Low-grade squamous intraepithelial lesions (LSIL) associated with certain human papillomavirus (HPV) genotypes may preferentially progress to cervical cancer. HPV genotyping may thus have the potential to improve the effectiveness of screening programs and to reduce overtreatment. LSIL cases (n = 8,308) from 55 published studies were included in a meta-analysis. HPV genotype distribution was assessed by geographic region and in comparison with published data on cervical squamous cell carcinoma (SCC). HPV detection in LSIL was 80% in North America but less than 70% in other regions, most likely reflecting regional differences in LSIL diagnosis. Among 5,910 HPV-positive LSILs, HPV16 was the most common genotype (26.3%) followed by HPV31 (11.5%), HPV51 (10.6%), and HPV53 (10.2%). HPV-positive LSILs from Africa were 2-fold less likely to be infected with HPV16 than those in Europe, and HPV-positive LSILs from North America were more likely to be infected with HPV18 than those from Europe or South/Central America. Interpretation for rarer genotypes was hampered by variation in HPV testing methodology. SCC/LSIL prevalence ratios indicated that HPV16 was 2-fold and HPV18 was 1.5-fold more common in SCC than in HPV-positive LSIL, thus appearing more likely to progress than other high-risk genotypes (SCC/LSIL prevalence ratios between 0.05 and 0.85). HPV53 and HPV66 showed SCC/LSIL ratios of 0.02 and 0.01, respectively. HPV genotype distribution in LSIL differs from that in cervical cancer, highlighting the importance of HPV genotype in the risk of progression from LSIL to malignancy. Some regional differences in the relative importance of HPV genotypes in LSIL were noted.

About 1.5 million women (2-3% of all those screened for cervical cancer) are diagnosed with low-grade squamous intraepithelial lesions (LSIL) each year in the United States (1). LSILs are most often managed by colposcopy to confirm underlying cervical intraepithelial neoplasia (CIN) 1 (2). CIN1 is then managed either by tissue destruction/ablation or by active follow-up depending on the setting. However, diagnosis and treatment of LSIL is associated with patient anxiety, morbidity, and cost (3). Furthermore, if left untreated, only a fraction of LSIL progress toward malignancy, with most regressing spontaneously, especially in young women (4).

A specific subset of human papillomavirus genotypes (HPV), called high-risk genotypes, has now been firmly established as the cause of invasive cervical cancer and its precursor lesions (5). Even high-risk genotypes, however, may differentially progress from LSIL to malignancy (6), so that HPV genotype may have potential use in separating HPV-positive women at greater risk of cancer from those who can be safely screened at longer intervals. In the era of widespread HPV-based primary screening (7) and HPV-based triage of screen-detected cervical abnormalities (8), this would improve performance and cost-effectiveness of programs while reducing patient anxiety and overtreatment.

Furthermore, as both current (HPV16/HPV18) and future vaccine candidates (9) are likely to be HPV genotype specific, understanding the HPV genotype distribution in screen-detected lesions also helps predict the effect of vaccination on the reduction of abnormal findings in cervical screening programs.

The aim of this study was to collate all published information on HPV genotype distribution among LSIL across different geographic regions and to estimate potential for progression of HPV genotype-specific LSIL to malignancy by comparing with the HPV genotype distribution among cervical squamous cell carcinoma (SCC).

Study Selection

Medline was employed to search for citations published from January 1989 to June 2004 using the MeSH terms “papillomavirus,” “cervical intraepithelial neoplasia,” “cervical neoplasms,” “human,” and “female” in combination with keywords “polymerase chain reaction” or “PCR.” Studies had to include at least 20 cases of LSIL. For the purpose of this analysis, LSIL refers both to lesions cytologically equivalent to LSIL according to the Bethesda system (10) and to lesions histologically confirmed as CIN1 (11). Included studies had to test for HPV using one of four validated PCR primer sets or refinements of them [MY09/11 (12), PGMY09/11 (13), GP5+/6+ (14), or SPF10 (15)] and report genotype-specific prevalence of at least one HPV genotype other than HPV6, HPV11, HPV16, or HPV18.

Data Abstraction

The following key variables were extracted by one investigator (R.K.R.): type of cervical specimen for HPV DNA testing (biopsies or exfoliated cells), cytologic or histologic LSIL diagnosis, PCR primers used to detect HPV, and overall and genotype-specific prevalence of HPV infection. Extracted data were independently verified (G.M.C.) and discrepancies were agreed upon. Each study was classified into one of five regions: Africa, Asia, Europe, North America, or South/Central America. If publications did not present the relevant data but study methods suggested that this information was available, data requests were made to authors (16-31). Detailed information on all included studies is presented in Appendix A.

