Genetic variation in vitamin D–related genes has not been investigated comprehensively and findings are equivocal. We studied the association between polymorphisms across the entire vitamin D receptor (VDR) gene and genes encoding for vitamin D activating enzyme 1-α-hydroxylase (CYP27B1) and deactivating enzyme 24-hyroxylase (CYP24A1) and prostate cancer risk among middle-aged men using a population-based case-control study design. DNA samples and survey data were obtained from incident cases (n = 630), 40 to 64 years old, identified through the Seattle-Puget Sound Surveillance, Epidemiology, and End Results cancer registry from 1993 to 1996 and from random controls (n = 565) of similar age without a history of prostate cancer. We selected and genotyped tag single-nucleotide polymorphisms to predict common variants across VDR (n = 22), CYP27B1 (n = 2), and CYP24A1 (n = 14). Haplotypes of VDR and CYP24A1 were not associated with prostate cancer risk. In the genotype analysis, homozygotes at two VDR loci (rs2107301 and rs2238135) were associated with a 2- to 2.5-fold higher risk of prostate cancer compared with the homozygote common allele [odds ratio, 2.47 (95% confidence interval, 1.52-4.00; P = 0.002) and 1.95 (95% confidence interval, 1.17-3.26; P = 0.007), respectively; P value corrected for multiple comparisons for VDR = 0.002]. We found no evidence that the two associated VDR single-nucleotide polymorphisms were modified by age at diagnosis, prostate cancer aggressiveness, first-degree family history of prostate cancer, or vitamin D intake. Genotypes of CYP27B1 and CYP24A1 were not associated with prostate cancer risk. Our findings suggest that polymorphisms in the VDR gene may be associated with prostate cancer risk and, therefore, that the vitamin D pathway might have an etiologic role in the development of prostate cancer. (Cancer Epidemiol Biomarkers Prev 2007;16(10):1990–9)

An increasing number of studies show a chemopreventive role of vitamin D in prostate cancer; however, the association remains equivocal (1-7). Experimental studies have shown prostate cancer growth inhibition by vitamin D as the result of an increase in apoptosis, inhibition of cell-cycle progression, interaction with the insulin-like growth factor growth factor axis, and a reduction of metastatic potential, among other potential mechanisms (8). If vitamin D is an important factor in the development of prostate cancer, then it might be expected that common functional sequence polymorphisms in the genes that influence vitamin D metabolism and function could predispose to the disease.

The cellular effects of 1,25-dihydroxy-vitamin D [1,25(OH)2D], the hormonally active form of vitamin D, are primarily mediated through binding to the nuclear vitamin D receptor (VDR), which regulates the transcription of numerous genes including proto-oncogenes and tumor suppressor genes (9). A large number of studies have related common genetic variants in VDR to risk of prostate cancer (reviewed in refs. 10, 11). These studies have focused mainly on five polymorphisms: FokI (rs10735810), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) restriction sites and the poly-A microsatellite, all of which except for the FokI (rs10735810) variant are in strong linkage disequilibrium (LD) within Caucasian populations. Several studies have shown significant associations with one or more of these five variants; however, overall results remain inconsistent. Recent comparative, high-resolution analysis of LD in the VDR gene showed substantial genetic variability and showed that the commonly studied VDR variants provide very incomplete coverage of the variation within this gene, which spans 63.4 kb (12).

The genes CYP27B1 and CYP24A1 are directly involved in vitamin D metabolism and hence are interesting genes of the vitamin D pathway. CYP27B1 encodes for 1-α-hydroxylase, which converts 25-hydroxy-vitamin D [25(OH)D] into the active vitamin D metabolite 1,25(OH)2D. CYP24A1 encodes for 24-hydroxylase, the enzyme that catalyzes the inactivation of 1,25(OH)2D. Only two studies investigated thus far the effect of the CYP27B1 (13) and CYP24A15

polymorphisms on prostate cancer.

Despite the large number of previously conducted studies, genetic variation in VDR has not been systematically analyzed with regard to prostate cancer, and very limited data are available on CYP27B1 and CYP24A1 polymorphisms. To address this, we conducted a population-based case-control study to comprehensively examine the relation between tag single-nucleotide polymorphisms (tag SNP) in three key genes in the vitamin D pathway, VDR, CYP27B1, and CYP24A1, and prostate cancer risk.

Study Population

We used data from a population-based case-control study of risk factors for prostate cancer in middle-aged, male residents of King County, Washington, which has previously been described (14). Because the initial study was designed to examine the risk of prostate cancer in middle-aged men, all males ages 40 to 59 years and a random 75% sample of patients ages 60 to 64 years were invited to participate. Cases were diagnosed with histologically confirmed prostate cancer between January 1, 1993 and December 31, 1996, and identified through the Seattle-Puget Sound Surveillance, Epidemiology, and End Results cancer registry. Control subjects were men without a self-reported history of prostate cancer who resided in King County, Washington, identified by random digit dialing, frequency matched to cases by 5-year age groups, and recruited evenly throughout the ascertainment period of the cases. There were 917 eligible cases of prostate cancer. Men who completed the interview (n = 752) were eligible for genotyping; 630 (69%) provided blood samples yielding sufficient DNA for genotyping. Of the 941 eligible controls, 703 men completed the interview and were eligible for genotyping; 565 (60%) provided blood samples.

Detailed information about demographics, individual behaviors, and medical history was obtained from a structured in-person interview. Consenting subjects each provided a blood sample for genotyping and completed a self-administered 99-item food frequency questionnaire and a supplement use survey, which included vitamin D in multivitamins only. Exposure information was collected up to the reference date (date of diagnosis for cases and an assigned date for controls that approximated the distribution of the cases' diagnosis dates). For cases, the cancer registry provided information on stage and Gleason score of prostate cancer at diagnosis.

Genotyping

Using a previously described approach (15), we selected tag SNPs that have r2 ≥ 0.8 with all common genetic variants (minor allele frequency ≥5% in Caucasian populations) in each of the three genes, VDR (12), CYP27B1,6

and CYP24A1.7 As we try to use the most comprehensive source of SNP discovery to select tag SNPs, we used resequencing data when available (VDR and CYP27B1). If such data were not available, we based SNP selection on HapMap data (CYP24A1). A total of 25 tag SNPs for VDR (chromosome 12q13, length 63.4 kb, 9 exons), 3 tag SNPs for CYP27B1 (chromosome 12q13, length 4.8 kb, 9 exons), and 20 tag SNPs for CYP24A1 (chromosome 20q13; length 20.5 kb, 12 exons) were chosen.

Genomic DNA was prepared using a standard alkaline lysis method followed by phenol-chloroform extraction and stored at −80°C. The Applied Biosystems (ABI) SNPlex Genotyping System was used to genotype SNPs in individual DNA samples. Proprietary GeneMapper software was used for calling alleles.8

The SNPlex assay could not be designed for 5 tag SNPs and 3 tag SNPs failed genotyping after the design stage; accordingly, we present results for 22 tag SNPs for VDR (Fig. 1), 2 tag SNPs for CYP27B1, and 14 tag SNPs for CYP24A1. Quality control included genotyping of 76 blind duplicate samples, which revealed ≥99% agreement on genotyping calls across all tag SNPs assayed. The call rate was ≥97% for all but two SNPs (VDR rs2238139, 96%; CYP24A1 rs6127118, 95%). Genotype frequencies for all loci were consistent with Hardy-Weinberg proportions (P > 0.05) among Caucasian controls, the predominant ethnic group in this study, with the only exceptions of VDR rs2238139 (P = 0.004) and CYP24A1 rs13038432 (P < 0.001).

