In a large case-control study, we previously reported that dietary intakes of zinc (Zn) and copper (Cu), but not selenium (Se), were inversely associated with lung cancer risk. Because Zn, Cu, Se, iron (Fe), and calcium (Ca) are important for maintaining DNA stability, we examined their associations with DNA repair capacity (DRC) measured by the lymphocyte host-cell reactivation assay in 1,139 cases and 1,210 of the controls. Dietary intake was reported in a food frequency questionnaire. In multivariate analyses, compared to those with high dietary Cu + proficient DRC, the odds ratio (95% confidence interval) [OR (95% CI)] for lung cancer for low Cu + suboptimal DRC was 2.54 (1.97-3.27). Similar results were observed for men and women. These effects were more pronounced in older and lean subjects, those with late-stage disease, and those with a family history of cancer in first-degree relatives. Compared to subjects with high Zn + proficient DRC, the OR for lung cancer for low Zn + suboptimal DRC was 1.82 (95% CI, 1.41-2.34), with pronounced effects in men, current smokers, subjects with longer duration of smoking, those with late-stage disease, or those with a family history of cancer. An OR of 1.94 (95% CI, 1.51-2.48) was observed for low Fe + suboptimal DRC compared with high Fe + proficient DRC, and pronounced effects appeared in older, lean subjects, those with longer duration of smoking, are heavier smokers, those with a late-stage disease, and those with a family history of cancer. No significant joint associations were seen for Se or Ca and DRC. Our joint associations between Cu-DRC, Zn-DRC and Fe-DRC and lung cancer risk require confirmation in prospective studies. (Cancer Epidemiol Biomarkers Prev 2007;16(12):2756–62)

The role of dietary trace metals in lung cancer development remains unknown, but are of interest because trace metals affect DNA stability (1-3). We have previously shown that suboptimal DNA repair capacity (DRC) is associated with increased lung cancer risk in ever and never smokers (4). Because dietary trace metals have the potential to modulate DRC, the diet-DRC pathway may influence lung cancer risk.

Dietary trace metals are important for maintenance of DNA integrity. Zinc (Zn; ref. 1) and copper (Cu; ref. 2) are cofactors for enzymes, including Cu-Zn superoxide dismutase (CuZnSOD) and DNA repair proteins. Zn catalyzes the production of cysteine-rich metallothionein, a potent scavenger of hydroxyl radicals (1) and is involved in regulation of DNA transcription through Zn finger proteins (5). Zn deficiency may render p53 to adopt a “mutant-like” conformation that alters the ability of the cell to respond to DNA damage (1). Whereas Cu catalyzes the formation of reactive oxygen species, oxidative damage has been linked to chronic Cu overload (2). Selenium (Se) is a key component of antioxidant enzymes, including glutathione peroxidase, which removes hydrogen peroxide generated by free radicals (3). Iron (Fe) is required for cellular function, but Fe overload may generate reactive oxygen species and damage DNA (6). Calcium (Ca) is also an important mediator of reactive oxygen species because oxidative stress causes cytoplasmic influx of Ca2+ from the extracellular environment (7). Increasing levels of Ca2+ in the cytoplasm lead to influx into the mitochondria and nuclei, which could affect DNA stability and signal transduction (7).

Because dietary trace metals could affect DRC, knowledge about their independent and joint associations may lead to a better understanding of lung cancer etiology and prevention. In a recent publication, we showed that dietary intakes of Cu and Zn were inversely associated with lung cancer risk, but not Se (8). We now extend this research to evaluate the joint associations between dietary trace metals and functional data on DRC in lung cancer risk.

Study Subjects

Our study included 1,139 newly diagnosed, histologically confirmed lung cancer cases and 1,210 healthy controls with DRC data, a subset of an ongoing lung cancer study (8). Cases were recruited before treatment at M. D. Anderson Cancer Center (Houston, TX). There was no age, gender, ethnic, or stage restrictions. Controls were recruited from the largest multispecialty physician group in Houston, and frequency matched to cases by age (±5 years), sex, ethnicity, and smoking status (current, former, and never; ref. 9). The overall response rate among cases and controls was ∼75%. This research was approved by the M. D. Anderson Cancer Center Institutional Review Board.

Epidemiologic and Dietary Trace Metal Data

Our previous article described in detail the collection of epidemiologic data and dietary trace metal assessment (8). In brief, participants were interviewed in person about demographic and lifestyle characteristics. Smokers of at least 100 cigarettes in their lifetime were classified as ever-smokers; among whom, former smokers had quit smoking at least 1 year before diagnosis (cases) or before interview (controls). For cases, body mass index was based on self-reported height and weight 1 year before diagnosis.

Dietary data were collected from a modified (135-item) National Cancer Institute food frequency questionnaire, shown to be valid and reliable across populations (10). Participants were asked about their diet during the year before diagnosis (cases) or study enrollment (controls).