For comparisons with SCC, genotype-specific HPV distribution among SCC was obtained from a meta-analysis carried out using a similar protocol to the present one (32).

Estimation of Genotype-Specific Prevalence

Genotype-specific prevalence is presented for the 15 most common LSIL-associated HPV genotypes as identified by this review. All studies provided information on HPV16 and HPV18. For other genotypes, prevalence was estimated only among those studies testing for the HPV genotype in question, so sample size varies between the analyses. PCR primers MY09/11, PGMY09/11, and SPF10 were considered to satisfactorily amplify all 15 HPV genotypes above and PCR primer GP5+/6+ to amplify all 15 genotypes, except HPV53 (33). Genotype-specific prevalence includes that in either single or multiple infections as many of the included studies did not test for a comprehensive range of HPV genotypes (so a large proportion of multiple infections would have been missed) and/or did not publish the genotype-specific breakdown for multiple infections.

Throughout the text, figures, and tables, genotype-specific HPV prevalence is expressed as a proportion of HPV-positive LSIL. In Appendix A, however, genotype-specific HPV prevalence is reported study by study as a proportion of all LSIL cases tested.

Statistical Analyses

Genotype-specific HPV prevalence was compared between LSIL and SCC by prevalence ratios, with corresponding 95% confidence intervals (95% CI; ref. 34).

Odds ratios (OR) for infection with HPV16 and HPV18 among HPV-positive LSIL were estimated by unconditional logistic regression using Stata 8.0 (Stata Corp., College Station, TX). Corresponding 95% floating CIs (95% FCI) are calculated using the method of Plummer (35). This approach, which avoids an arbitrary reference group by attributing all categories their own variance, does not alter the point estimate of the ORs but slightly reduces the variances attributed to those ORs that are not defined as 1.0 (36). Graphically, ORs are represented as black squares, with areas inversely proportional to the variance of the log of the OR, indicating the amount of statistical information available for that particular estimate. The corresponding 95% FCI is drawn as a horizontal line.

HPV Genotype Distribution among HPV-Positive LSIL

A total of 8,308 LSILs [5,341 (64%) diagnosed cytologically and 2,967 (36%) histologically as CIN1] from 55 studies were included in this meta-analysis (Table 1). Most cases came from studies in Europe (49%), North America (29%), and South/Central America (15%). Africa (3.6%) and Asia (3.0%) contributed few cases.

Table 1.

Regional distribution and overall HPV prevalence among 8,308 LSILs

RegionStudies, nCountries representedLSIL cases, nHPV positive, n (%)
Europe 21 Belgium, Croatia, Czech Republic, France, Germany, Greece, Holland, Italy, Portugal, Sweden, United Kingdom 4,051 2,746 (67.8) 
North America 13 Canada, United States 2,425 1,943 (80.1) 
South/Central America 13 Argentina, Brazil, Colombia, Costa Rica, Honduras, Jamaica, Mexico, Paraguay 1,279 874 (68.3) 
Africa Ivory Coast, Kenya, Nigeria, Senegal 301 178 (59.1) 
Asia China, Korea, Thailand 252 169 (67.1) 
Total 55  8,308 5,910 (71.1) 
RegionStudies, nCountries representedLSIL cases, nHPV positive, n (%)
Europe 21 Belgium, Croatia, Czech Republic, France, Germany, Greece, Holland, Italy, Portugal, Sweden, United Kingdom 4,051 2,746 (67.8) 
North America 13 Canada, United States 2,425 1,943 (80.1) 
South/Central America 13 Argentina, Brazil, Colombia, Costa Rica, Honduras, Jamaica, Mexico, Paraguay 1,279 874 (68.3) 
Africa Ivory Coast, Kenya, Nigeria, Senegal 301 178 (59.1) 
Asia China, Korea, Thailand 252 169 (67.1) 
Total 55  8,308 5,910 (71.1) 

A total of 5,910 (71.1%) LSILs tested positive for HPV DNA (Table 1). Overall, HPV prevalence ranged from only 67.1% to 68.3% for Europe, South/Central America, and Asia but was especially high in North America (80.2%) and low in Africa (59.1%). Due to geographic variation in overall HPV prevalence, HPV genotype distribution by region was compared among HPV-positive LSIL only.