Figure 1.

Exon-intron and block structure of the VDR gene and position of genotyped tag SNPs.

Figure 1.

Exon-intron and block structure of the VDR gene and position of genotyped tag SNPs.

Close modal

Statistical Analysis

Pairwise LD was estimated between tag SNPs based on D and r2 values (16) using Haploview software (version 3.2; ref. 17). For CYP27B1 and CYP24A1, LD block structure was evaluated according to the criteria defined by Gabriel et al. (18) using Haploview. The LD block structure for VDR has previously been examined (12). For each haplotype block, haplotype frequencies and associated measures of effect were estimated using HaploStats (version 1.2.1)9

for R (version 2.1.0; ref. 19), which uses the expectation-maximization algorithm to estimate haplotype frequencies and an iterative two-step expectation-maximization model to estimate the association between individual haplotypes and risk, assuming an additive model (20, 21). A global score statistic, adjusted for age and ethnicity, was used to evaluate the overall difference in haplotype frequencies between cases and controls.

Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (95% CI), adjusted for age and ethnicity, for the association between individual VDR, CYP27B1, and CYP24A1 tag SNPs and prostate cancer risk by using SAS software version 9.1 (22). Factors that changed the risk estimates by >10% were considered potential confounders: first-degree family history of prostate cancer; prostate-specific antigen (PSA) testing history (number of PSA tests done in the 5 years before reference date); history of benign prostatic hyperplasia; education; body mass index (kg/m2); physical activity; smoking history; alcohol consumption; and dietary and supplemental intake of vitamin D and calcium did not alter the observed associations. Genotypes were evaluated using indicator variables and the fit of an additive genetic model (analogous to the P value for linear trend) was assessed by using a single continuous variable that coded for the number of variant alleles present. We assessed the robustness of the findings by calculating the false-discovery rate (23), defined as the expected ratio of erroneous rejections of the null hypothesis to the total number of rejected hypotheses, which yields a P value corrected for multiple comparisons.

Individual tag SNP results were stratified by age (median, 58 years), first-degree family history of prostate cancer (yes/no), and ethnicity (Caucasian/African American) because younger men, men with a family history of disease, as well as African American men could be at an increased risk based on genetic background. Because associations may differ according to clinical characteristics of the tumor, we stratified by stage of disease, Gleason score, and a composite variable reflecting prostate cancer aggressiveness {defined as less aggressive [local stage, Gleason score 2-6 or 7 (3 + 4), and diagnostic serum PSA <20 ng/mL] or more aggressive [regional/distant stage, Gleason score 7 (4 + 3) or 8-10, and serum PSA ≥20 ng/mL]}. Lastly, associations were examined by total vitamin D (total daily intake from diet and supplements; median, 400 IU/d) because circulating levels of vitamin D may modify the association between VDR polymorphisms and prostate cancer risk.

Most prostate cancer cases were <60 years of age at diagnosis and cases were slightly older than controls (average, 57.5 and 56.7 years, respectively; Table 1). The study population was predominately Caucasian and the percentage of African Americans was higher among cases. Compared with controls, cases were more likely to have a first-degree family history of prostate cancer, a history of benign prostatic hyperplasia, and had a PSA test in the last 5 years. Education, body mass index, physical activity, smoking history, alcohol consumption, and total vitamin D and calcium intake were comparable for cases and controls. The majority of cases was diagnosed with localized stage disease (73%), had moderate grade [Gleason score 5-7 (3 + 4)] tumors (76%), and had less aggressive disease (65%).

Table 1.

Distributions and age-adjusted ORs and 95% CIs for selected characteristics among prostate cancer cases and controls, King County, Washington, 1993-1996

CharacteristicNo. cases (%), n = 630No. controls (%), n = 565OR (95% CI)*
Age (y)    
    40-49 40 (6.4) 51 (9.0) 1.00 (reference) 
    50-54 129 (20.5) 114 (20.2) 1.44 (0.89-2.34) 
    55-59 210 (33.3) 209 (37.0) 1.28 (0.81-2.02) 
    60-64 251 (39.8) 191 (33.8) 1.68 (1.06-2.64) 
Race    
    Caucasian 597 (94.8) 549 (97.2) 1.00 (reference) 
    African American 33 (5.2) 16 (2.8) 1.88 (1.02-3.46) 
Family history of prostate cancer    
    No 509 (80.8) 506 (89.6) 1.00 (reference) 
    Yes 121 (19.2) 59 (10.4) 2.04 (1.46-2.86) 
Number of PSA tests    
    None 173 (27.5) 375 (66.4) 1.00 (reference) 
    1-2 219 (34.8) 112 (19.8) 4.21 (3.14-5.64) 
    3-4 128 (20.3) 47 (8.3) 5.86 (4.00-8.58) 
    ≥5 110 (17.5) 31 (5.5) 7.61 (4.89-11.83) 
Total vitamin D (μg/d)    
    ≤4.7 121 (19.2) 122 (21.6) 1.00 (reference) 
    4.8-8.8 125 (19.8) 119 (21.1) 1.05 (0.74-1.50) 
    8.9-72.0 130 (20.6) 118 (20.9) 1.10 (0.77-1.58) 
    >72.0 151 (24.0) 123 (21.8) 1.21 (0.85-1.71) 
Stage of disease at diagnosis    
    Local 457 (72.5)   
    Regional 145 (23.0)   
    Distant 20 (3.2)   
    Unknown 8 (1.3)   
Gleason score    
    Low (2-4) 66 (10.5)   
    Moderate [5-7 (3 + 4)] 479 (76.0)   
    High [7 (4 + 3), 8-10] 82 (13.0)   
    Missing 3 (0.5)   
Cancer aggressiveness    
    Less aggressive§ 409 (64.9)   
    More aggressive 221 (35.1)   
CharacteristicNo. cases (%), n = 630No. controls (%), n = 565OR (95% CI)*
Age (y)    
    40-49 40 (6.4) 51 (9.0) 1.00 (reference) 
    50-54 129 (20.5) 114 (20.2) 1.44 (0.89-2.34) 
    55-59 210 (33.3) 209 (37.0) 1.28 (0.81-2.02) 
    60-64 251 (39.8) 191 (33.8) 1.68 (1.06-2.64) 
Race    
    Caucasian 597 (94.8) 549 (97.2) 1.00 (reference) 
    African American 33 (5.2) 16 (2.8) 1.88 (1.02-3.46) 
Family history of prostate cancer    
    No 509 (80.8) 506 (89.6) 1.00 (reference) 
    Yes 121 (19.2) 59 (10.4) 2.04 (1.46-2.86) 
Number of PSA tests    
    None 173 (27.5) 375 (66.4) 1.00 (reference) 
    1-2 219 (34.8) 112 (19.8) 4.21 (3.14-5.64) 
    3-4 128 (20.3) 47 (8.3) 5.86 (4.00-8.58) 
    ≥5 110 (17.5) 31 (5.5) 7.61 (4.89-11.83) 
Total vitamin D (μg/d)    
    ≤4.7 121 (19.2) 122 (21.6) 1.00 (reference) 
    4.8-8.8 125 (19.8) 119 (21.1) 1.05 (0.74-1.50) 
    8.9-72.0 130 (20.6) 118 (20.9) 1.10 (0.77-1.58) 
    >72.0 151 (24.0) 123 (21.8) 1.21 (0.85-1.71) 
Stage of disease at diagnosis    
    Local 457 (72.5)   
    Regional 145 (23.0)   
    Distant 20 (3.2)   
    Unknown 8 (1.3)   
Gleason score    
    Low (2-4) 66 (10.5)   
    Moderate [5-7 (3 + 4)] 479 (76.0)   
    High [7 (4 + 3), 8-10] 82 (13.0)   
    Missing 3 (0.5)   
Cancer aggressiveness    
    Less aggressive§ 409 (64.9)   
    More aggressive 221 (35.1)   
*

Adjusted for age.

