Insulin resistance and hyperinsulinemia have been hypothesized to increase the risk of prostate cancer (1-3). Insulin has mitogenic and antiapoptotic activity and may exert these properties directly on prostate epithelial cells (4). In addition, hyperinsulinemia may affect prostate cancer risk by increasing levels of free (bioactive) insulin-like growth factor-I (IGF-I) or testosterone (3). In previous investigations, prostate cancer risk was positively related to serum insulin levels (2) and also to the metabolic syndrome (5, 6).

Several genetic variants within the insulin signaling pathway have been associated with insulin resistance and hyperinsulinemia (7-10). Polymorphisms of the insulin (INS) and insulin receptor substrate-1 (IRS1) genes have also been associated with prostate cancer (11-13), but data are inconsistent. In addition, no studies have evaluated prostate cancer risk in relation to genetic variation of the insulin receptor (INSR)—a pivotal component of the insulin signaling pathway. We therefore examined the association of prostate cancer with common variants of the INS, INSR, IRS1, and IRS2 genes in a large cohort of Caucasian men.

Study Population

The study sample comprised 1,053 case/control pairs from the Alpha-Tocopherol, Beta-Carotene (ATBC) Cancer Prevention Study, a cohort of 29,133 men aged 50 to 69 years residing in southwestern Finland who smoked at least 5 cigarettes/day and gave informed consent (14, 15). The study was approved by the institutional review boards of the National Public Health Institute of Finland and the National Cancer Institute.

Cases were individuals with incident prostate cancer (International Classification of Diseases 9, code 185) diagnosed by April 30, 2003, and identified through the Finnish Cancer Registry, which provides almost 100% case coverage (16). DNA was successfully extracted from whole blood for 980 cases and 876 controls. For cases identified through April 1999, medical records were reviewed centrally by two oncologists for staging. Prostate cancer stage was available for 592 of the cases with successful DNA extraction; 408 cases (69%) were stages 0 to 2, and 184 cases (31%) were stages 3 and 4 (17). Controls were subjects alive at the time of case diagnosis and were matched to the cases on age (±5 years), treatment assignment, and date of baseline serum blood draw (±30 days).

Single Nucleotide Polymorphism Selection and Genotyping

Single nucleotide polymorphisms (SNP) were selected using the public databases dbSNP7

and SNP-5008 and via a literature search on INS, INSR, IRS1, and IRS2. Criteria for inclusion were a minor allele frequency >5% in Caucasian individuals and potential functionality, e.g., SNPs in exons, exon/intron boundaries, putative regulatory regions, or association with insulin resistance or related outcomes in previous studies (7). Polymorphic loci identified in this manner were verified in a panel of 102 individuals (SNP-500 population; ref. 18). This led to the selection of one SNP in INS, five SNPs in INSR, three SNPs in IRS1, and one SNP in IRS2 (Table 2). Following this initial selection, we examined INSR more comprehensively by resequencing every 5 to 10-kb region around a SNP across the INSR gene region. This resulted in the identification of an additional 34 SNPs with minor allele frequencies exceeding 5% in Caucasians. Using the approach developed by Clayton et al. (htSNP2 software9), we identified 11 haplotype-tagging SNPs in INSR (including the original five) which predicted the 39 common SNPs among the SNP-500 Caucasian population with high probability (RH2 = 0.90).

Genotyping was done at the Core Genotyping Facility of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, using TaqMan (Applied Biosystems).10

10

Protocols for each specific assay are available at http://snp500cancer.nci.nih.gov (18).

For validation purposes, TaqMan assays were initially applied to the 102 SNP-500 individuals (18) with sequence information; TaqMan results were 100% concordant. To assess quality control, duplicate masked specimens for 120 control samples were genotyped with 100% concordance. Departures from Hardy-Weinberg equilibrium were tested for each SNP using genotype distributions among the control participants.

Statistical Analysis

To assess the association of genotypes and haplotypes with prostate cancer risk, we used unconditional logistic regression, with the most common genotype/haplotype serving as reference. Tests of trend were calculated using ordinal values of 1, 2, and 3 assigned to genotypes in order of homozygous for common allele, heterozygous, and homozygous for the rare allele, respectively. Haplotype blocks were specified among controls according to the method of Gabriel et al. (19), and haplotype frequencies were estimated using the expectation-maximization (EM) algorithm (20). We found little phase ambiguity in the reconstruction of haplotypes. All analyses were adjusted for age and treatment assignment. We also conducted conditional logistic regression models but found no substantive differences from unconditional models. Separate analyses were conducted for advanced cancers (stages 3 and 4).