HPV genotype distribution in the 5,910 HPV-positive LSILs is shown overall and by region in Fig. 1, in order of decreasing prevalence, for the 15 most frequently identified HPV genotypes. The most commonly identified HPV genotype was HPV16, present in 26.3% of all HPV-positive LSILs (Fig. 1). After HPV16, the most common genotypes overall were, in order of decreasing prevalence, HPV31 (11.5%), HPV51 (10.6%), HPV53 (10.2%), HPV56 (9.5%), HPV52 (9.0%), HPV18 (8.6%), HPV66 (8.6%), HPV58 (8.4%), HPV6 (8.0%), HPV39 (7.6%), HPV33 (7.4%), HPV59 (6.1%), HPV35 (5.7%), and HPV45 (4.9%; Fig. 1). All other HPV genotypes were detected in <5.0% of HPV-positive LSIL. HPV6 or HPV11 were detected in 12.1% of HPV positive LSIL (9.4% of all LSIL tested) (data not shown).

Figure 1.

Prevalence of the 15 most common HPV genotypes in 5,910 HPV-positive LSILs by region. *, Denominators of HPV-positive LSIL vary by HPV type, from 2,516 to 5,910 for all regions, from 268 to 2,746 for Europe, from 1,640 to 1,943 for North America, from 466 to 874 for South/Central America, from 62 to 178 for Africa, and from 160 to 169 for Asia. , In Asia, upper 95% CI for HPV16 is 39.6%, and HPV53 is not shown because the denominator was 33 cases only.

Figure 1.

Prevalence of the 15 most common HPV genotypes in 5,910 HPV-positive LSILs by region. *, Denominators of HPV-positive LSIL vary by HPV type, from 2,516 to 5,910 for all regions, from 268 to 2,746 for Europe, from 1,640 to 1,943 for North America, from 466 to 874 for South/Central America, from 62 to 178 for Africa, and from 160 to 169 for Asia. , In Asia, upper 95% CI for HPV16 is 39.6%, and HPV53 is not shown because the denominator was 33 cases only.

Close modal

HPV16 was the most common genotype in all regions ranging from 16.3% of HPV in Africa to 32.6% in Asia. HPV18 varied from 5.0% of HPV-positive LSIL in South/Central America to 11.5% in North America. The relative importance of HPV genotypes other than HPV16 and HPV18 also appeared to vary somewhat by region. In particular, HPV31 prevalence appeared high in Europe (15.3%), HPV33 high in South/Central America (11.8%), and HPV58 high in Asia (14.4%). Furthermore, several HPV genotypes (HPV39, HPV51, HPV53, HPV56, HPV59, and HPV66) appeared more prevalent in North America compared with other regions.

ORs for infection with HPV16 and HPV18 among HPV-positive LSIL are compared by region in Fig. 2, with Europe as the reference category based on sample size. HPV-positive LSILs in Africa were 2-fold and significantly less likely to be infected with HPV16 (OR, 0.49; 95% FCI, 0.33-0.72) than those in Europe (OR, 1.00; 95% FCI, 0.92-1.09). HPV-positive LSILs in North America and South/Central America showed ORs for HPV16 infection in between those for Africa and those for Europe.

Figure 2.

ORs and corresponding 95% FCIs for infection with HPV16 and HPV18 in HPV-positive LSILs by region.

Figure 2.

ORs and corresponding 95% FCIs for infection with HPV16 and HPV18 in HPV-positive LSILs by region.

Close modal

HPV-positive LSILs in North America were significantly more likely to be infected with HPV18 (OR, 1.61; 95% FCI, 1.40-1.85) than those in Europe (OR, 1.00; 95% FCI, 0.87-1.15) or South/Central America (OR, 0.69; 95% FCI, 0.51-0.93).

ORs for infection with HPV16 and HPV18 by region were additionally calculated with adjustment for (a) method of LSIL diagnosis (cytology or histology) and (b) PCR primers (MY09/11 only, GP5+/6+ only, or other/combination). In the multivariate model, ORs for infection with HPV16 and HPV18 were higher for HPV-positive LSIL confirmed histologically compared with those diagnosed cytologically only (HPV16: OR, 1.17; 95% CI, 1.01-1.37; P = 0.040; HPV18: OR, 1.38; 95% CI, 1.09-1.75; P = 0.009) and were higher for studies using GP5+/6+ PCR primers only compared with those using MY09/11 only (HPV16: OR, 1.08; 95% CI, 0.89-1.31; P = 0.449; HPV18: OR, 1.53; 95% CI, 1.13-2.08; P = 0.006). Nevertheless, these covariates had little material effect on ORs by region (adjusted ORs for Europe, North America, South/Central America, Africa, and Asia were 1.00, 0.89, 0.86, 0.55, and 1.16 for HPV16 and 1.00, 1.92, 0.79, 1.46, and 1.26 for HPV18, respectively). Furthermore, significant findings by region were robust on restriction to studies testing with MY09/11 PCR primers only (data not shown).