DNA Repair Capacity

The host-cell reactivation assay was used to measure nucleotide excision repair capacity, as previously described (4). Cultured lymphocytes were transfected with nonreplicating plasmids harboring a chloramphenicol acetyltransferase (CAT) gene, a bacterial drug-resistant gene. Plasmids were treated with benzo(a)pyrene diol epoxide, an ultimate tobacco carcinogen, before transfection, to introduce benzo(a)pyrene diol epoxide–DNA adducts as the substrate of cellular repair. Only stimulated lymphocytes will uptake the plasmids and exhibit nucleotide excision repair activity that removes the adducts in the plasmids. The DRC value (%) is the CAT expression of cells transfected with plasmids divided by that of cells transfected with untreated plasmids ×100%.

Statistical Analysis

Quartiles of dietary Zn, Cu, Se, Fe, and Ca were created from the distribution of intake in controls. Multiple logistic regression analysis was done to calculate odds ratios (OR) and 95% confidence intervals (95% CI) for the dietary trace metals, and their joint associations with DRC in lung cancer risk. The models were adjusted for age, gender, race, smoking status, pack-years smoked, family history of cancer, body mass index, education, income, and total calories (model 1). Among controls, correlations between intakes of Zn, Cu, Se, Fe, and Ca and total calories were significant (P < 0.001). Although caloric intake did not differ in cases and controls, we included it in the model because of its correlation with the trace metals. Also, intakes of Cu, Zn, Se, Fe, and Ca were analyzed individually (model 1), and in a model adjusting for the other trace metals (model 2). In joint effects analyses (trace metals + DRC), subjects with high dietary Zn, Cu, Se, Fe, and Ca (greater than median split for energy-residual adjusted Zn, Cu, Se, Fe, and Ca intake in controls) and proficient DRC (greater than median split for DRC in controls) were the reference group because this group would be expected to have the lowest risk. Potential interactions between dietary trace metals and other lung cancer risk factors were tested on a multiplicative scale in the main-effects models. Statistical analyses were done with SAS (version 8.0; SAS Institute, Inc.). All tests were two-sided, and a P value of <0.05 was considered significant.

Among 1,139 cases and 1,210 controls with DRC data, the mean ages were 61.1 and 60.2 years (P = 0.03), within the 5-year matching criterion. Cases compared with controls had fewer never and former smokers, but more current smokers. Total caloric intake and vitamin/mineral supplement use did not differ between cases and controls. Cases had significantly lower dietary Zn (11.26 versus 11.80 mg/d), Cu (1.42 versus 1.55 mg/d), and Fe (15.15 versus 15.91 mg/d; but not Se and Ca) and lower DRC (8.26 versus 8.93%) than controls.

Like our previous overall analysis (n = 1,676 cases; n = 1,676 controls), the current study revealed significant protection against lung cancer ranging from 39% to 60% for dietary Cu, 16% to 32% for Zn, 19% to 34% for Fe, but not for Se or Ca. The direction and magnitude of these associations were similar when dietary Cu, Zn, or Fe intakes were reciprocally adjusted for the other trace metals. Further, more efficient DRC was associated with protection, with OR of 0.69 (0.54-0.87) and 0.53 (0.41-0.68), respectively, for the third and fourth quartiles compared with the lowest quartile of DRC. Also, mean DRC levels in the controls did not differ by quartile of intake of Zn, Cu, Se, Fe, and Ca (data not shown).

Compared with subjects with high dietary Cu + proficient DRC, there was a monotonic 33%, 66%, 154% increased risk of lung cancer for those with high Cu + suboptimal DRC, low Cu + proficient DRC, and low Cu + suboptimal DRC (Ptrend < 0.0001), respectively (Table 1). These associations were similar in men and women, but older (>60 years), lean (body mass index <25) subjects, those with late-stage disease, alcohol users, and with a family history of cancer were at higher risk (Table 1). In the low Cu + suboptimal DRC group, the risk estimates were similar for current and never smokers (Table 1).

Table 1.