PSA tests done in the previous 5 y before reference date.

Total daily intake from diet and supplements; missing information for 83 controls and 103 cases.

§

Local stage, Gleason score 2-6 or 7 (3 + 4), and diagnostic serum PSA <20 ng/mL.

Regional/distant stage, Gleason score 7 (4 + 3) or 8-10, or serum PSA ≥20 ng/mL.

None of the VDR or CYP24A1 haplotypes were significantly associated with prostate cancer risk when compared with men who carried the most common haplotype within each block (Table 2; the two CYP27B1 SNPs did not fall in one haplotype block). Global tests for any block also indicated a lack of an association.

Table 2.

ORs and 95% CIs for common tag SNP haplotypes in vitamin D receptor (VDR), CYP24A1 (24-hydroxylase), and risk of prostate cancer

Tag SNP haplotypesHaplotype distribution
OR (95% CI)*PGlobal P
CasesControls
VDR      
    Block B,§      
        T_C_A_G_C_T_T_G_C_A 0.20 0.22 1.00 (reference)  0.17 
        G_T_G_A_C_T_C_C_T_A 0.11 0.11 1.01 (0.74-1.39) 0.95  
        G_T_G_A_C_T_T_C_T_A 0.06 0.06 1.07 (0.70-1.62) 0.76  
        G_T_G_A_T_T_T_C_T_A 0.06 0.06 1.28 (0.83-1.97) 0.26  
        G_T_G_A_T_T_T_C_T_G 0.09 0.07 1.35 (0.95-1.93) 0.10  
        T_C_A_G_C_T_T_C_T_A 0.09 0.09 1.02 (0.72-1.43) 0.93  
        Rare 0.40 0.40    
    Block C,**      
        T_G_A_T_C_C_C_A_G_C 0.14 0.14 1.00 (reference)  0.58 
        C_C_T_C_C_C_C_C_C_C 0.09 0.08 1.10 (0.76-1.58) 0.62  
        C_G_A_T_T_C_C_A_G_C 0.05 0.08 0.63 (0.41-0.96) 0.03  
        T_C_A_C_C_C_C_C_C_C 0.06 0.05 1.19 (0.76-1.84) 0.44  
        T_G_A_C_T_T_T_C_C_C 0.05 0.06 1.03 (0.64-1.65) 0.91  
        Rare 0.66 0.66    
CYP24A1      
    Block A††      
        T_A 0.47 0.49 1.00 (reference)  0.57 
        C_A 0.31 0.31 1.01 (0.83-1.22) 0.94  
        C_G 0.22 0.20 1.11 (0.89-1.38) 0.35  
    Block B‡‡      
        G_C_G 0.54 0.54 1.00 (reference)  0.55 
        A_C_G 0.09 0.09 1.06 (0.75-1.49) 0.75  
        A_T_G 0.11 0.09 1.30 (0.96-1.77) 0.09  
        G_C_C 0.24 0.25 0.94 (0.77-1.16) 0.57  
        Rare 0.02 0.03    
    Block C§§      
        C_T 0.46 0.49 1.00 (reference)  0.30 
        T_C 0.14 0.13 1.19 (0.99-1.43) 0.19  
        T_T 0.40 0.38 1.14 (0.96-1.36) 0.29  
    Block D∥∥      
        T_G 0.48 0.45 1.00 (reference)  0.25 
        C_A 0.24 0.24 0.98 (0.80-1.21) 0.88  
        T_A 0.27 0.31 0.82 (0.67-1.01) 0.06  
        Rare 0.01 0.01    
Tag SNP haplotypesHaplotype distribution
OR (95% CI)*PGlobal P
CasesControls
VDR      
    Block B,§      
        T_C_A_G_C_T_T_G_C_A 0.20 0.22 1.00 (reference)  0.17 
        G_T_G_A_C_T_C_C_T_A 0.11 0.11 1.01 (0.74-1.39) 0.95  
        G_T_G_A_C_T_T_C_T_A 0.06 0.06 1.07 (0.70-1.62) 0.76  
        G_T_G_A_T_T_T_C_T_A 0.06 0.06 1.28 (0.83-1.97) 0.26  
        G_T_G_A_T_T_T_C_T_G 0.09 0.07 1.35 (0.95-1.93) 0.10  
        T_C_A_G_C_T_T_C_T_A 0.09 0.09 1.02 (0.72-1.43) 0.93  
        Rare 0.40 0.40    
    Block C,**      
        T_G_A_T_C_C_C_A_G_C 0.14 0.14 1.00 (reference)  0.58 
        C_C_T_C_C_C_C_C_C_C 0.09 0.08 1.10 (0.76-1.58) 0.62  
        C_G_A_T_T_C_C_A_G_C 0.05 0.08 0.63 (0.41-0.96) 0.03  
        T_C_A_C_C_C_C_C_C_C 0.06 0.05 1.19 (0.76-1.84) 0.44  
        T_G_A_C_T_T_T_C_C_C 0.05 0.06 1.03 (0.64-1.65) 0.91  
        Rare 0.66 0.66    
CYP24A1      
    Block A††      
        T_A 0.47 0.49 1.00 (reference)  0.57 
        C_A 0.31 0.31 1.01 (0.83-1.22) 0.94  
        C_G 0.22 0.20 1.11 (0.89-1.38) 0.35  
    Block B‡‡      
        G_C_G 0.54 0.54 1.00 (reference)  0.55 
        A_C_G 0.09 0.09 1.06 (0.75-1.49) 0.75  
        A_T_G 0.11 0.09 1.30 (0.96-1.77) 0.09  
        G_C_C 0.24 0.25 0.94 (0.77-1.16) 0.57  
        Rare 0.02 0.03    
    Block C§§      
        C_T 0.46 0.49 1.00 (reference)  0.30 
        T_C 0.14 0.13 1.19 (0.99-1.43) 0.19  
        T_T 0.40 0.38 1.14 (0.96-1.36) 0.29  
    Block D∥∥      
        T_G 0.48 0.45 1.00 (reference)  0.25 
        C_A 0.24 0.24 0.98 (0.80-1.21) 0.88  
        T_A 0.27 0.31 0.82 (0.67-1.01) 0.06  
        Rare 0.01 0.01    
*

Unconditional logistic regression model adjusted for age and ethnicity.

Global test for association using likelihood ratio statistic.

Loci of tag SNPs are written 3′ to 5′ and include the following: rs739837, rs731236, rs1544410, rs2239182, rs2107301, rs2239181, rs2238139, rs3782905, rs7974708, and rs11168275.

§

Men missing 17 or more alleles were excluded (cases = 26, controls = 4).

Frequency of any of the other haplotypes was <5%.

Loci of tag SNPs are written 3′ to 5′ and include the following: rs2408876, rs2238135, rs10875694, rs11168287, rs7299460, rs11168314, rs4073729, rs4760674, rs6823, and rs2071358.

**

Men missing 17 or more alleles were excluded (cases = 18, controls = 8).

††

Loci of tag SNPs are written 3′ to 5′ and include the following: rs927650 and rs912505.

‡‡

Loci of tag SNPs are written 3′ to 5′ and include the following: rs6127118, rs6068816, and rs2762939.