Cases were slightly older and more likely to have a positive family history of prostate cancer than controls but were similar with respect to body mass index (BMI), physical activity, and smoking history (Table 1).

Table 1.

Baseline characteristics of the study population

CharacteristicCases (N = 975)Controls (N = 871)P*
Age (y) 58.5 58.0 0.06 
Family history of prostate cancer (%) 56 (6.6) 24 (3.1) <0.01 
BMI (kg/m226.1 26.2 0.72 
Vigorous activity during leisure time (%) 193 (19.7) 202 (23.1) 0.07 
Smoking status    
    Years of smoking 36.3 36.6 0.67 
    Cigarettes per day 19.4 19.1 0.59 
α-Tocopherol grp (%) 449 (45.8) 399 (46.1) 0.93 
β-Carotene grp (%) 488 (50.1) 438 (50.3) 0.93 
History of diabetes (%) 30 (3.1) 21 (2.4) 0.38 
Histopathologic grade    
    1 140 (14.4)   
    2 295 (30.3)   
    3 135 (13.9)   
    4 0 (0)   
Tumor-node-metastasis stage (%)    
    0 47 (4.8)   
    1 138 (14.0)   
    2 225 (22.9)   
    3 79 (8.1)   
    4 104 (10.7)   
CharacteristicCases (N = 975)Controls (N = 871)P*
Age (y) 58.5 58.0 0.06 
Family history of prostate cancer (%) 56 (6.6) 24 (3.1) <0.01 
BMI (kg/m226.1 26.2 0.72 
Vigorous activity during leisure time (%) 193 (19.7) 202 (23.1) 0.07 
Smoking status    
    Years of smoking 36.3 36.6 0.67 
    Cigarettes per day 19.4 19.1 0.59 
α-Tocopherol grp (%) 449 (45.8) 399 (46.1) 0.93 
β-Carotene grp (%) 488 (50.1) 438 (50.3) 0.93 
History of diabetes (%) 30 (3.1) 21 (2.4) 0.38 
Histopathologic grade    
    1 140 (14.4)   
    2 295 (30.3)   
    3 135 (13.9)   
    4 0 (0)   
Tumor-node-metastasis stage (%)    
    0 47 (4.8)   
    1 138 (14.0)   
    2 225 (22.9)   
    3 79 (8.1)   
    4 104 (10.7)   
*

P values derived from the Wilcoxon signed-rank sum test unless otherwise indicated.

P derived from the χ2 test.

Due to missing data, numbers may not add to 100%.

All genotypes were distributed in accordance with the Hardy-Weinberg equilibrium except for INSR Ex3+131C>T (P = 0.02). We found no association for any of the genotypes of INS, INSR, IRS1, and IRS2 with risk of prostate cancer (Table 2). Haplotype analysis for the INSR and IRS1 genes did not yield statistically significant findings (data not shown). In analyses restricted to advanced cases (stages 3 and 4), we found that carriers of the C allele at the INSR IVS7-126C>T locus had a 34% reduced risk of prostate cancer [OR, 0.69; 95% confidence interval (95% CI) 0.50, 0.96; P = 0.03] compared with men homozygous for the T allele. In a secondary analysis, the reduction in advanced disease risk was primarily among men with a BMI > 25 kg/m2 (OR, 0.47; 95% CI, 0.31, 0.72; P = 0.0005).

Table 2.

