 193 1.00 (reference) 
rs12821878 GA 238 187 0.73-1.19 85 0.97 (0.71-1.33) 102 0.88 (0.65-1.18) 
 AA 39 37 0.70-1.81 12 0.83 (0.42-1.65) 25 1.28 (0.74-2.20) 
    Ptrend = 0.97  Ptrend = 0.65  Ptrend = 0.96 
IVS1-1682A>G AA 492 408 1.00 (reference) 170 1.00 (reference) 238 1.00 (reference) 
rs2162679 AG 188 149 0.75-1.26 73 1.12 (0.81-1.56) 76 0.90 (0.66-1.24) 
 GG 23 16 0.47-1.83 1.17 (0.51-2.71) 0.80 (0.32-2.05) 
    Ptrend = 0.81  Ptrend = 0.48  Ptrend = 0.45 
-1409A>G GG 483 407 1.00 (reference) 167 1.00 (reference) 240 1.00 (reference) 
rs35767 GA 192 151 0.74-1.24 77 1.17 (0.85-1.62) 74 0.82 (0.60-1.13) 
 AA 21 16 0.51-2.04 1.39 (0.60-3.24) 0.86 (0.34-2.20) 
    Ptrend = 0.82  Ptrend = 0.26  Ptrend = 0.26 
-17526T>C TT 619 508 1.00 (reference) 221 1.00 (reference) 287 1 (reference) 
rs7965399 TC 62 54 0.76-1.69 26 1.17 (0.70-1.95) 28 1.22 (0.73-2.02) 
 CC — — — 
*

Adjusted for age, ethnicity, and serum date.

For the IGF-1 polymorphisms, five regions of strong linkage disequilibrium were identified: block A (size, 6 kb), block B (size, 6 kb), block C (size, 47 kb), block D (size, 10 kb), and block E (size, 4 kb). Overall, there were no associations between the inferred haplotypes for each block and TGCT risk in White men (Table 3). However, when stratified by height, there was a suggestion of differences in TGCT risk associated with a haplotype in block C. For shorter men (≤177.8 cm), there was a 50% increase in risk (95% CI, 1.06-2.12) associated with the CGACCCGGGA haplotype compared with the most common haplotype (CGACCGGGGA). For taller men (>177.8 cm), these associations were not present; tests for effect modification, however, yielded no statistically significant differences.

Table 3.

Association between IGF-1 haplotypes and TGCT among White men, overall and stratified by height (in cm)