OR (95% CI) of lung cancer by joint effects of Cu intake and DNA repair capacity

High Cu + proficient DRCHigh Cu + suboptimal DRCLow Cu + proficient DRCLow Cu + suboptimal DRCP
Overall      
    Case 217 242 310 368  
    Control 378 335 267 227  
    OR (95% CI) 1.00 1.33 (1.04-1.71) 1.66 (1.29-2.13) 2.54 (1.97-3.27) <0.0001 
Gender      
    Male      
        Case 113 101 184 204  
        Control 192 148 147 105  
        OR (95% CI) 1.00 1.22 (0.84-1.75) 1.61 (1.14-2.28) 2.88 (2.01-4.11) <0.0001 
    Female      
        Case 104 141 126 164  
        Control 186 187 120 122  
        OR (95% CI) 1.00 1.41 (1.00-1.98) 1.65 (1.14-2.39) 2.22 (1.54-3.19) 0.0003 
Age (y)      
    ≤60      
        Case 92 100 139 169  
        Control 158 161 114 132  
        OR (95% CI) 1.00 1.19 (0.81-1.76) 1.85 (1.25-2.75) 2.10 (1.44-3.07) <0.0001 
    >60      
        Case 125 142 170 199  
        Control 220 173 153 95  
        OR (95% CI) 1.00 1.49 (1.07-2.08) 1.58 (1.13-2.20) 3.19 (2.24-4.52) <0.0001 
BMI      
    <25      
        Case 89 109 140 166  
        Control 113 89 82 64  
        OR (95% CI) 1.00 1.59 (1.05-2.41) 1.76 (1.16-2.67) 2.96 (1.93-4.54) <0.0001 
    >25      
        Case 128 133 169 202  
        Control 265 245 185 163  
        OR (95% CI) 1.00 1.23 (0.90-1.69) 1.66 (1.21-2.28) 2.40 (1.75-3.30) <0.0001 
Smoking status      
    Never      
        Case 36 41 29 48  
        Control 76 76 36 37  
        OR (95% CI) 1.00 0.97 (0.53-1.76) 1.95 (0.98-3.89) 3.29 (1.68-6.45) 0.0001 
    Former      
        Case 112 122 116 137  
        Control 187 158 108 110  
        OR (95% CI) 1.00 1.44 (1.01-2.05) 1.48 (1.01-2.17) 2.00 (1.37-2.90) 0.0005 
    Current      
        Case 69 79 164 183  
        Control 115 100 123 80  
        OR (95% CI) 1.00 1.37 (0.87-2.18) 1.82 (1.19-2.77) 3.39 (2.18-5.27) <0.0001 
Clinical stages      
    Early      
        Case 44 61 62 90  
        Control 299 304 305 299  
        OR (95% CI) 1.00 1.42 (0.91-2.23) 1.11 (0.71-1.74) 1.87 (1.22-2.87) 0.01 
    Late      
        Case 91 117 205 287  
        Control 299 304 305 299  
        OR (95% CI) 1.00 1.29 (0.92-1.79) 1.78 (1.30-2.43) 2.78 (2.05-3.76) <0.0001 
Family history of cancer      
    Yes      
        Case 141 172 212 236  
        Control 233 198 158 117  
        OR (95% CI) 1.00 1.50 (1.10-2.04) 1.86 (1.36-2.55) 2.89 (2.09-4.00) <0.0001 
    No      
        Case 76 70 97 132  
        Control 145 136 109 110  
        OR (95% CI) 1.00 1.02 (0.67-1.57) 1.31 (0.86-2.00) 1.90 (1.26-2.86) 0.0009 
High Cu + proficient DRCHigh Cu + suboptimal DRCLow Cu + proficient DRCLow Cu + suboptimal DRCP
Overall      
    Case 217 242 310 368  
    Control 378 335 267 227  
    OR (95% CI) 1.00 1.33 (1.04-1.71) 1.66 (1.29-2.13) 2.54 (1.97-3.27) <0.0001 
Gender      
    Male      
        Case 113 101 184 204  
        Control 192 148 147 105  
        OR (95% CI) 1.00 1.22 (0.84-1.75) 1.61 (1.14-2.28) 2.88 (2.01-4.11) <0.0001 
    Female      
        Case 104 141 126 164  
        Control 186 187 120 122  
        OR (95% CI) 1.00 1.41 (1.00-1.98) 1.65 (1.14-2.39) 2.22 (1.54-3.19) 0.0003 
Age (y)      
    ≤60      
        Case 92 100 139 169  
        Control 158 161 114 132  
        OR (95% CI) 1.00 1.19 (0.81-1.76) 1.85 (1.25-2.75) 2.10 (1.44-3.07) <0.0001 
    >60      
        Case 125 142 170 199  
        Control 220 173 153 95  
        OR (95% CI) 1.00 1.49 (1.07-2.08) 1.58 (1.13-2.20) 3.19 (2.24-4.52) <0.0001 
BMI      
    <25      
        Case 89 109 140 166  
        Control 113 89 82 64  
        OR (95% CI) 1.00 1.59 (1.05-2.41) 1.76 (1.16-2.67) 2.96 (1.93-4.54) <0.0001 
    >25      
        Case 128 133 169 202  
        Control 265 245 185 163  
        OR (95% CI) 1.00 1.23 (0.90-1.69) 1.66 (1.21-2.28) 2.40 (1.75-3.30) <0.0001 
Smoking status      
    Never      
        Case 36 41 29 48  
        Control 76 76 36 37  
        OR (95% CI) 1.00 0.97 (0.53-1.76) 1.95 (0.98-3.89) 3.29 (1.68-6.45) 0.0001 
    Former      
        Case 112 122 116 137  
        Control 187 158 108 110  
        OR (95% CI) 1.00 1.44 (1.01-2.05) 1.48 (1.01-2.17) 2.00 (1.37-2.90) 0.0005 
    Current      
        Case 69 79 164 183  
        Control 115 100 123 80  
        OR (95% CI) 1.00 1.37 (0.87-2.18) 1.82 (1.19-2.77) 3.39 (2.18-5.27) <0.0001 
Clinical stages      
    Early      
        Case 44 61 62 90  
        Control 299 304 305 299  
        OR (95% CI) 1.00 1.42 (0.91-2.23) 1.11 (0.71-1.74) 1.87 (1.22-2.87) 0.01 
    Late      
        Case 91 117 205 287  
        Control 299 304 305 299  
        OR (95% CI) 1.00 1.29 (0.92-1.79) 1.78 (1.30-2.43) 2.78 (2.05-3.76) <0.0001 
Family history of cancer      
    Yes      
        Case 141 172 212 236  
        Control 233 198 158 117  
        OR (95% CI) 1.00 1.50 (1.10-2.04) 1.86 (1.36-2.55) 2.89 (2.09-4.00) <0.0001 
    No      
        Case 76 70 97 132  
        Control 145 136 109 110  
        OR (95% CI) 1.00 1.02 (0.67-1.57) 1.31 (0.86-2.00) 1.90 (1.26-2.86) 0.0009 