Comparison of HPV-Positive LSIL with SCC

HPV genotype-specific prevalence among HPV-positive LSIL is compared with similar published data for SCC in Table 2. HPV16 was 2-fold and HPV18 1.5-fold more common in SCC relative to HPV-positive LSIL. Other high-risk HPV genotypes were less common in SCC compared with HPV-positive LSIL, with SCC/LSIL ratios of 0.28 to 0.85 for high-risk HPV31, HPV33, HPV45, HPV52, and HPV58, SCC/LSIL ratios of 0.05 to 0.17 for high-risk HPV35, HPV39, HPV51, HPV56, and HPV59, and SCC/LSIL ratios of <0.05 for HPV53 (0.01) and HPV66 (0.02).

Table 2.

Prevalence of 15 most common HPV genotypes in HPV-positive LSILs and comparison with that in SCC

HPV genotypeHPV-positive LSIL*
SCC,
SCC/LSIL
Tested, nHPV positive, %Tested, nHPV positive, %Prevalence ratio (95% CI)
HPV16 5,910 26.6 8,594 54.3 2.06 (2.02-2.11) 
HPV18 5,910 8.6 8,502 12.6 1.47 (1.39-1.54) 
HPV45 3,545 4.9 5,174 4.2 0.85 (0.77-0.94) 
HPV33 5,744 7.6 8,449 4.3 0.58 (0.54-0.62) 
HPV31 5,801 11.7 7,204 4.2 0.36 (0.34-0.39) 
HPV58 3,380 8.5 5,646 3.0 0.36 (0.32-0.39) 
HPV52 3,262 8.8 5,304 2.5 0.28 (0.25-0.31) 
HPV35 4,754 5.9 6,223 1.0 0.17 (0.15-0.20) 
HPV59 3,232 6.0 4,488 0.8 0.13 (0.11-0.16) 
HPV6 3,638 8.1 6,569 0.6 0.08 (0.06-0.09) 
HPV56 3,348 9.7 4,493 0.7 0.07 (0.06-0.09) 
HPV51 3,566 10.9 4,580 0.6 0.06 (0.05-0.07) 
HPV39 3,251 7.8 3,899 0.4 0.05 (0.04-0.07) 
HPV66 3,132 8.5 4,799 0.2 0.02 (0.02-0.04) 
HPV53 2,516 10.1 3,053 0.1 0.01 (0.01-0.02) 
HPV genotypeHPV-positive LSIL*
SCC,
SCC/LSIL
Tested, nHPV positive, %Tested, nHPV positive, %Prevalence ratio (95% CI)
HPV16 5,910 26.6 8,594 54.3 2.06 (2.02-2.11) 
HPV18 5,910 8.6 8,502 12.6 1.47 (1.39-1.54) 
HPV45 3,545 4.9 5,174 4.2 0.85 (0.77-0.94) 
HPV33 5,744 7.6 8,449 4.3 0.58 (0.54-0.62) 
HPV31 5,801 11.7 7,204 4.2 0.36 (0.34-0.39) 
HPV58 3,380 8.5 5,646 3.0 0.36 (0.32-0.39) 
HPV52 3,262 8.8 5,304 2.5 0.28 (0.25-0.31) 
HPV35 4,754 5.9 6,223 1.0 0.17 (0.15-0.20) 
HPV59 3,232 6.0 4,488 0.8 0.13 (0.11-0.16) 
HPV6 3,638 8.1 6,569 0.6 0.08 (0.06-0.09) 
HPV56 3,348 9.7 4,493 0.7 0.07 (0.06-0.09) 
HPV51 3,566 10.9 4,580 0.6 0.06 (0.05-0.07) 
HPV39 3,251 7.8 3,899 0.4 0.05 (0.04-0.07) 
HPV66 3,132 8.5 4,799 0.2 0.02 (0.02-0.04) 
HPV53 2,516 10.1 3,053 0.1 0.01 (0.01-0.02) 
*

Regional distribution of included cases: Europe 46.5%, North America 32.9%, South/Central America 14.8%, Africa 3.0%, and Asia 2.9%.