Distribution of insulin-related genotypes and the OR of total prostate cancer

GenotypeCases, n (%)Controls, n (%)OR* (95% CI)
Insulin gene (INS)    
IVS1-6A>T; rs689    
    AA 588 (61.1) 525 (62.6) 1.0 (ref) 
    AT 325 (33.7) 278 (33.2) 1.04 (0.85-1.27) 
    TT 50 (5.2) 35 (4.2) 1.27 (0.81-1.99) 
    P for T carrier   0.50 
    Ptrend   0.35 
Insulin receptor gene (INSR)    
2,853 bp 3′ of STP G>T; rs1864193    
    GG 708 (73.6) 598 (71.5) 1.0 (ref) 
    GT 223 (23.2) 220 (26.3) 0.85 (0.69-1.06) 
    TT  31 (3.2)  18 (2.2) 1.45 (0.80-2.62) 
    P for T carrier   0.31 
    Ptrend   0.66 
Ex22-326A>G; rs1051690    
    GG 563 (59.2) 526 (62.7) 1.0 (ref) 
    AG 340 (35.8) 280 (33.4) 1.14 (0.93-1.39) 
    AA 48 (5.0) 33 (3.9) 1.36 (0.86-2.15) 
    P for A carrier   0.13 
    Ptrend   0.09 
Ex17-4C>T; rs1799817    
    CC 624 (65.1) 547 (65.0) 1.0 (ref) 
    CT 288 (30.1) 261 (31.0) 0.96 (0.78-1.18) 
    TT 46 (4.8) 33 (3.9) 1.18 (0.74-1.87) 
    P for T carrier   0.89 
    Ptrend   0.88 
IVS14+88A>G; rs2860175    
    GG 669 (70.8) 610 (72.6) 1.0 (ref) 
    GA 261 (27.6) 210 (25.0) 1.14 (0.92-1.41) 
    AA 15 (1.6) 20 (2.4) 0.69 (0.35-1.35) 
    P for A carrier   0.37 
    Ptrend   0.64 
IVS10+34A>G; rs3745548    
    GG 855 (89.1) 759 (89.2) 1.0 (ref) 
    AG 102 (10.6) 90 (10.6) 1.00 (0.74-1.35) 
    AA 3 (0.3) 2 (0.2) 1.36 (0.23-8.19) 
    P for A carrier   0.94 
    Ptrend   0.90 
IVS8-20A>G; rs2245648    
    AA 726 (76.2) 617 (72.3) 1.0 (ref) 
    AG 211 (22.1) 215 (25.2) 0.83 (0.67-1.03) 
    GG 16 (1.7) 21 (2.5) 0.65 (0.34-1.26) 
    P for G carrier   0.06 
    Ptrend   0.04 
Ex8+40G; rs2059806    
    GG 493 (51.0) 446 (52.3) 1.0 (ref) 
    AG 391 (40.5) 323 (37.9) 1.09 (0.90-1.33) 
    AA 82 (8.5) 83 (9.7) 0.90 (0.65-1.26) 
    P for A carrier   0.57 
    Ptrend   0.96 
IVS7-126C>T; rs3815901    
    TT 339 (35.6) 271 (32.1) 1.0 (ref) 
    TC 427 (44.9) 405 (48.0) 0.84 (0.68-1.04) 
    CC 185 (19.5) 167 (19.8) 0.89 (0.68-1.16) 
    P for C carrier   0.13 
    Ptrend   0.27 
Ex3+131C>T; rs891087    
    CC 814 (84.2) 733 (85.8) 1.0 (ref) 
    CT 143 (14.8) 111 (13.0) 1.16 (0.89-1.51) 
    TT 10 (1.0) 10 (1.2) 0.91 (0.38-2.20) 
    P for T carrier   0.33 
    Ptrend   0.42 
IVS2-15330C>G; rs1035940    
    CC 618 (64.6) 513 (60.9) 1.0 (ref) 
    CG 296 (31.0) 291 (34.6) 0.84 (0.69-1.03) 
    GG 42 (4.4) 38 (4.5) 0.91 (0.58-1.44) 
    P for G carrier   0.10 
    Ptrend   0.15 
IVS2+5915A>G; rs919275    
    AA 449 (47.2) 398 (46.8) 1.0 (ref) 
    AG 423 (44.4) 358 (42.1) 1.05 (0.86-1.28) 
    GG 80 (8.4) 94 (11.1) 0.75 (0.54-1.04) 
    P for G carrier   0.90 
    Ptrend   0.33 
Insulin receptor substrate 1 gene (IRS1)    
IVS1+12345G>C; rs1366757    
    GG 827 (85.6) 742 (86.8) 1.0 (ref) 
    GC 130 (13.5) 108 (12.6) 1.09 (0.83-1.43) 
    CC 9 (0.9) 5 (0.6) 1.59 (0.53-4.78) 
    P for C carrier   0.44 
    Ptrend   0.37 
IVS1+12245G>C; rs1820841    
    CC 811 (84.5) 720 (85.4) 1.0 (ref) 
    CG 139 (14.5) 118 (14.0) 1.05 (0.81-1.37) 
    GG 10 (1.0) 5 (0.6) 1.78 (0.61-5.25) 
    P for G carrier   0.55 
    Ptrend   0.43 
IVS1+4357G>A; rs9282766    
    GG 724 (77.4) 637 (76.3) 1.0 (ref) 
    AG 194 (20.7) 188 (22.5) 0.91 (0.73-1.15) 
    AA 18 (1.9) 10 (1.2) 1.50 (0.69-3.29) 
    P for A carrier   0.61 
    Ptrend   0.86 
Insulin receptor substrate 2 gene (IRS2)    
IVS1+11858A>G; rs2241745    
    AA 701 (73.3) 616 (72.5) 1.0 (ref) 
    AG 236 (24.7) 215 (25.3) 0.97 (0.78-1.20) 
    GG 19 (2.0) 19 (2.2) 0.85 (0.44-1.62) 