NOTE: ORs were adjusted for age, gender, race, years of smoking, number of cigarettes smoked per day, family history of cancer in first-degree relatives, BMI, education, income, and total calories. Due to space limitations, data are not shown for smoking duration (≤31/>31 y), number of cigarettes smoked per day (≤20/>20), and use of alcohol (drinkers/nondrinkers) or multivitamin/mineral supplements (yes/no) because for each of these subgroups the associations were similar.

Compared with subjects with high dietary Zn + proficient DRC, the low Zn + suboptimal DRC group had the highest risk (Table 2). The risk was more pronounced in men than women. Among current smokers, we found a monotonic 2.2-, 2.26-, and 2.76-fold increased risk for lung cancer for subjects with high dietary Zn + suboptimal DRC, low dietary Zn + proficient DRC, and low dietary Zn + suboptimal DRC (Ptrend <0.0001). The associations were more pronounced in heavy smokers, and those with a family history of cancer (Table 2), but were similar by body mass index (<25 or >25), number of cigarettes smoked per day (<20 or >20), and supplement use and alcohol intake (data not shown).

Table 2.

OR (95% CI) of lung cancer by joint effects of zinc intake and DNA repair capacity

High Zn + proficient DRCHigh Zn + suboptimal DRCLow Zn + proficient DRCLow Zn + suboptimal DRCP
Overall      
    Case 233 287 294 323  
    Control 349 303 296 259  
    OR (95% CI) 1.00 1.55 (1.21-1.98) 1.36 (1.06-1.74) 1.82 (1.41-2.34) <0.0001 
Gender      
    Men      
        Case 129 137 168 168  
        Control 193 158 146 95  
        OR (95% CI) 1.00 1.39 (0.99-1.96) 1.41 (1.00-1.99) 2.40 (1.67-3.44) <0.0001 
    Women      
        Case 104 150 126 155  
        Control 156 145 150 164  
        OR (95% CI) 1.00 1.63 (1.14-2.34) 1.21 (0.83-1.74) 1.40 (0.97-2.00) 0.05 
Smoking status      
    Never      
        Case 36 51 29 38  
        Control 59 64 53 49  
        OR (95% CI) 1.00 1.05 (0.57-1.93) 0.76 (0.39-1.48) 1.14 (0.59-2.19) 0.97 
    Former      
        Case 116 132 112 127  
        Control 156 148 139 120  
        OR (95% CI) 1.00 1.29 (0.90-1.85) 0.95 (0.65-1.38) 1.49 (1.01-2.17) 0.16 
    Current      
        Case 81 104 152 158  
        Control 134 90 104 90  
        OR (95% CI) 1.00 2.20 (1.42-3.40) 2.26 (1.49-3.43) 2.76 (1.80-4.21) <0.0001 
Years smoking      
    ≤31      
        Case 106 129 116 138  
        Control 201 186 171 164  
        OR (95% CI) 1.00 1.31 (0.94-1.85) 1.22 (0.86-1.74) 1.55 (1.09-2.19) 0.03 
    >31      
        Case 127 158 177 185  
        Control 148 116 125 95  
        OR (95% CI) 1.00 1.77 (1.23-2.54) 1.49 (1.05-2.14) 2.04 (1.41-2.97) 0.0009 
Clinical stage      
    Early      
        Case 45 76 61 75  
        Control 303 301 301 302  
        OR (95% CI) 1.00 1.89 (1.23-2.91) 1.40 (0.90-2.19) 1.88 (1.20-2.92) 0.03 
    Late      
        Case 117 158 179 246  
        Control 303 301 301 302  
        OR (95% CI) 1.00 1.43 (1.06-1.94) 1.36 (1.01-1.84) 2.01 (1.50-2.69) <0.0001 
Family history of cancer      
    Yes      
        Case 152 196 201 212  
        Control 212 168 179 147  
        OR (95% CI) 1.00 1.71 (1.25-2.33) 1.45 (1.06-1.98) 1.94 (1.41-2.67) 0.0004 
    No      
        Case 81 91 92 111  
        Control 137 134 117 112  
        OR (95% CI) 1.00 1.22 (0.81-1.84) 1.15 (0.75-1.74) 1.49 (0.98-2.26) 0.09 
High Zn + proficient DRCHigh Zn + suboptimal DRCLow Zn + proficient DRCLow Zn + suboptimal DRCP
Overall      
    Case 233 287 294 323  
    Control 349 303 296 259  
    OR (95% CI) 1.00 1.55 (1.21-1.98) 1.36 (1.06-1.74) 1.82 (1.41-2.34) <0.0001 
Gender      
    Men      
        Case 129 137 168 168  
        Control 193 158 146 95  
        OR (95% CI) 1.00 1.39 (0.99-1.96) 1.41 (1.00-1.99) 2.40 (1.67-3.44) <0.0001 
    Women      
        Case 104 150 126 155  
        Control 156 145 150 164  
        OR (95% CI) 1.00 1.63 (1.14-2.34) 1.21 (0.83-1.74) 1.40 (0.97-2.00) 0.05 
Smoking status      
    Never      
        Case 36 51 29 38  
        Control 59 64 53 49  
        OR (95% CI) 1.00 1.05 (0.57-1.93) 0.76 (0.39-1.48) 1.14 (0.59-2.19) 0.97 
    Former      
        Case 116 132 112 127  
        Control 156 148 139 120  
        OR (95% CI) 1.00 1.29 (0.90-1.85) 0.95 (0.65-1.38) 1.49 (1.01-2.17) 0.16 
    Current      
        Case 81 104 152 158  
        Control 134 90 104 90  
        OR (95% CI) 1.00 2.20 (1.42-3.40) 2.26 (1.49-3.43) 2.76 (1.80-4.21) <0.0001 
Years smoking      
    ≤31      
        Case 106 129 116 138  
        Control 201 186 171 164  
        OR (95% CI) 1.00 1.31 (0.94-1.85) 1.22 (0.86-1.74) 1.55 (1.09-2.19) 0.03 
    >31      
        Case 127 158 177 185  
        Control 148 116 125 95  
        OR (95% CI) 1.00 1.77 (1.23-2.54) 1.49 (1.05-2.14) 2.04 (1.41-2.97) 0.0009 
Clinical stage      
    Early      
        Case 45 76 61 75  
        Control 303 301 301 302  
        OR (95% CI) 1.00 1.89 (1.23-2.91) 1.40 (0.90-2.19) 1.88 (1.20-2.92) 0.03 
    Late      
        Case 117 158 179 246  
        Control 303 301 301 302  
        OR (95% CI) 1.00 1.43 (1.06-1.94) 1.36 (1.01-1.84) 2.01 (1.50-2.69) <0.0001 
Family history of cancer      
    Yes      
        Case 152 196 201 212  
        Control 212 168 179 147  
        OR (95% CI) 1.00 1.71 (1.25-2.33) 1.45 (1.06-1.98) 1.94 (1.41-2.67) 0.0004 
    No      
        Case 81 91 92 111  
        Control 137 134 117 112  
        OR (95% CI) 1.00 1.22 (0.81-1.84) 1.15 (0.75-1.74) 1.49 (0.98-2.26) 0.09 