Data from Clifford et al. (32).

Regional distribution of included cases: Europe 32.0%, North America 13.0%, South/Central America 16.5%, Africa 6.9%, and Asia 31.7%.

SCC/LSIL prevalence ratios were additionally calculated within studies from Europe, North America, and South/Central America separately to check for consistency of findings across regions. There were no material differences in SCC/LSIL ratios for HPV16 (2.16, 2.58, and 2.11, respectively), HPV33 (0.62, 0.83, and 0.35, respectively), or HPV18 (1.75, 1.25, and 1.97, respectively). However, the SCC/LSIL ratio for HPV31 in South/Central America (1.00; 95% CI, 0.85-1.17) was notably high compared with that in Europe (0.28; 95% CI, 0.25-0.31) and North America (0.56; 95% CI, 0.47-0.65). Sample sizes were not sufficient for robust subanalyses of other HPV genotypes or among Africa and Asia.

HPV Genotype Distribution in LSIL

HPV16 was clearly the most prevalent HPV genotype in LSIL from all regions. However, the proportion of HPV-positive LSIL attributable to HPV16 varied significantly. In particular, HPV-positive LSILs from Africa were significantly less likely to be infected with HPV16 than LSIL from Europe, with LSIL from North America and South/Central America showing intermediate risk. This pattern was consistent with that seen in similarly designed meta-analyses of high-grade squamous intraepithelial lesions (HSIL) and SCC: 32%, 37%, 46%, and 53% of HSIL from Africa, South/Central America, North America, and Europe, respectively, were HPV16 positive (37), as were 50%, 52%, 63%, and 62% of SCC (32). The consistency of this pattern points toward a true phenomenon, whereby the prevalence of HPV16 varies by region, being highest in Europe and lowest in Africa.

HPV-positive LSILs from North America, and possibly Asia, were significantly more likely to be infected with HPV18 than those from Europe or South/Central America. This pattern was again consistent with that seen among both HSIL and SCC: 10%, 6.5%, and 7.1% of HSILs from North America, Europe, and South/Central America, respectively, were HPV18 positive (37), as were 15%, 13%, and 10% of SCC (32).

Geographic differences in the relative prevalence of HPV genotypes may be related to the complex interplay between different HPV genotypes and/or variants with host immunogenetic factors (e.g., HLA polymorphisms; reviewed in ref. 38). Alternatively, a recent study showed that HPV16 appears less influenced by immune status than other HPV genotypes (39). This fact, coupled with impairment in cellular immunity (e.g., through chronic cervical inflammation, parasitic infection, malnutrition, and/or more recently HIV), may be somehow contributing to the penetrance of HPV genotypes other than HPV16 in some populations.

Care was taken not to overinterpret apparent geographic differences in HPV genotypes other than HPV16 and HPV18, as they were tested for in only a subset of included studies and tended to be rarer. Thus, estimated prevalences were more sensitive to the potential sources of variation discussed below under study limitations. Nevertheless, high prevalence of HPV58 in Asia and HPV31 in Europe is also consistent with findings from both HSIL (37) and SCC (32).

The demonstration of regional variation in the proportion of screen-detected lesions positive for HPV16 and HPV18 suggests that the effect of HPV16/HPV18 vaccines on cytologic abnormalities detected by cervical screening programs will, at least to some degree, vary by region. However, regional differences appear to become less pronounced with increasing severity of lesions, as HPV16 becomes increasingly dominant.

Progression of HPV Genotype-Specific LSIL to Cancer

Findings from this study suggest that LSILs positive for HPV18, and most notably HPV16, are more likely to progress to cervical cancer than LSIL containing other HPV genotypes. This conclusion is based on the fact that these HPV genotypes are more common in SCC compared with HPV-positive LSIL. Together, HPV16 and HPV18 account for ∼35% of HPV-positive LSILs but nearly 70% of worldwide cervical cancers (32, 40). Supportive evidence comes from prospective studies showing that HPV16 is more persistent (26, 41, 42), as well as more likely to progress to CIN3 (43), than other high-risk HPV genotypes. Thus, in the setting of HPV-based cervical screening programs, genotyping may have diagnostic utility in separating LSIL cases positive for HPV16 (and perhaps HPV18), who require the closest surveillance, from LSIL cases infected with other high-risk genotypes.