§§

Loci of tag SNPs are written 3′ to 5′ and include the following: rs2244719 and rs3787557.

∥∥

Loci of tag SNPs are written 3′ to 5′ and include the following: rs4809960 and rs2296241.

Examining individual polymorphisms, risk of total prostate cancer was significantly associated in a dose-dependent manner with two tag SNPs in the VDR gene (Table 3). Men who were homozygote for the rare allele for VDR tag SNP rs2107301 had a 2.5-fold higher risk of prostate cancer compared with those who were homozygote for the common allele (95% CI, 1.52-4.00; P = 0.002). Furthermore, men who were homozygote for the rare allele for the VDR tag SNP rs2238135 had a 2-fold higher risk of prostate cancer compared with those who were homozygote for the common allele (95% CI, 1.17-3.26; P = 0.007). These two tag SNPs were located in two different LD blocks in the VDR gene and, accordingly, the LD between these two SNPs was low (D = 0.004). The estimate from the test for trend was borderline statistically significant after adjustment by the false-discovery rate method (P = 0.002). Simultaneous adjustment for the VDR tag SNPs rs2107301 or rs2238135 in a model did not affect association of the other SNP, indicating independent effects for each of these two SNPs (data not shown). We examined whether the combined effects of VDR tag SNPs rs2107301 and rs2238135 were associated with a substantial elevated risk of prostate cancer, but found no evidence of an interaction (P = 0.30). We also observed a suggestive association between VDR TaqI and prostate cancer risk; men carrying one or two variant alleles had a 23% lower risk. However, this result did not remain significant after adjustment for multiple comparisons by the false-discovery rate method. None of the tag SNPs in the CYP27B1 or CYP24A1 gene was significantly associated with prostate cancer risk.

Table 3.

ORs and 95% CIs for vitamin D receptor (VDR), CYP27B1 (1-α-hydroxylase), and CYP24A1 (24-hydroxylase) tag SNPs and risk of prostate cancer