    P for G carrier   0.68 
    Ptrend   0.61 
GenotypeCases, n (%)Controls, n (%)OR* (95% CI)
Insulin gene (INS)    
IVS1-6A>T; rs689    
    AA 588 (61.1) 525 (62.6) 1.0 (ref) 
    AT 325 (33.7) 278 (33.2) 1.04 (0.85-1.27) 
    TT 50 (5.2) 35 (4.2) 1.27 (0.81-1.99) 
    P for T carrier   0.50 
    Ptrend   0.35 
Insulin receptor gene (INSR)    
2,853 bp 3′ of STP G>T; rs1864193    
    GG 708 (73.6) 598 (71.5) 1.0 (ref) 
    GT 223 (23.2) 220 (26.3) 0.85 (0.69-1.06) 
    TT  31 (3.2)  18 (2.2) 1.45 (0.80-2.62) 
    P for T carrier   0.31 
    Ptrend   0.66 
Ex22-326A>G; rs1051690    
    GG 563 (59.2) 526 (62.7) 1.0 (ref) 
    AG 340 (35.8) 280 (33.4) 1.14 (0.93-1.39) 
    AA 48 (5.0) 33 (3.9) 1.36 (0.86-2.15) 
    P for A carrier   0.13 
    Ptrend   0.09 
Ex17-4C>T; rs1799817    
    CC 624 (65.1) 547 (65.0) 1.0 (ref) 
    CT 288 (30.1) 261 (31.0) 0.96 (0.78-1.18) 
    TT 46 (4.8) 33 (3.9) 1.18 (0.74-1.87) 
    P for T carrier   0.89 
    Ptrend   0.88 
IVS14+88A>G; rs2860175    
    GG 669 (70.8) 610 (72.6) 1.0 (ref) 
    GA 261 (27.6) 210 (25.0) 1.14 (0.92-1.41) 
    AA 15 (1.6) 20 (2.4) 0.69 (0.35-1.35) 
    P for A carrier   0.37 
    Ptrend   0.64 
IVS10+34A>G; rs3745548    
    GG 855 (89.1) 759 (89.2) 1.0 (ref) 
    AG 102 (10.6) 90 (10.6) 1.00 (0.74-1.35) 
    AA 3 (0.3) 2 (0.2) 1.36 (0.23-8.19) 
    P for A carrier   0.94 
    Ptrend   0.90 
IVS8-20A>G; rs2245648    
    AA 726 (76.2) 617 (72.3) 1.0 (ref) 
    AG 211 (22.1) 215 (25.2) 0.83 (0.67-1.03) 
    GG 16 (1.7) 21 (2.5) 0.65 (0.34-1.26) 
    P for G carrier   0.06 
    Ptrend   0.04 
Ex8+40G; rs2059806    
    GG 493 (51.0) 446 (52.3) 1.0 (ref) 
    AG 391 (40.5) 323 (37.9) 1.09 (0.90-1.33) 
    AA 82 (8.5) 83 (9.7) 0.90 (0.65-1.26) 
    P for A carrier   0.57 
    Ptrend   0.96 
IVS7-126C>T; rs3815901    
    TT 339 (35.6) 271 (32.1) 1.0 (ref) 
    TC 427 (44.9) 405 (48.0) 0.84 (0.68-1.04) 
    CC 185 (19.5) 167 (19.8) 0.89 (0.68-1.16) 
    P for C carrier   0.13 
    Ptrend   0.27 
Ex3+131C>T; rs891087    
    CC 814 (84.2) 733 (85.8) 1.0 (ref) 
    CT 143 (14.8) 111 (13.0) 1.16 (0.89-1.51) 
    TT 10 (1.0) 10 (1.2) 0.91 (0.38-2.20) 
    P for T carrier   0.33 
    Ptrend   0.42 
IVS2-15330C>G; rs1035940    
    CC 618 (64.6) 513 (60.9) 1.0 (ref) 
    CG 296 (31.0) 291 (34.6) 0.84 (0.69-1.03) 
    GG 42 (4.4) 38 (4.5) 0.91 (0.58-1.44) 
    P for G carrier   0.10 
    Ptrend   0.15 
IVS2+5915A>G; rs919275    
    AA 449 (47.2) 398 (46.8) 1.0 (ref) 
    AG 423 (44.4) 358 (42.1) 1.05 (0.86-1.28) 
    GG 80 (8.4) 94 (11.1) 0.75 (0.54-1.04) 
    P for G carrier   0.90 
    Ptrend   0.33 
Insulin receptor substrate 1 gene (IRS1)    
IVS1+12345G>C; rs1366757    
    GG 827 (85.6) 742 (86.8) 1.0 (ref) 
    GC 130 (13.5) 108 (12.6) 1.09 (0.83-1.43) 
    CC 9 (0.9) 5 (0.6) 1.59 (0.53-4.78) 
    P for C carrier   0.44 
    Ptrend   0.37 
IVS1+12245G>C; rs1820841    
    CC 811 (84.5) 720 (85.4) 1.0 (ref) 
    CG 139 (14.5) 118 (14.0) 1.05 (0.81-1.37) 
    GG 10 (1.0) 5 (0.6) 1.78 (0.61-5.25) 
    P for G carrier   0.55 
    Ptrend   0.43 
IVS1+4357G>A; rs9282766    
    GG 724 (77.4) 637 (76.3) 1.0 (ref) 
    AG 194 (20.7) 188 (22.5) 0.91 (0.73-1.15) 
    AA 18 (1.9) 10 (1.2) 1.50 (0.69-3.29) 
    P for A carrier   0.61 
    Ptrend   0.86 
Insulin receptor substrate 2 gene (IRS2)    
IVS1+11858A>G; rs2241745    
    AA 701 (73.3) 616 (72.5) 1.0 (ref) 
    AG 236 (24.7) 215 (25.3) 0.97 (0.78-1.20) 
    GG 19 (2.0) 19 (2.2) 0.85 (0.44-1.62) 
    P for G carrier   0.68 
    Ptrend   0.61 
*