All TGCT
Height ≤177.8 cm
Height >177.8 cm
Case (%)Control (%)OR* (95% CI)Case (%)Control (%)OR* (95% CI)Case (%)Control (%)OR* (95% CI)
Block A (Ex4+37716A>G, 39,171 bp 3′ of STP A>G, 37,582 bp 3′ of STP G>C)          
AGC 35.6 35.9 1.00 (reference) 33.8 35.4 1.00 (reference) 37.2 36.6 1.00 (reference) 
AAC 21.7 24.9 0.88 (0.70-1.11) 21.3 24.3 0.91 (0.65-1.26) 22.1 25.5 0.84 (0.61-1.16) 
AAG 27.2 24.1 1.13 (0.92-1.39) 29.8 24.3 1.26 (0.94-1.69) 24.9 24.0 1.01 (0.75-1.37) 
GGC 14.8 14.3 1.04 (0.79-1.36) 14.9 15.0 1.02 (0.70-1.48) 14.8 13.5 1.06 (0.72-1.56) 
   Global P = 0.40   Global P = 0.27   Global P = 0.66 
Block B (Ex4-177C>G, Ex4+1830G>A, IVS3-178G>C)          
GAG 71.5 71.1 1.00 (reference) 72.0 71.3 1.00 (reference) 71.1 70.8 1.00 (reference) 
CGC 10.0 9.6 1.03 (0.78-1.37) 9.1 9.0 0.99 (0.66-1.49) 10.7 10.3 1.04 (0.69-1.55) 
GGC 7.8 8.8 0.88 (0.64-1.20) 7.8 9.2 0.87 (0.56-1.36) 7.8 8.3 0.94 (0.59-1.49) 
   Global P = 0.94   Global P = 0.95   Global P = 0.99 
Block C (IVS3-447C>A, IVS3-5895A>G, IVS3+6982G>A, IVS2-2290C>T, IVS2-10010C>T, IVS2-10082C>G, IVS2-13577G>C, IVS2-16540A>G, IVS2-26989A>G, IVS2+25185G>A)          
CGACCGGGGA 54.6 55.0 1.00 (reference) 52.5 55.6 1.00 (reference) 56.7 54.4 1.00 (reference) 
CAGCTGCAAG 6.0 7.2 0.84 (0.59-1.19) 5.9 7.5 0.84 (0.51-1.37) 6.2 6.8 0.86 (0.52-1.44) 
AAGTTGCAGG 17.0 17.7 0.97 (0.77-1.22) 15.7 16.5 1.05 (0.75-1.47) 17.6 19.1 0.88 (0.64-1.22) 
CGACCCGGGA 13.9 12.2 1.16 (0.89-1.50) 16.5 12.1 1.50 (1.06-2.12) 11.4 12.2 0.89 (0.60-1.32) 
   Global P = 0.50   Global P = 0.15   Global P = 0.89 
Block D (IVS2+12719C>G, IVS2+12158A>G, IVS2+4996G>T, IVS2+1754G>A)          
GAGG 48.8 50.0 1.00 (reference) 49.6 51.1 1.00 (reference) 48.8 49.4 1.00 (reference) 
GAGA 10.7 9.5 1.14 (0.86-1.52) 10.8 9.3 1.13 (0.76-1.68) 10.0 9.4 1.16 (0.77-1.75) 
CGGG 23.3 23.8 1.01 (0.82-1.25) 22.6 22.5 1.05 (0.78-1.41) 24.0 25.3 0.97 (0.73-1.31) 
GATA 13.0 13.4 0.99 (0.76-1.28) 12.3 14.0 0.87 (0.60-1.25) 13.7 12.5 1.12 (0.77-1.63) 
   Global P = 0.73   Global P = 0.58   Global P = 0.90 
Block E (IVS1-1682A>G, -1409A>G)          
AG 84.6 86.0 1.00 (reference) 84.7 85.2 1.00 (reference) 84.6 86.9 1.00 (reference) 
GA 14.3 13.3 1.09 (0.86-1.39) 14.0 13.9 1.03 (0.73-1.44) 14.5 12.6 1.19 (0.84-1.69) 
   Global P = 0.53   Global P = 0.84   Global P = 0.47 
All TGCT
Height ≤177.8 cm
Height >177.8 cm
Case (%)Control (%)OR* (95% CI)Case (%)Control (%)OR* (95% CI)Case (%)Control (%)OR* (95% CI)
Block A (Ex4+37716A>G, 39,171 bp 3′ of STP A>G, 37,582 bp 3′ of STP G>C)          
AGC 35.6 35.9 1.00 (reference) 33.8 35.4 1.00 (reference) 37.2 36.6 1.00 (reference) 
AAC 21.7 24.9 0.88 (0.70-1.11) 21.3 24.3 0.91 (0.65-1.26) 22.1 25.5 0.84 (0.61-1.16) 
AAG 27.2 24.1 1.13 (0.92-1.39) 29.8 24.3 1.26 (0.94-1.69) 24.9 24.0 1.01 (0.75-1.37) 
GGC 14.8 14.3 1.04 (0.79-1.36) 14.9 15.0 1.02 (0.70-1.48) 14.8 13.5 1.06 (0.72-1.56) 
   Global P = 0.40   Global P = 0.27   Global P = 0.66 
Block B (Ex4-177C>G, Ex4+1830G>A, IVS3-178G>C)          
GAG 71.5 71.1 1.00 (reference) 72.0 71.3 1.00 (reference) 71.1 70.8 1.00 (reference) 
CGC 10.0 9.6 1.03 (0.78-1.37) 9.1 9.0 0.99 (0.66-1.49) 10.7 10.3 1.04 (0.69-1.55) 
GGC 7.8 8.8 0.88 (0.64-1.20) 7.8 9.2 0.87 (0.56-1.36) 7.8 8.3 0.94 (0.59-1.49) 
   Global P = 0.94   Global P = 0.95   Global P = 0.99 
Block C (IVS3-447C>A, IVS3-5895A>G, IVS3+6982G>A, IVS2-2290C>T, IVS2-10010C>T, IVS2-10082C>G, IVS2-13577G>C, IVS2-16540A>G, IVS2-26989A>G, IVS2+25185G>A)          
CGACCGGGGA 54.6 55.0 1.00 (reference) 52.5 55.6 1.00 (reference) 56.7 54.4 1.00 (reference) 
CAGCTGCAAG 6.0 7.2 0.84 (0.59-1.19) 5.9 7.5 0.84 (0.51-1.37) 6.2 6.8 0.86 (0.52-1.44) 
AAGTTGCAGG 17.0 17.7 0.97 (0.77-1.22) 15.7 16.5 1.05 (0.75-1.47) 17.6 19.1 0.88 (0.64-1.22) 
CGACCCGGGA 13.9 12.2 1.16 (0.89-1.50) 16.5 12.1 1.50 (1.06-2.12) 11.4 12.2 0.89 (0.60-1.32) 
   Global P = 0.50   Global P = 0.15   Global P = 0.89 
Block D (IVS2+12719C>G, IVS2+12158A>G, IVS2+4996G>T, IVS2+1754G>A)          
GAGG 48.8 50.0 1.00 (reference) 49.6 51.1 1.00 (reference) 48.8 49.4 1.00 (reference) 
GAGA 10.7 9.5 1.14 (0.86-1.52) 10.8 9.3 1.13 (0.76-1.68) 10.0 9.4 1.16 (0.77-1.75) 
CGGG 23.3 23.8 1.01 (0.82-1.25) 22.6 22.5 1.05 (0.78-1.41) 24.0 25.3 0.97 (0.73-1.31) 
GATA 13.0 13.4 0.99 (0.76-1.28) 12.3 14.0 0.87 (0.60-1.25) 13.7 12.5 1.12 (0.77-1.63) 
   Global P = 0.73   Global P = 0.58   Global P = 0.90 
Block E (IVS1-1682A>G, -1409A>G)          
AG 84.6 86.0 1.00 (reference) 84.7 85.2 1.00 (reference) 84.6 86.9 1.00 (reference) 
GA 14.3 13.3 1.09 (0.86-1.39) 14.0 13.9 1.03 (0.73-1.44) 14.5 12.6 1.19 (0.84-1.69) 
   Global P = 0.53   Global P = 0.84   Global P = 0.47 
*