NOTE: ORs were adjusted for age, gender, race, years of smoking, number of cigarettes smoked per day, family history of cancer in first-degree relatives, BMI, education, income, and total calories. Due to space limitations, data are not shown for BMI categories (BMI ≤25 or >25), number of cigarettes smoked per day (≤20/>20), and use of alcohol (drinkers/non-drinkers) or multivitamin/mineral supplements (yes or no) because these associations were similar.

Compared with subjects with high dietary iron + proficient DRC, those with low iron + suboptimal DRC were at the highest risk for lung cancer, with more pronounced effects in men; older (>60 years); or lean (body mass index <25) subjects; and those with longer duration of smoking (>31 years), late-stage disease, and a family history of cancer (Table 3). No significant associations appeared in the joint analysis for dietary Se or Ca and DRC (data not shown).

Table 3.

OR (95% CI) of lung cancer by joint effects of iron intake and DNA repair capacity

High Fe + proficient DRCHigh Fe + suboptimal DRCLow Fe + proficient DRCLow Fe + suboptimal DRCP
Overall      
    Case 204 251 274 408  
    Control 318 286 286 317  
    OR (95% CI) 1.00 1.47 (1.13-1.90) 1.33 (1.03-1.72) 1.94 (1.51-2.48) <0.001 
Gender      
    Men      
        Case 121 114 152 215  
        Control 170 144 151 127  
        OR (95% CI) 1.00 1.19 (0.82-1.71) 1.23 (0.86-1.74) 2.30 (1.62-3.26) <0.001 
    Women      
        Case 83 137 122 193  
        Control 148 142 135 190  
        OR (95% CI) 1.00 1.78 (1.22-2.59) 1.44 (0.98-2.13) 1.66 (1.16-2.38) 0.04 
Age (y)      
    ≤60      
        Case 80 97 133 191  
        Control 114 124 141 186  
        OR (95% CI) 1.00 1.21 (0.79-1.86) 1.02 (0.67-1.54) 1.28 (0.87-1.89) 0.31 
    >60      
        Case 124 154 141 217  
        Control 204 162 145 131  
        OR (95% CI) 1.00 1.61 (1.15-2.25) 1.49 (1.06-2.1) 2.64 (1.89-3.67) <0.001 
BMI      
    ≤25      
        Case 79 106 124 195  
        Control 91 71 91 95  
        OR (95% CI) 1.00 1.82 (1.15-2.87) 1.32 (0.84-2.05) 2.30 (1.51-3.5) 0.0008 
    >25      
        Case 125 145 150 213  
        Control 227 215 195 222  
        OR (95% CI) 1.00 1.29 (0.93-1.78) 1.33 (0.96-1.83) 1.75 (1.29-2.39) 0.0005 
Years smoking      
    ≤31      
        Case 96 123 106 165  
        Control 180 186 160 196  
        OR (95% CI) 1.00 1.21 (0.85-1.73) 1.13 (0.78-1.64) 1.47 (1.04-2.08) 0.05 
    >31      
        Case 108 128 168 243  
        Control 138 100 126 121  
        OR (95% CI) 1.00 1.76 (1.19-2.6) 1.64 (1.13-2.37) 2.59 (1.81-3.72) <0.001 
Cigarettes per day      
    20      
        Case 123 147 154 225  
        Control 221 188 190 220  
        OR (95% CI) 1.00 1.51 (1.09-2.1) 1.37 (0.99-1.9) 1.85 (1.36-2.52) 0.0004 
    >20      
        Case 81 104 120 183  
        Control 97 98 96 97  
        OR (95% CI) 1.00 1.34 (0.87-2.07) 1.29 (0.84-1.99) 2.01 (1.32-3.05) 0.002 
Clinical stage      
    Early      
        Case 50 72 56 79  
        Control 318 286 286 317  
        OR (95% CI) 1.00 1.70 (1.12-2.59) 1.12 (0.72-1.75) 1.62 (1.07-2.47) 0.13 