Tag SNP rs # (location)GenotypeCases* (n)Controls* (n)OR (95% CI)Ptrend
VDR      
    Block A      
        rs2544038 (23,295 bp 3′ of STP) TT 197 192 1.00 (reference)  
 CT 282 246 1.13 (0.87-1.47)  
 CC 102 105 0.99 (0.70-1.39) 0.88 
 CT+CC   1.09 (0.85-1.39)  
    Block B      
        rs739837 (Ex11+568) TT 150 149 1.00 (reference)  
 GT 289 282 1.02 (0.77-1.34)  
 GG 141 121 1.18 (0.84-1.64) 0.35 
 GT+GG   1.06 (0.82-1.39)  
        rs731236, TaqI (Ex11+32) TT 238 188 1.00 (reference)  
 CT 254 272 0.73 (0.56-0.95)  
 CC 94 85 0.91 (0.64-1.29) 0.22 
 CT+CC   0.77 (0.60-0.99)  
        rs1544410, BsmI (IVS10+283) GG 221 177 1.00 (reference)  
 AG 279 280 0.77 (0.59-0.99)  
 AA 90 84 0.87 (0.61-1.25) 0.21 
 AG+AA   0.79 (0.62-1.01)  
        rs2239182 (IVS5+3419) GG 149 138 1.00 (reference)  
 AG 275 281 0.89 (0.67-1.18)  
 AA 146 132 1.05 (0.76-1.47) 0.77 
 AG+AA   0.94 (0.72-1.23)  
        rs2107301 (IVS5+3260) CC 300 313 1.00 (reference)  
 CT 217 202 1.11 (0.87-1.43)  
 TT 60 27 2.47 (1.52-4.00) 0.002 
 CT+TT   1.27 (1.00-1.61)  
        rs2239181 (IVS5+2881) TT 447 425 1.00 (reference)  
 GT 116 109 1.00 (0.74-1.34)  
 GG 1.35 (0.36-5.11) 0.88 
 GT+GG   1.01 (0.75-1.35)  
        rs2238139 (IVS5+2550) TT 358 319 1.00 (reference)  
 CT 175 210 0.75 (0.58-0.96)  
 CC 26 15 1.61 (0.83-3.10) 0.35 
 CT+CC   0.80 (0.63-1.03)  
        rs3782905 (IVS4+6584) CC 278 257 1.00 (reference)  
 CG 248 231 0.99 (0.77-1.27)  
 GG 58 59 0.93 (0.62-1.39) 0.75 
 CG+GG   0.98 (0.77-1.23)  
        rs7974708 (IVS4+2586) TT 271 236 1.00 (reference)  
 CT 235 243 0.86 (0.67-1.11)  
 CC 74 67 0.99 (0.68-1.45) 0.60 
 CT+CC   0.89 (0.70-1.13)  
        rs11168275 (IVS4+476) AA 339 310 1.00 (reference)  
 AG 220 213 0.94 (0.74-1.21)  
 GG 23 28 0.75 (0.42-1.33) 0.36 
 AG+GG   0.92 (0.73-1.17)  
    No block      
        rs10735810, FokI (Ex4+4) GG 222 222 1.00 (reference)  
 AG 261 245 1.09 (0.84-1.41)  
 AA 100 85 1.22 (0.87-1.73) 0.25 
 AG+AA   1.12 (0.88-1.43)  
    Block C      
        rs2408876 (IVS3−667) TT 200 203 1.00 (reference)  
 CT 287 245 1.19 (0.92-1.54)  
 CC 91 93 0.99 (0.70-1.41) 0.72 
 CT+CC   1.14 (0.89-1.45)  
        rs2238135 (IVS2−1633) GG 310 316 1.00 (reference)  
 CG 239 196 1.22 (0.95-1.56)  
 CC 48 25 1.95 (1.17-3.26) 0.007 
 CG+CC   1.30 (1.03-1.65)  
        rs10875694 (IVS2−5103) AA 384 376 1.00 (reference)  
 AT 180 155 1.14 (0.88-1.49)  
 TT 20 12 1.75 (0.84-3.63) 0.12 
 AT+TT   1.18 (0.92-1.52)  
        rs11168287 (IVS2−8206) TT 149 130 1.00 (reference)  
 CT 276 293 0.85 (0.64-1.13)  
 CC 154 121 1.15 (0.82-1.61) 0.42 
 CT+CC   0.94 (0.71-1.23)  
        rs7299460 (IVS1+2470) CC 273 250 1.00 (reference)  
 CT 240 235 0.90 (0.70-1.16)  
 TT 53 57 0.72 (0.46-1.11) 0.13 
 CT+TT   0.87 (0.68-1.10)  
        rs11168314 (−27390) CC 356 336 1.00 (reference)  
 CT 192 179 1.00 (0.78-1.29)  
 TT 23 25 0.86 (0.48-1.56) 0.77 
 CT+TT   0.98 (0.77-1.26)  
        rs4073729 (−20950) CC 402 379 1.00 (reference)  
 CT 168 147 1.04 (0.80-1.35)  
 TT 16 1.95 (0.82-4.66) 0.33 
 CT+TT   1.09 (0.84-1.40)  
        rs4760674 (−1005) CC 224 198 1.00 (reference)  
 AC 282 259 0.99 (0.76-1.28)  
 AA 78 82 0.88 (0.61-1.26) 0.55 
 AC+AA   0.96 (0.75-1.23)  
        rs6823 (Ex7−250) CC 196 164 1.00 (reference)  
 CG 283 262 0.91 (0.70-1.19)  
 GG 112 116 0.83 (0.59-1.15) 0.26 
 CG+GG   0.89 (0.69-1.14)  
        rs2071358 (740 bp 3′ of STP) CC 382 362 1.00 (reference)  
 AC 176 161 1.04 (0.80-1.34)  
 AA 13 14 0.82 (0.38-1.78) 0.98 
 AC+AA   1.02 (0.79-1.31)  
CYP27B1      
    Block A      
        rs3782130 CC 260 260 1.00 (reference)  
 CG 251 229 1.14 (0.89-1.46)  
 GG 75 61 1.30 (0.89-1.90) 0.14 
 CG+GG   1.17 (0.92-1.48)  
    No block      
        rs4646537 (IVS8+113) AA 546 497 1.00 (reference)  
 AC 38 43 0.76 (0.48-1.21)  
 CC N/A  
 AC+CC   0.72 (0.46-1.14)  
CYP24A1      
    Block A      
        rs927650 (IVS11+967) CC 165 143 1.00 (reference)  
 CT 273 267 0.91 (0.68-1.21)  
 TT 129 128 0.91 (0.65-1.28) 0.58 
 CT+TT   0.91 (0.70-1.19)  
        rs912505 (IVS7−1179) AA 350 354 1.00 (reference)  
 AG 216 169 1.28 (1.00-1.65)  
 GG 23 27 0.81 (0.45-1.45) 0.33 
 AG+GG   1.22 (0.96-1.55)  
    Block B      
        rs6127118 (IVS7+204) GG 325 331 1.00 (reference)  
 AG 229 196 1.20 (0.93-1.53)  
 AA N/A  
        rs6068816 (Ex6+12) CC 454 443 1.00 (reference)  
 CT 118 93 1.26 (0.93-1.71)  
 TT 11 1.38 (0.55-3.46) 0.11 
 CT+TT   1.27 (0.95-1.71)  
        rs2762939 (IVS5−149) GG 319 300 1.00 (reference)  
 CG 212 196 1.01 (0.79-1.30)  
 CC 37 43 0.69 (0.42-1.12) 0.34 
 CG+CC   0.95 (0.75-1.21)  
    Block C      
        rs2244719 (IVS4−486) TT 186 147 1.00 (reference)  
 CT 274 252 0.88 (0.67-1.16)  
 CC 136 141 0.79 (0.57-1.09) 0.15 
 CT+CC   0.85 (0.65-1.10)  
        rs3787557 (IVS4−763) TT 427 418 1.00 (reference)  
 CT 154 120 1.29 (0.98-1.70)  
 CC 10 0.51 (0.17-1.51) 0.29 
 CT+CC   1.23 (0.94-1.61)  
    No block      
        rs2181874 (IVS4+1653) GG 339 314 1.00 (reference)  
 AG 199 201 0.91 (0.71-1.17)  
 AA 36 36 0.87 (0.53-1.42) 0.39 
 AG+AA 0.90 (0.71-1.14)    
    Block D      
        rs4809960 (IVS4+58) TT 329 323 1.00 (reference)  
 CT 230 184 1.26 (0.98-1.62)  
 CC 27 37 0.76 (0.45-1.28) 0.57 
 CT+CC   1.18 (0.93-1.50)  
        rs2296241 (Ex4+9) AA 152 157 1.00 (reference)  
 AG 285 275 1.04 (0.79-1.38)  
 GG 134 107 1.28 (0.91-1.79) 0.17 
 AG+GG   1.11 (0.85-1.44)  
    No block      
        rs2245153 (IVS3−179) TT 364 364 1.00 (reference)  
 CT 204 165 1.23 (0.95-1.58)  
 CC 15 25 0.59 (0.30-1.15) 0.73 
 CT+CC   1.14 (0.90-1.46)  
        rs2585428 (IVS3−670) GG 186 161 1.00 (reference)  
 AG 283 258 0.95 (0.72-1.25)  
 AA 114 125 0.78 (0.56-1.08) 0.15 
 AG+AA   0.89 (0.69-1.15)  
        rs13038432 (IVS3+814) AA 493 466 1.00 (reference)  
 AG 76 62 1.18 (0.82-1.69)  
 GG 10 11 0.90 (0.38-2.14) 0.60 
 AG+GG   1.14 (0.81-1.59)  
        rs6022999 (IVS3+103) AA 324 298 1.00 (reference)  
 AG 225 208 0.97 (0.76-1.24)  
 GG 37 42 0.67 (0.41-1.10) 0.23 
 AG+GG   0.92 (0.73-1.17)  