Adjusted for age and serum date.

No associations between SNPs or haplotypes in the IGF-1R, IGF-2, and IGFALS genes and TGCT risk were observed. There were also no associations when stratified by ethnicity, height, or histology.

In this study, no associations between IGF polymorphisms and TGCT risk were identified. Similarly, there were no relationships when cases were stratified by ethnicity, height, or histology. There was a suggestion of an interaction, as an IGF-1 block C haplotype was associated with an increased risk of TGCT among shorter, but not taller, White men. Polymorphisms or haplotypes in IGF-1R, IGF-2, and IGFALS were not associated with risk.

In 2004, Zavos et al. hypothesized that perturbations in the IGF pathway might be related to TGCT (5) in part based on reported associations between greater height and increased TGCT risk (2-4). Among men in the U.S. Servicemen's Testicular Tumor Environmental and Endocrine Determinants as reported previously (2), there was a significantly increased TGCT risk, particularly seminomas, associated with greater height (≥172.73 cm). Four IGF-1R polymorphisms were associated with height; however, they were not associated with TGCT risk.

Although this study found no association with IGF polymorphisms, it is possible that relationships between TGCT risk and serum IGF concentrations exist. For other cancers, evidence for relationships with IGF-1 and IGFALS polymorphisms (12, 13) has been inconsistent. In contrast, associations between IGF-1 concentrations and risk of premenopausal breast (8), prostate (8), and colorectal cancers (18) have been observed. Other evidence to support a role of IGFs in TGCT risk are observations that White men have significantly higher IGF-1 concentrations than men of other ethnicities (19), and White men have a higher TGCT incidence than men of other ethnicities (20). These differences, however, could also be explained by environmental differences between ethnic groups.

In addition to height, other possible risk factors for TGCT may be related to IGF concentrations, including perinatal factors. There is some evidence that smaller birth size, measured as small-for-gestational-age and lower birth weight, is associated with lower IGF-1 concentrations (21) and increased risk of TGCT (22). Thus, it might be anticipated that lower IGF-1 concentrations in early life would be correlated with increased TGCT risk in adulthood. However, the association of TGCT with both smaller birth size and increased adult stature suggests that the relationships between TGCT and body size at various ages are likely to be complex.

Other genetic factors that may underlie the association between height and increased TGCT risk include variation in the growth hormone (GH), vitamin D receptor (VDR), and cytochrome P450 19 (CYP19) genes. Vitamin D metabolites regulate cellular differentiation and proliferation and are associated with risk of breast, prostate, and colorectal cancers (23). Several polymorphisms in the VDR gene have been reported to be associated with height (24). Likewise, increased height has been associated with polymorphisms in CYP19, which produces aromatase, a catalyst to convert androgens to estrogens (25). Thus, the vitamin D or aromatase pathways may explain associations between height and risk of TGCT. Although circulating concentrations of androgens and estrogens may be related to TGCT risk, assessment of steroid hormones in prediagnostic TGCT samples have rarely been reported.

Strengths of the study include being one of the largest case-control investigations of testicular cancer etiology reported and being drawn from a well-defined population (military servicemen). Histologic data were available and all diagnoses were confirmed. However, despite the large sample size, there was limited power to assess associations with weak effects or rare variants and associations within strata of height and histology; indeed, the suggested finding of differences in IGF-1 haplotype associations by height may be due to chance. In addition, the small number of non-White participants precluded an examination of differences in risk by ethnicity.