    Late      
        Case 120 139 176 265  
        Control 318 286 286 317  
        OR (95% CI) 1.00 1.38 (1.01-1.88) 1.42 (1.05-1.92) 2.07 (1.55-2.76) <0.001 
Family history of cancer      
    Yes      
        Case 132 178 188 263  
        Control 191 168 174 173  
        OR (95% CI) 1.00 1.59 (1.15-2.2) 1.38 (1-1.91) 2.01 (1.47-2.75) 0.0001 
    No      
        Case 72 73 86 145  
        Control 127 118 112 144  
        OR (95% CI) 1.00 1.15 (0.73-1.79) 1.21 (0.78-1.88) 1.65 (1.1-2.49) 0.01 
High Fe + proficient DRCHigh Fe + suboptimal DRCLow Fe + proficient DRCLow Fe + suboptimal DRCP
Overall      
    Case 204 251 274 408  
    Control 318 286 286 317  
    OR (95% CI) 1.00 1.47 (1.13-1.90) 1.33 (1.03-1.72) 1.94 (1.51-2.48) <0.001 
Gender      
    Men      
        Case 121 114 152 215  
        Control 170 144 151 127  
        OR (95% CI) 1.00 1.19 (0.82-1.71) 1.23 (0.86-1.74) 2.30 (1.62-3.26) <0.001 
    Women      
        Case 83 137 122 193  
        Control 148 142 135 190  
        OR (95% CI) 1.00 1.78 (1.22-2.59) 1.44 (0.98-2.13) 1.66 (1.16-2.38) 0.04 
Age (y)      
    ≤60      
        Case 80 97 133 191  
        Control 114 124 141 186  
        OR (95% CI) 1.00 1.21 (0.79-1.86) 1.02 (0.67-1.54) 1.28 (0.87-1.89) 0.31 
    >60      
        Case 124 154 141 217  
        Control 204 162 145 131  
        OR (95% CI) 1.00 1.61 (1.15-2.25) 1.49 (1.06-2.1) 2.64 (1.89-3.67) <0.001 
BMI      
    ≤25      
        Case 79 106 124 195  
        Control 91 71 91 95  
        OR (95% CI) 1.00 1.82 (1.15-2.87) 1.32 (0.84-2.05) 2.30 (1.51-3.5) 0.0008 
    >25      
        Case 125 145 150 213  
        Control 227 215 195 222  
        OR (95% CI) 1.00 1.29 (0.93-1.78) 1.33 (0.96-1.83) 1.75 (1.29-2.39) 0.0005 
Years smoking      
    ≤31      
        Case 96 123 106 165  
        Control 180 186 160 196  
        OR (95% CI) 1.00 1.21 (0.85-1.73) 1.13 (0.78-1.64) 1.47 (1.04-2.08) 0.05 
    >31      
        Case 108 128 168 243  
        Control 138 100 126 121  
        OR (95% CI) 1.00 1.76 (1.19-2.6) 1.64 (1.13-2.37) 2.59 (1.81-3.72) <0.001 
Cigarettes per day      
    20      
        Case 123 147 154 225  
        Control 221 188 190 220  
        OR (95% CI) 1.00 1.51 (1.09-2.1) 1.37 (0.99-1.9) 1.85 (1.36-2.52) 0.0004 
    >20      
        Case 81 104 120 183  
        Control 97 98 96 97  
        OR (95% CI) 1.00 1.34 (0.87-2.07) 1.29 (0.84-1.99) 2.01 (1.32-3.05) 0.002 
Clinical stage      
    Early      
        Case 50 72 56 79  
        Control 318 286 286 317  
        OR (95% CI) 1.00 1.70 (1.12-2.59) 1.12 (0.72-1.75) 1.62 (1.07-2.47) 0.13 
    Late      
        Case 120 139 176 265  
        Control 318 286 286 317  
        OR (95% CI) 1.00 1.38 (1.01-1.88) 1.42 (1.05-1.92) 2.07 (1.55-2.76) <0.001 
Family history of cancer      
    Yes      
        Case 132 178 188 263  
        Control 191 168 174 173  
        OR (95% CI) 1.00 1.59 (1.15-2.2) 1.38 (1-1.91) 2.01 (1.47-2.75) 0.0001 
    No      
        Case 72 73 86 145  
        Control 127 118 112 144  
        OR (95% CI) 1.00 1.15 (0.73-1.79) 1.21 (0.78-1.88) 1.65 (1.1-2.49) 0.01 