Adjusted for age at randomization and treatment group.

Overall, our findings suggest that there is little association between the polymorphisms of the INS, INSR, IRS1, and IRS2 genes studied here and the risk of prostate cancer. The statistical power was sufficient (>0.80) to detect an odds ratio (OR) of ≥1.5 for all SNPs under the assumption of a dominant mode of inheritance. Given that our study included a large, well-defined sample of prostate cancer cases and controls, it is unlikely that our null findings are due to chance, although we cannot exclude the possibility of undetected weaker associations (OR < 1.5).

One possible exception to our null findings is a lower risk of advanced prostate cancer among carriers of the C allele at the INSR IVS7-126C>T locus (P = 0.03). However, using either the false discovery rate (21) or the Bonferroni correction method and assuming two or more statistical tests, the P value for the association would need to have been 0.025 or lower to be considered statistically significant.

Insulin resistance and compensatory hyperinsulinemia have been hypothesized to promote prostate carcinogenesis through either the direct promitotic/antiapoptotic properties of insulin or via alterations in the IGF and/or sex hormone pathways. In prior studies, the INS IVS1-6T/T variant has been found to predict insulin levels and type II diabetes (7, 22) and also prostate cancer (11). However, our study and other studies did not confirm the latter association (12, 23). One investigation reported an association between the IRS1 G972R polymorphism and prostate cancer (12), but a subsequent study was null (23). The IRS1 IVS1+12245 SNP, which is in moderate linkage disequilibrium with IRS1 G972R,11

was not associated with prostate cancer risk in this population.

In conclusion, this large case-control study found little evidence for an association between allelic variants in insulin resistance–related genes and risk of prostate cancer.

Grant support: Intramural Research Program and TU2CA105666 from the National Cancer Institute, NIH. Additionally, this research was supported by USPHS contracts N01-CN-45165, N01-RC-45035, and N01-RC-37004 from the National Cancer Institute, Department of Health and Human Services.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: We have no conflict of interest relevant to this article. The views expressed are those of the authors.