In conclusion, the study results indicate there are no associations between IGF polymorphisms and TGCT risk; however, suggestions of differences in relationships between TGCT risk and IGF-1 haplotypes by height may warrant further investigation. Additional investigations examining associations with polymorphisms in other IGF genes or other genes shown to be associated with height or with circulating IGF-1 concentrations could be informative.

Grant support: Intramural Research Program of the NIH, National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: Supplementary data for this article are available at Cancer Epidemiology, Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

We thank Emily Steplowski (IMS) for contributions to data management.

1
McGlynn KA. Environmental and host factors in testicular germ cell tumors.
Cancer Invest
2001
;
19
:
842
–53.
2
McGlynn KA, Sakoda LC, Rubertone MV, et al. Body size, dairy consumption, puberty, and risk of testicular germ cell tumors.
Am J Epidemiol
2007
;
165
:
355
–63.
3
Rasmussen F, Gunnell D, Ekbom A, Hallqvist J, Tynelius P. Birth weight, adult height, and testicular cancer: cohort study of 337,249 Swedish young men.
Cancer Causes Control
2003
;
14
:
595
–8.
4
Richiardi L, Askling J, Granath F, Akre O. Body size at birth and adulthood and the risk for germ-cell testicular cancer.
Cancer Epidemiol Biomarkers Prev
2003
;
12
:
669
–73.
5
Zavos C, Andreadis C, Diamantopoulos N, Mouratidou D. A hypothesis on the role of insulin-like growth factor I in testicular germ cell tumours.
Med Hypotheses
2004
;
63
:
511
–4.
6
Lackey BR, Gray SL, Henricks DM. The insulin-like growth factor (IGF) system and gonadotropin regulation: actions and interactions.
Cytokine Growth Factor Rev
1999
;
10
:
201
–17.
7
Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product.
Endocrinology
1997
;
138
:
1355
–8.
8
Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis.
Lancet
2004
;
363
:
1346
–53.
9
Al-Zahrani A, Sandhu MS, Luben RN, et al. IGF1 and IGFBP3 tagging polymorphisms are associated with circulating levels of IGF1, IGFBP3 and risk of breast cancer.
Hum Mol Genet
2006
;
15
:
1
–10.
10
Johnston LB, Dahlgren J, Leger J, et al. Association between insulin-like growth factor I (IGF-I) polymorphisms, circulating IGF-I, and pre- and postnatal growth in two European small for gestational age populations.
J Clin Endocrinol Metab
2003
;
88
:
4805
–10.
11
Wong HL, Delellis K, Probst-Hensch N, et al. A new single nucleotide polymorphism in the insulin-like growth factor I regulatory region associates with colorectal cancer risk in Singapore Chinese.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
144
–51.
12
Canzian F, McKay JD, Cleveland RJ, et al. Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study.
Br J Cancer
2006
;
94
:
299
–307.
13
Cheng I, Stram DO, Penney KL, et al. Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort.
J Natl Cancer Inst
2006
;
98
:
123
–34.
14
Rogers I, Metcalfe C, Gunnell D, Emmett P, Dunger D, Holly J. Insulin-like growth factor-I and growth in height, leg length, and trunk length between ages 5 and 10 years.
J Clin Endocrinol Metab
2006
;
91
:
2514
–9.
15
Packer BR, Yeager M, Burdett L, et al. SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes.
Nucleic Acids Res
2006
;
34
:
D617
–21.
16
Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome.
Science
2002
;
296
:
2225
–9.
17
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous.
Am J Hum Genet
2002
;
70
:
425
–34.
18
Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence.
J Nutr
2001
;
131
:
3109
–20S.
19
Colangelo LA, Liu K, Gapstur SM. Insulin-like growth factor-1, insulin-like growth factor binding protein-3, and cardiovascular disease risk factors in young Black men and White men: the CARDIA Male Hormone Study.
Am J Epidemiol
2004
;
160
:
750
–7.
20
McGlynn KA, Devesa SS, Sigurdson AJ, Brown LM, Tsao L, Tarone RE. Trends in the incidence of testicular germ cell tumors in the United States.
Cancer
2003
;
97
:
63
–70.
21
Akman I, Arioglu P, Koroglu OA, et al. Maternal zinc and cord blood zinc, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 levels in small-for-gestational-age newborns.
Clin Exp Obstet Gynecol
2006
;
33
:
238
–40.
22
Richiardi L, Pettersson A, Akre O. Genetic and environmental risk factors for testicular cancer.
Int J Androl
2007
;
30
:
230
–40.
23
Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States).
Cancer Causes Control
2005
;
16
:
83
–95.
24
Remes T, Vaisanen SB, Mahonen A, et al. Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men.
Ann Med
2005
;
37
:
383
–92.
25
Remes T, Vaisanen SB, Mahonen A, et al. Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms.
Bone
2003
;
32
:
412
–20.