NOTE: ORs were adjusted for age, gender, race, years of smoking, number of cigarettes smoked per day, family history of cancer in first-degree relatives, BMI, education, income, and total calories. Because of space limitations, data are not shown for never, former, and current smokers because the associations were either nonsignificant (never smokers) or similar (former and current smokers). Multivitamin/mineral supplement (yes/no) and alcohol use (drinkers/nondrinkers) data are also not shown because the associations were similar.

In this large case-control study, we confirm (8) an inverse association between dietary Cu and Zn (but not Se) and lung cancer risk. We also found that increased total Fe intake was associated with reduced lung cancer risk (Ptrend = 0.0002). We now show intriguing joint effects from decreased DRC and low intakes of selected trace metals.

Cu, Zn, Se, Fe, and Ca are involved in reactive oxygen species metabolism (1-3, 6, 11) and are cofactors for enzymes needed for DNA stability and signal transduction pathways (1-3). Because these functions of Cu, Zn, Se, Fe, and Ca are implicated in the initiation and progression of lung cancer, we postulated that the joint associations between dietary minerals and DRC may improve our understanding of lung cancer etiology and prevention. To our knowledge, there are no published reports of the joint associations between dietary trace metal intakes and DRC with lung cancer risk.

In three studies of dietary Zn intake and lung cancer risk, two reported an inverse association (12, 13) and one reported a positive association (14). Two studies of plasma/serum Zn and lung cancer revealed inconsistent results (15, 16). There are no published studies of Cu intake and lung cancer risk except our data (8). Published studies of either serum or hair Cu levels and lung cancer had small samples and inconsistent results (17, 18). It is possible that in an environment with heightened oxidative stress, and low Zn and Cu intakes, DNA damage and inadequate DRC may contribute to cancer. In the low Cu + DRC or low Zn + DRC groups, current smokers had the highest risk. Cigarette smoking is an established risk factor for lung cancer and is an important source of reactive oxygen species in the lungs; thus, individuals with low Cu and Zn intakes and suboptimal DRC may be unable to combat carcinogenic effects from cigarettes.

We found that Fe intake was inversely associated with lung cancer risk and those with low Fe + suboptimal DRC were at the highest risk. In a previous study, total Fe intake increased lung cancer risk, whereas heme iron decreased risk (12). We could not distinguish between heme and nonheme iron intakes.

The null findings for dietary Se-DRC and lung cancer risk were unexpected. There is inconsistent evidence that Se intake may reduce lung cancer risk (14, 19, 20). Our null finding is probably not due to an inadequate range of Se intake, because Se intake in our control population is comparable with national estimates (21). In an earlier study, Ca intake was positively associated with risk (12). We found a nonsignificant 17% increased risk in the highest quartile of Ca intake, but no joint associations for Ca and DRC.

The data from this study, as with all case-control studies, may be subject to recall bias. However, cases were recruited at diagnosis and asked about their diet during the year before diagnosis, whereas controls reported their diet the year before the study. Although the food frequency questionnaire is practical for large epidemiology studies, it is well known that use of the food frequency questionnaire is associated with measurement errors (22). To improve the accuracy of dietary reporting, interviewers were trained in food frequency questionnaire administration; and incomplete responses were requeried by staff nutritionists. Another source of error could arise from nutrient values for dietary trace metals in the food composition database. The DIETSYS+Plus database has a wide cross-section of foods, including ethnic foods, but analytic values for trace metal composition of foods in the Houston area are not available for comparison purposes. Dietary trace metals may vary by region, and soil content, contributing to variability of the nutrient composition in foods. Despite these limitations, the food frequency questionnaire has been shown to reliably assess dietary intake to classify individuals by quartile of intake (23).

Our controls consumed comparable daily amounts of dietary Zn, Cu, Se, Fe, and Ca to those reported by the 1999 to 2000 National Health and Nutrition Examination Survey (NHANES) for the U.S. population (21). On average, our controls consumed 10.4 mg/d dietary Zn compared with 11.4 mg/d in NHANES (1999-2000); 1.3 mg/d dietary Cu compared with 1.2 mg/d in NHANES (1999-2000); and 91.7 μg/d dietary Se compared with 103.1 μg/d in NHANES data; Fe intake in our controls was 15.9 versus 15.2 mg/d; and Ca intake was 872 mg/d compared with 863 mg/d in NHANES. We recognize that our study would be strengthened by more objective serum measurements of trace metals.