Tag SNP rs # (location)GenotypeCases* (n)Controls* (n)OR (95% CI)Ptrend
VDR      
    Block A      
        rs2544038 (23,295 bp 3′ of STP) TT 197 192 1.00 (reference)  
 CT 282 246 1.13 (0.87-1.47)  
 CC 102 105 0.99 (0.70-1.39) 0.88 
 CT+CC   1.09 (0.85-1.39)  
    Block B      
        rs739837 (Ex11+568) TT 150 149 1.00 (reference)  
 GT 289 282 1.02 (0.77-1.34)  
 GG 141 121 1.18 (0.84-1.64) 0.35 
 GT+GG   1.06 (0.82-1.39)  
        rs731236, TaqI (Ex11+32) TT 238 188 1.00 (reference)  
 CT 254 272 0.73 (0.56-0.95)  
 CC 94 85 0.91 (0.64-1.29) 0.22 
 CT+CC   0.77 (0.60-0.99)  
        rs1544410, BsmI (IVS10+283) GG 221 177 1.00 (reference)  
 AG 279 280 0.77 (0.59-0.99)  
 AA 90 84 0.87 (0.61-1.25) 0.21 
 AG+AA   0.79 (0.62-1.01)  
        rs2239182 (IVS5+3419) GG 149 138 1.00 (reference)  
 AG 275 281 0.89 (0.67-1.18)  
 AA 146 132 1.05 (0.76-1.47) 0.77 
 AG+AA   0.94 (0.72-1.23)  
        rs2107301 (IVS5+3260) CC 300 313 1.00 (reference)  
 CT 217 202 1.11 (0.87-1.43)  
 TT 60 27 2.47 (1.52-4.00) 0.002 
 CT+TT   1.27 (1.00-1.61)  
        rs2239181 (IVS5+2881) TT 447 425 1.00 (reference)  
 GT 116 109 1.00 (0.74-1.34)  
 GG 1.35 (0.36-5.11) 0.88 
 GT+GG   1.01 (0.75-1.35)  
        rs2238139 (IVS5+2550) TT 358 319 1.00 (reference)  
 CT 175 210 0.75 (0.58-0.96)  
 CC 26 15 1.61 (0.83-3.10) 0.35 
 CT+CC   0.80 (0.63-1.03)  
        rs3782905 (IVS4+6584) CC 278 257 1.00 (reference)  
 CG 248 231 0.99 (0.77-1.27)  
 GG 58 59 0.93 (0.62-1.39) 0.75 
 CG+GG   0.98 (0.77-1.23)  
        rs7974708 (IVS4+2586) TT 271 236 1.00 (reference)  
 CT 235 243 0.86 (0.67-1.11)  
 CC 74 67 0.99 (0.68-1.45) 0.60 
 CT+CC   0.89 (0.70-1.13)  
        rs11168275 (IVS4+476) AA 339 310 1.00 (reference)  
 AG 220 213 0.94 (0.74-1.21)  
 GG 23 28 0.75 (0.42-1.33) 0.36 
 AG+GG   0.92 (0.73-1.17)  
    No block      
        rs10735810, FokI (Ex4+4) GG 222 222 1.00 (reference)  
 AG 261 245 1.09 (0.84-1.41)  
 AA 100 85 1.22 (0.87-1.73) 0.25 
 AG+AA   1.12 (0.88-1.43)  
    Block C      
        rs2408876 (IVS3−667) TT 200 203 1.00 (reference)  
 CT 287 245 1.19 (0.92-1.54)  
 CC 91 93 0.99 (0.70-1.41) 0.72 
 CT+CC   1.14 (0.89-1.45)  
        rs2238135 (IVS2−1633) GG 310 316 1.00 (reference)  
 CG 239 196 1.22 (0.95-1.56)  
 CC 48 25 1.95 (1.17-3.26) 0.007 
 CG+CC   1.30 (1.03-1.65)  
        rs10875694 (IVS2−5103) AA 384 376 1.00 (reference)  
 AT 180 155 1.14 (0.88-1.49)  
 TT 20 12 1.75 (0.84-3.63) 0.12 
 AT+TT   1.18 (0.92-1.52)  
        rs11168287 (IVS2−8206) TT 149 130 1.00 (reference)  
 CT 276 293 0.85 (0.64-1.13)  
 CC 154 121 1.15 (0.82-1.61) 0.42 
 CT+CC   0.94 (0.71-1.23)  
        rs7299460 (IVS1+2470) CC 273 250 1.00 (reference)  
 CT 240 235 0.90 (0.70-1.16)  
 TT 53 57 0.72 (0.46-1.11) 0.13 
 CT+TT   0.87 (0.68-1.10)  
        rs11168314 (−27390) CC 356 336 1.00 (reference)  
 CT 192 179 1.00 (0.78-1.29)  
 TT 23 25 0.86 (0.48-1.56) 0.77 
 CT+TT   0.98 (0.77-1.26)  
        rs4073729 (−20950) CC 402 379 1.00 (reference)  
 CT 168 147 1.04 (0.80-1.35)  
 TT 16 1.95 (0.82-4.66) 0.33 
 CT+TT   1.09 (0.84-1.40)  
        rs4760674 (−1005) CC 224 198 1.00 (reference)  
 AC 282 259 0.99 (0.76-1.28)  
 AA 78 82 0.88 (0.61-1.26) 0.55 
 AC+AA   0.96 (0.75-1.23)  
        rs6823 (Ex7−250) CC 196 164 1.00 (reference)  
 CG 283 262 0.91 (0.70-1.19)  
 GG 112 116 0.83 (0.59-1.15) 0.26 
 CG+GG   0.89 (0.69-1.14)  
        rs2071358 (740 bp 3′ of STP) CC 382 362 1.00 (reference)  
 AC 176 161 1.04 (0.80-1.34)  
 AA 13 14 0.82 (0.38-1.78) 0.98 
 AC+AA   1.02 (0.79-1.31)  
CYP27B1      
    Block A      
        rs3782130 CC 260 260 1.00 (reference)  
 CG 251 229 1.14 (0.89-1.46)  
 GG 75 61 1.30 (0.89-1.90) 0.14 
 CG+GG   1.17 (0.92-1.48)  
    No block      
        rs4646537 (IVS8+113) AA 546 497 1.00 (reference)  
 AC 38 43 0.76 (0.48-1.21)  
 CC N/A  
 AC+CC   0.72 (0.46-1.14)  
CYP24A1      
    Block A      
        rs927650 (IVS11+967) CC 165 143 1.00 (reference)  
 CT 273 267 0.91 (0.68-1.21)  
 TT 129 128 0.91 (0.65-1.28) 0.58 
 CT+TT   0.91 (0.70-1.19)  
        rs912505 (IVS7−1179) AA 350 354 1.00 (reference)  
 AG 216 169 1.28 (1.00-1.65)  
 GG 23 27 0.81 (0.45-1.45) 0.33 
 AG+GG   1.22 (0.96-1.55)  
    Block B      
        rs6127118 (IVS7+204) GG 325 331 1.00 (reference)  
 AG 229 196 1.20 (0.93-1.53)  
 AA N/A  
        rs6068816 (Ex6+12) CC 454 443 1.00 (reference)  
 CT 118 93 1.26 (0.93-1.71)  
 TT 11 1.38 (0.55-3.46) 0.11 
 CT+TT   1.27 (0.95-1.71)  
        rs2762939 (IVS5−149) GG 319 300 1.00 (reference)  
 CG 212 196 1.01 (0.79-1.30)  
 CC 37 43 0.69 (0.42-1.12) 0.34 
 CG+CC   0.95 (0.75-1.21)  
    Block C      
        rs2244719 (IVS4−486) TT 186 147 1.00 (reference)  
 CT 274 252 0.88 (0.67-1.16)  
 CC 136 141 0.79 (0.57-1.09) 0.15 
 CT+CC   0.85 (0.65-1.10)  
        rs3787557 (IVS4−763) TT 427 418 1.00 (reference)  
 CT 154 120 1.29 (0.98-1.70)  
 CC 10 0.51 (0.17-1.51) 0.29 
 CT+CC   1.23 (0.94-1.61)  
    No block      
        rs2181874 (IVS4+1653) GG 339 314 1.00 (reference)  
 AG 199 201 0.91 (0.71-1.17)  
 AA 36 36 0.87 (0.53-1.42) 0.39 
 AG+AA 0.90 (0.71-1.14)    
    Block D      
        rs4809960 (IVS4+58) TT 329 323 1.00 (reference)  
 CT 230 184 1.26 (0.98-1.62)  
 CC 27 37 0.76 (0.45-1.28) 0.57 
 CT+CC   1.18 (0.93-1.50)  
        rs2296241 (Ex4+9) AA 152 157 1.00 (reference)  
 AG 285 275 1.04 (0.79-1.38)  
 GG 134 107 1.28 (0.91-1.79) 0.17 
 AG+GG   1.11 (0.85-1.44)  
    No block      
        rs2245153 (IVS3−179) TT 364 364 1.00 (reference)  
 CT 204 165 1.23 (0.95-1.58)  
 CC 15 25 0.59 (0.30-1.15) 0.73 
 CT+CC   1.14 (0.90-1.46)  
        rs2585428 (IVS3−670) GG 186 161 1.00 (reference)  
 AG 283 258 0.95 (0.72-1.25)  
 AA 114 125 0.78 (0.56-1.08) 0.15 
 AG+AA   0.89 (0.69-1.15)  
        rs13038432 (IVS3+814) AA 493 466 1.00 (reference)  
 AG 76 62 1.18 (0.82-1.69)  
 GG 10 11 0.90 (0.38-2.14) 0.60 
 AG+GG   1.14 (0.81-1.59)  
        rs6022999 (IVS3+103) AA 324 298 1.00 (reference)  
 AG 225 208 0.97 (0.76-1.24)  
 GG 37 42 0.67 (0.41-1.10) 0.23 
 AG+GG   0.92 (0.73-1.17)  
*