1
Hsing AW, Gao YT, Chua S, Jr., Deng J, Stanczyk FZ. Insulin resistance and prostate cancer risk.
J Natl Cancer Inst
2003
;
95
:
67
–71.
2
Hsing AW, Chua S, Jr., Gao YT, et al. Prostate cancer risk and serum levels of insulin and leptin: a population-based study.
J Natl Cancer Inst
2001
;
93
:
783
–9.
3
Giovannucci E. Nutrition, insulin, insulin-like growth factors and cancer.
Horm Metab Res
2003
;
35
:
694
–704.
4
Qian H, Hausman DB, Compton MM, et al. TNFα induces and insulin inhibits caspase 3–dependent adipocyte apoptosis.
Biochem Biophys Res Commun
2001
;
284
:
1176
–83.
5
Hammarsten J, Hogstedt B. Clinical, haemodynamic, anthropometric, metabolic and insulin profile of men with high-stage and high-grade clinical prostate cancer.
Blood Press
2004
;
13
:
47
–55.
6
Laukkanen JA, Laaksonen DE, Niskanen L, Pukkala E, Hakkarainen A, Salonen JT. Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study.
Cancer Epidemiol Biomarkers Prev
2004
;
13
:
1646
–50.
7
Le Stunff C, Fallin D, Schork NJ, Bougneres P. The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity.
Nat Genet
2000
;
26
:
444
–6.
8
Clausen JO, Hansen T, Bjorbaek C, et al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1.
Lancet
1995
;
346
:
397
–402.
9
Hitman GA, Hawrami K, McCarthy MI, et al. Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease.
Diabetologia
1995
;
38
:
481
–6.
10
Hart LM, Stolk RP, Heine RJ, Grobbee DE, van der Does FE, Maassen JA. Association of the insulin-receptor variant Met-985 with hyperglycemia and non–insulin-dependent diabetes mellitus in the Netherlands: a population-based study.
Am J Hum Genet
1996
;
59
:
1119
–25.
11
Ho GY, Melman A, Liu SM, et al. Polymorphism of the insulin gene is associated with increased prostate cancer risk.
Br J Cancer
2003
;
88
:
263
–9.
12
Neuhausen SL, Slattery ML, Garner CP, Ding YC, Hoffman M, Brothman AR. Prostate cancer risk and IRS1, IRS2, IGF1, and INS polymorphisms: strong association of IRS1 G972R variant and cancer risk.
Prostate
2005
;
64
:
168
–74.
13
Claeys GB, Sarma AV, Dunn RL, et al. INSPstI polymorphism and prostate cancer in African-American men.
Prostate
2005
;
65
:
83
–7.
14
Albanes D, Heinonen OP, Taylor PR, et al. α-Tocopherol and β-carotene supplements and lung cancer incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: Effects of base-line characteristics and study compliance.
J Natl Cancer Inst
1996
;
88
:
1560
–70.
15
Heinonen OP, Huttunen JK, Albanes D, et al. Effect of vitamin-E and β-carotene on the incidence of lung-cancer and other cancers in male smokers.
N Engl J Med
1994
;
330
:
1029
–35.
16
Korhonen P, Malila N, Pukkala E, Teppo L, Albanes D, Virtamo J. The Finnish Cancer Registry as follow-up source of a large trial cohort—accuracy and delay.
Acta Oncol
2002
;
41
:
381
–8.
17
Beahrs OH, Henson DE, Hutter RVP. American Joint Committee on Cancer staging manual. Philadelphia: Lippincott; 1992.
18
Packer BR, Yeager M, Staats B, et al. SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes.
Nucleic Acids Res
2004
;
32
:
D528
–32.
19
Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome.
Science
2002
;
296
:
2225
–9.
20
Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population.
Mol Biol Evol
1995
;
12
:
921
–7.
21
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research.
Behav Brain Res
2001
;
125
:
279
–84.
22
Bennett ST, Wilson AJ, Cucca F, et al. IDDM2-VNTR–encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus.
J Autoimmun
1996
;
9
:
415
–21.
23
Li L, Cicek MS, Casey G, Witte JS. No association between genetic polymorphisms in insulin and insulin receptor substrate-1 and prostate cancer.
Cancer Epidemiol Biomarkers Prev
2005
;
14
:
2462
–3.