Dietary trace metals in lung cancer risk remain an understudied area of research. These intriguing joint associations between dietary trace metals and DRC need to be confirmed in prospective research and biological mechanisms underlying the associations should be elucidated in more detail.

Grant support: Flight Attendant Medical Research Institute and USPHS grants CA 55769 and CA 86390 from the National Cancer Institute, NIH, Department of Health and Human Services, and Lung Specialized Programs of Research Excellence CA70909 (M.R. Spitz).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1
Ho E. Zinc deficiency, DNA damage and cancer risk.
J Nutr Biochem
2004
;
15
:
572
–8.
2
Uriu-Adams J, Keen C. Copper, oxidative stress, and human health.
Mol Aspects Med
2005
;
26
:
268
–98.
3
Patrick L. Selenium biochemistry and cancer: a review of the literature.
Altern Med Rev
2004
;
9
:
239
–58.
4
Wei Q, Cheng L, Amos C, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study.
J Natl Cancer Inst
2000
;
92
:
1764
–72.
5
Ito G, Uchiyama M, Kondo M, et al. Krüppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells.
Cancer Res
2004
;
64
:
3838
–43.
6
Reddy M, Clark L. Iron, oxidative stress, and disease risk.
Nutr Rev
2004
;
62
:
120
–4.
7
Ermak G, Davies K. Calcium and oxidative stress: from cell signalling to cell death.
Mol Immunol
2001
;
38
:
713
–21.
8
Mahabir S, Spitz M, Barrera S, et al. Dietary zinc, copper and selenium and risk of lung cancer.
Int J Cancer
2006
;
120
:
1108
–15.
9
Hudmon K, Honn S, Jiang H, et al. Identifying and recruiting healthy control subjects from a managed care organization: a methodology for molecular epidemiological case-control studies of cancer.
Cancer Epidemiol Biomarkers Prev
1997
;
6
:
565
–71.
10
Block G, Thompson F, Hartman A, Larkin G, Guire K. Comparisons of two dietary questionnaires validated against multiple dietary records collected during a 1-year period.
J Am Diet Assoc
1992
;
92
:
686
–93.
11
Ho E, Ames B. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line.
Proc Natl Acad Sci U S A
2002
;
99
:
16770
–5.
12
Zhou W, Park S, Liu G, et al. Dietary iron, zinc, and calcium and the risk of lung cancer.
Epidemiol
2005
;
16
:
772
–9.
13
Lee D-H, Jacobs R, Jr. Interaction among heme iron, zinc, and supplemental vitamin C intake on the risk of lung cancer: Iowa Women's Health Study.
Nutr Cancer
2005
;
52
:
130
–7.
14
Hu J, Johnson K, Mao Y, et al. A case-control study of diet and lung cancer in northeast China.
Int J Cancer
1997
;
71
:
924
–31.
15
Sattar N, Scott H, McMillan D, et al. Acute-phase reactants and plasma trace element concentrations in non-small cell lung cancer patients and controls.
Nutr Cancer
1977
;
28
:
308
–12.
16
Kabuto M, Imai H, Yonezawa C, et al. Prediagnostic serum selenium and zinc levels and subsequent risk of lung and stomach cancer in Japan.
Cancer Epidemiol Biomarkers Prev
1994
;
3
:
465
–9.
17
el-Ahmady O, el-Maraghy A, Ibrahim A, Ramzy S. Serum copper, zinc, and iron in patients with malignant and benign pulmonary diseases.
Nutrition
1995
;
11
:
498
–501.
18
Oyama T, Matsuno K, Kawamoto T, et al. Efficiency of serum copper/zinc ratio for differential diagnosis of patients with and without lung cancer.
Biol Trace Elem Res
1994
;
42
:
115
–27.
19
Zhuo H, Smith A, Steinmaus C. Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature.
Cancer Epidemiol Biomarkers Prev
2004
;
13
:
771
–8.
20
Clark L, Combs GJ, Turnbull B, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group.
JAMA
1996
;
276
:
1956
–63.
21
Ervin R, Wang C, Wright J, Kennedy-Stephenson J. Dietary intake of selected minerals for the United States Population: 1999-2000. Advanced data from vital and health statistics; no. 341. Hayattsville (MD): National Center for Health Statistics; 2004.
22
Mahabir S, Baer D, Giffen C, et al. Calorie intake misreporting by diet record and food frequency questionnaire compared to doubly labeled water among postmenopausal women.
Eur J Clin Nutr
2006
;
60
:
561
–5.
23
Bingham S, Gill C, Welch A, et al. Comparison of dietary assessment methods in nutritional epidemiology: weighed records v. 24 h recalls, food frequency questionnaires and estimated-diet records.
Br J Nutr
1994
;
72
:
619
–43.