Numbers of cases or controls do not equal total because of missing genotypes.

Unconditional logistic regression model adjusted for age and ethnicity.

Analysis for linear trend according to the number of variant alleles present.

Examination of the individual tag SNPs for VDR, CYP27B1, or CYP24A1 by age, first-degree family history of prostate cancer, prostate cancer aggressiveness, or total vitamin D intake did not reveal any appreciable heterogeneity of the risk estimates (data not shown). Restricting analyses to Caucasians did not substantially change the estimates. For example, comparing the homozygous rare allele to the homozygous common allele, the risk of prostate cancer among Caucasians at VDR loci rs2107301 (cases = 545) and rs2238135 (cases = 565) was 2.45 (95% CI, 1.51-3.98; P = 0.003) and 2.01 (95% CI, 1.18-3.42; P = 0.01), respectively.

Our systematic analysis of genetic variation in three key genes of the vitamin D pathway showed that risk of prostate cancer was significantly associated in a dose-dependent manner with two VDR tag SNPs (rs2107301 and rs2238135). We found no evidence that the two associated VDR SNPs have an effect on the age at diagnosis or prostate cancer aggressiveness. There was also no evidence that their association was modified by the first-degree family history of prostate cancer or dietary vitamin D intake. Tag SNPs in CYP27B1 and CYP24A1 and haplotypes in VDR and CYP24A1 were not associated with prostate cancer risk.

The nuclear receptor VDR is a member of the steroid hormone receptor superfamily of transcriptional regulators. On binding to 1,25(OH)2D, VDR regulates the transcription of numerous target genes by direct binding to the promoter/enhancer sequence elements of these genes. The VDR gene encompasses two promoter regions, eight protein-coding exons (2-9), and six untranslated exons (1a-1f; Fig. 1). The presence of VDR has been shown to be essential for growth inhibitory effects of 1,25(OH)2D (24) and VDR is expressed in both normal and malignant prostatic epithelial cells (25, 26). Five common VDR polymorphisms have intensively been studied. As summarized in two recent meta-analyses (10, 11) including 26 studies, overall, these studies do not support an effect of any of the five polymorphisms on risk of prostate cancer, which is consistent with our findings for BsmI (rs1544410), TaqI (rs731236), and FokI (rs10735810). However, our study indicated an association of two variant alleles located in introns 2 and 3, which remained borderline significant after adjusting for multiple comparisons. Both tag SNPs rs2107301 and rs2238135 are located in different LD blocks, and combined analysis suggested independent effects for each SNP. These two SNPs are not located in evolutionary conserved regions or known splicing sites; therefore, it is possible that these SNPs are in LD with functional polymorphisms. Although both significant VDR SNPs were located within a separate haplotype block, we observed no significant association with prostate cancer risk for any haplotype. However, this is not surprising because the haplotype analysis was conducted under the additive model and we observed a significant genotype association under the dominant model. Furthermore, possibly due to the large number of tag SNPs per haplotype block (n = 10), a large fraction of haplotypes were rare (<5%) and lumped together (40% and 66% in blocks 1 and 2 of the VDR gene, respectively). In contrast to our study, no association between rs2107301 and prostate cancer risk was observed in a hospital-based case-control study of prostate cancer [n = 430; OR for TT versus CC, 1.34 (95% CI, 0.65-2.73); P = 0.43; ref. 27]. As it has been shown that vitamin D inhibits growth of benign prostatic hyperplasia in cell culture studies (28), it is possible that genetic variants of VDR affect risk of benign prostatic hyperplasia. Therefore, the use of benign prostatic hyperplasia controls may have attenuated any associations between VDR polymorphisms and prostate cancer risk. Furthermore, recent summary data from a genome-wide scan, the Cancer Genetic Markers of Susceptibility, including 1,188 prostate cancer cases, have become publicly available.5

This genome-wide study observed no association with prostate cancer for any of the SNPs genotyped within the VDR gene, including rs2107301, which was significantly associated in our study.5 The discrepancy between studies may be explained, in part, by the use of early-onset compared with late-onset cases. Our study included men ages 40 to 64 years; Cancer Genetic Markers of Susceptibility included men ages 55 to 74 years. Early-onset cases may be enriched for cases that are related to genetic risk factors; however, our results require further corroboration.

CYP27B1, which encodes for the vitamin D activating enzyme 1-α-hydroxylase, and CYP24A1, which encodes for the vitamin D–deactivating enzyme 24-hydroxylase, are both expressed in prostate epithelial cells (29). Consistent with this finding, a similar antiproliferative effect was described for 25(OH)D as compared with 1,25(OH)2D in human prostate cancer cells in primary cultures that express 1-α-hydroxylase (30-32). In prostate cancer cells, 1-α-hydroxylase activity is down-regulated whereas high levels of 24-hydroxylase are found in prostate cancer cells (31, 33), suggesting lower concentration of the metabolically active form of vitamin D in malignant cells.

Findings for CYP27B1 and CYP24A1 variants have not been widely reported. A single hospital-based case-control study with 245 prostate cancer cases observed no association between CYP27B1 SNPs (−1260 C>A, +2838 T>C, +3545 A>C) and prostate cancer risk (13). In addition, the genome-wide scan for prostate cancer found no significant association with prostate cancer risk for CYP27B1 (including rs4646537) or CYP24A1 (including rs927650, rs912505, rs6068816, rs3787557, and rs4809960).5

Overall, these studies, including ours, do not provide evidence for a major effect of the CYP27B1 and CYP24A1 polymorphisms on prostate cancer risk. Given the sample size of these studies, we cannot rule out any weak associations because the studies were only powered to observe moderate effect sizes. Furthermore, it is possible that genetic variants may mediate prostate cancer risk via a mechanism involving availability of 1,25(OH)2D (e.g., certain variants may only be relevant in men with vitamin D deficiency, a common condition with aging; refs. 34, 35). We tested for interaction with intake of vitamin D; however, we only had information on dietary vitamin D and vitamin D from multivitamins and had no information on individual vitamin D supplements and, importantly, sun exposure (UV-B radiation), the major source of vitamin D (36). The importance of considering vitamin D exposure is supported by findings for significant interactions of VDR polymorphisms and serum vitamin D concentration, an integrative measure of endogenous vitamin D production via UV-B radiation and vitamin D intake, and interaction of VDR and sun exposure (37-39).

Prostate cancer occurs more frequently among African Americans, and this characteristic is consistent with a role for vitamin D deficiency in the etiology of this disease (40). In addition, different genotype distributions for Caucasians and African Americans have been observed (12); thus, genetic polymorphisms in vitamin D–related genes may partly explain variations in prostate cancer risk among ethnic groups. In our study, associations were similar when analyses were restricted to Caucasians and when all men were considered. Given the small number of African American men (n = 49) in our study, we were not able to specifically investigate the effect of genetic variants among this group.

The strengths of our study include the comprehensive analysis of common genetic variants in VDR, CYP27B1, and CYP24A1; its population-based design; the relatively large sample size; the use of early-onset cases (which may be the more important phenotype related to genetic risk factors); and the ability to stratify the data by potential effect modifiers and clinical features of disease.

The potential for selection bias, a possible limitation of our study design, may be limited because it is unlikely that the genotype of the selected vitamin D–related genes is related to study participation except for the less likely event that VDR tag SNPs are linked to unknown SNPs that are associated with behavior or risk factors affecting participation rates. Furthermore, genotyping results were only available for a subset of cases and controls; however, we observed no significant differences in disease characteristics or pertinent prostate cancer risk factors, including age and family history of disease, between genotyped men and all eligible men. Despite our effort to comprehensively investigate the genetic variation in these three genes, the SNPlex assay could not be designed for five tag SNPs and three tag SNPs failed genotyping after the design stage; these tag SNPs could potentially be associated with prostate cancer risk. Lastly, our analysis was mainly among Caucasian men, and results may not be generalizable to other ethnic groups.

With more complete coverage of genetic variation in vitamin D pathway genes compared with previous studies, our findings suggest that polymorphisms in the VDR gene may be associated with prostate cancer risk and, therefore, that the vitamin D pathway might have an etiologic role in the development of prostate cancer. However, given the discrepancies with other studies on VDR polymorphisms and prostate cancer, these results require further corroboration in large statistically powerful sample collections.

Grant support: Grants RO1 CA56678, P50 CA97186, K22 CA118421, and CA94880 from the National Cancer Institute, NIH, Department of Health and Human Services and the Intramural Program of the National Human Genome Research Institute. S. Nejentsev is a Diabetes Research and Wellness Foundation Non-Clinical Fellow.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Ilir Agalliu and Claudia Salinas for their help with data management and valuable comments, and all the men for their time and cooperation in participating in this study.

1
Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland).
Cancer Causes Control
2000
;
11
:
847
–52.
2
Corder EH, Guess HA, Hulka BS, et al. Vitamin D and prostate cancer: a prediagnostic study with stored sera.
Cancer Epidemiol Biomarkers Prev
1993
;
2
:
467
–72.
3
Gann PH, Ma J, Hennekens CH, Hollis BW, Haddad JG, Stampfer MJ. Circulating vitamin D metabolites in relation to subsequent development of prostate cancer.
Cancer Epidemiol Biomarkers Prev
1996
;
5
:
121
–6.
4
Jacobs ET, Giuliano AR, Martinez ME, Hollis BW, Reid ME, Marshall JR. Plasma levels of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and the risk of prostate cancer.
J Steroid Biochem Mol Biol
2004
;
89–90
:
533
–7.
5
Nomura AM, Stemmermann GN, Lee J, et al. Serum vitamin D metabolite levels and the subsequent development of prostate cancer (Hawaii, United States).
Cancer Causes Control
1998
;
9
:
425
–32.
6
Platz EA, Leitzmann MF, Hollis BW, Willett WC, Giovannucci E. Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer.
Cancer Causes Control
2004
;
15
:
255
–65.
7
Tuohimaa P, Tenkanen L, Ahonen M, et al. Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries.
Int J Cancer
2004
;
108
:
104
–8.
8
Polek TC, Weigel NL. Vitamin D and prostate cancer.
J Androl
2002
;
23
:
9
–17.
9
Bouillon R, Eelen G, Verlinden L, Mathieu C, Carmeliet G, Verstuyf A. Vitamin D and cancer.
J Steroid Biochem Mol Biol
2006
;
102
:
156
–62.
10
Ntais C, Polycarpou A, Ioannidis JP. Vitamin D receptor gene polymorphisms and risk of prostate cancer: a meta-analysis.
Cancer Epidemiol Biomarkers Prev
2003
;
12
:
1395
–402.
11
Berndt SI, Dodson JL, Huang WY, Nicodemus KK. A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk.
J Urol
2006
;
175
:
1613
–23.
12
Nejentsev S, Godfrey L, Snook H, et al. Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene.
Hum Mol Genet
2004
;
13
:
1633
–9.
13
Hawkins GA, Cramer SD, Zheng SL, et al. Sequence variants in the human 25-hydroxyvitamin D3 1-α-hydroxylase (CYP27B1) gene are not associated with prostate cancer risk.
Prostate
2002
;
53
:
175
–8.
14
Stanford JL, Wicklund KG, McKnight B, Daling JR, Brawer MK. Vasectomy and risk of prostate cancer.
Cancer Epidemiol Biomarkers Prev
1999
;
8
:
881
–6.
15
Clayton D. Choosing a set of haplotype tagging SNPs from a larger set of diallelic loci. Available from: http://www-gene.cimr.cam.ac.uk/clayton/software/stata/, 2005.
16
Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association.
Nat Rev Genet
2004
;
5
:
89
–100.
17
Haploview. Available from: http://www.broad.mit.edu/mpg/haploview/, 2006.
18
Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome.
Science
2002
;
296
:
2225
–9.
19
Hornik K. The R FAQ. Available from: http://CRAN.R-project.org/doc/FAQ/R-FAQ.html/, 2006.
20
Schaid DJ, Rowland CM. Robust transmission regression models for linkage and association.
Genet Epidemiol
2000
;
19
Suppl 1:
S78
–84.
21
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous.
Am J Hum Genet
2002
;
70
:
425
–34.
22
The SAS system for Windows, release 9.1. Cary (NC): SAS Institute; 2002.
23
Benjamini Y, Yukutieli D. False discovery-rate adjusted multiple confidence intervals for selected parameters (with discussion).
J Am Stat Assoc
2005
;
100
:
71
–93.
24
Hedlund TE, Moffatt KA, Miller GJ. Vitamin D receptor expression is required for growth modulation by 1α,25-dihydroxyvitamin D3 in the human prostatic carcinoma cell line ALVA-31.
J Steroid Biochem Mol Biol
1996
;
58
:
277
–88.
25
Schwartz GG, Whitlatch LW, Chen TC, Lokeshwar BL, Holick MF. Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3.
Cancer Epidemiol Biomarkers Prev
1998
;
7
:
391
–5.
26
Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1α-hydroxylase.
J Clin Endocrinol Metab
2001
;
86
:
888
–94.
27
Moon S, Holley S, Bodiwala D, et al. Associations between G/A1229, A/G3944, T/C30875, C/T48200 and C/T65013 genotypes and haplotypes in the vitamin D receptor gene, ultraviolet radiation and susceptibility to prostate cancer.
Ann Hum Genet
2006
;
70
:
226
–36.
28
Crescioli C, Maggie M, Vannelli GB, et al. Effect of a vitamin D3 analogue on keratinocyte growth factor-induced cell proliferation in benign prostate hyperplasia.
J Clin Endocrinol Metab
2000
;
85
:
2576
–83.
29
Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation.
Annu Rev Nutr
2002
;
22
:
139
–66.
30
Barreto AM, Schwartz GG, Woodruff R, Cramer SD. 25-Hydroxyvitamin D3, the prohormone of 1,25-dihydroxyvitamin D3, inhibits the proliferation of primary prostatic epithelial cells.
Cancer Epidemiol Biomarkers Prev
2000
;
9
:
265
–70.
31
Chen TC, Schwartz GG, Burnstein KL, Lokeshwar BL, Holick MF. The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-1α,25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer.
Clin Cancer Res
2000
;
6
:
901
–8.
32
Hsu JY, Feldman D, McNeal JE, Peehl DM. Reduced 1α-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition.
Cancer Res
2001
;
61
:
2852
–6.
33
Whitlatch LW, Young MV, Schwartz GG, et al. 25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer.
J Steroid Biochem Mol Biol
2002
;
81
:
135
–40.
34
Baker MR, Peacock M, Nordin BE. The decline in vitamin D status with age.
Age Ageing
1980
;
9
:
249
–52.
35
Lawson DE, Paul AA, Black AE, Cole TJ, Mandal AR, Davie M. Relative contributions of diet and sunlight to vitamin D state in the elderly.
Br Med J
1979
;
2
:
303
–5.
36
Holick MF. Sunlight and vitamin D: the bone and cancer connections.
Radiat Prot Dosimetry
2000
;
91
:
65
–71.
37
Bodiwala D, Luscombe CJ, French ME, et al. Polymorphisms in the vitamin D receptor gene, ultraviolet radiation, and susceptibility to prostate cancer.
Environ Mol Mutagen
2004
;
43
:
121
–7.
38
Li H, Stampfer MJ, Hollis JB, et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer.
PLoS Med
2007
;
4
:
e103
.
39
Ma J, Stampfer MJ, Gann PH, et al. Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians.
Cancer Epidemiol Biomarkers Prev
1998
;
7
:
385
–90.
40
Schwartz GG, Hulka BS. Is vitamin D deficiency a risk factor for prostate cancer? (hypothesis).
Anticancer Res
1990
;
10
:
1307
–11.