All HPV genotypes, other than HPV16 and HPV18, were found to be underrepresented in cervical cancer compared with LSIL. However, the degree of underrepresentation varied greatly by genotype, and there were no clear-cut points between SCC/LSIL ratios for different groups of HPV genotypes other than HPV16 and HPV18. HPV31, HPV33, HPV45, HPV52, and HPV58 (the next most commonly identified genotypes in SCC worldwide) were each associated with SCC/LSIL ratios between 0.28 and 0.85, highlighting an intermediate, but considerable, potential for progression to cancer. About 40% of HPV-positive LSILs were positive for these five genotypes, which are responsible for ∼15% of cervical cancer worldwide (32).

Other high-risk genotypes HPV35, HPV39, HPV51, HPV56, and HPV59 were each associated with SCC/LSIL ratios between 0.05 and 0.2, suggesting a lower potential for progression compared with other high-risk genotypes. These five genotypes are found in up to 40% of HPV-positive LSILs but are responsible for only 3% of cervical cancer worldwide (32). In settings where resources are limited, some of these genotypes, although oncogenic, may be chosen for exclusion from HPV screening tests, with the aim to concentrate resources on women most at risk.

HPV66 and HPV53, which have been classified as “probable high-risk” genotypes, were found relatively commonly in LSIL but are rarely detected in cancer and actually showed SCC/LSIL ratios lower than for low-risk HPV6. Thus, HPV-based screening, including HPV66 and HPV53, would likely result in the identification of a large number of LSILs with very low risk for progression to cancer.

Study Strengths and Limitations

This meta-analysis combined genotype-specific HPV data from a large number of studies, each performing HPV testing using well-validated PCR primers known to amplify a broad spectrum of HPV genotypes. However, even this well-validated set of primers do not amplify all genotypes with exactly the same sensitivity (33) and such differences remain a potential source of variation in the detection of genotypes between studies, particularly for genotypes other than HPV16 and HPV18. Furthermore, other specific conditions of PCR are known to affect HPV sensitivity. For example, the Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (27) was one of the few studies reporting to have used AmpliTaq Gold DNA polymerase, which is associated with higher detection of HPV (44). This may partly account for the high prevalence of some HPV genotypes observed for North America.

Substantial variation in overall HPV positivity across included studies may reflect additional study-specific variations in the (a) quality of cytologic/histologic assessment, (b) local definitions of LSIL, and/or (c) the frequency of cervical cancer screening. Unfortunately, most included studies did not publish the necessary data to take these differences into account. Restricting comparisons of HPV genotype distribution to HPV-positive LSIL, however, was expected to reduce heterogeneity in the clinical relevance of included lesions.

Up to 50% of LSIL are shown to contain multiple HPV infections using the best detection methods (27). However, as many of the included studies tested for only a subset of HPV genotypes, this analysis was unable to estimate how often each HPV infection was found alone or in the presence of another genotype. Thus, estimates for the total proportion of LSIL attributable to a combination of genotypes must be interpreted with caution, as the prevalence reported for each individual HPV genotype include those in multiple infections. Among HPV-positive women from studies reporting data on multiple infections (n = 3268), 1.8% were infected with both HPV16 and HPV18.

Lastly, the authors recognize that inferences on LSIL progression based on simple cross-sectional data should be interpreted with caution. The diagnostic utility of using genotyping to separate screen-detected LSIL clearly needs to be established in a sequence of appropriately designed prospective studies. Indeed, the triage of LSIL into high-risk HPV positive or high-risk HPV negative has been shown to have only limited potential diagnostic utility (1). Nevertheless, differences in the distribution of HPV in LSIL and cancer, as well as supporting evidence on genotype-specific risk from prospective studies in women with normal cytology, suggest that the distinction of high-risk HPV genotypes has the potential to improve the management of LSIL in clinical practice.

Appendix A: Study methods and prevalence of HPV by study and region

First authorReferenceCountryHPV DNA sourcePCR primersCases nLSIL/CIN1HPV prevalence (% of all LSILs tested)
Any16315153565266586183933593545
Africa                       
    de Vuyst H Sex Transm Dis (2002) Kenya Cells SPF10 30 0/30 60.0 13.3 3.3 3.3 10.0 3.3 13.3 3.3 6.7 0.0 6.7 0.0 0.0 0.0 23.3 3.3 
    La Ruche G Int J Cancer (1998) Ivory Coast Cells MY09/11 151 151/0 68.2 10.6 5.3 0.0 — 2.6 2.6 — 3.3 3.3 6.0 2.0 5.3 1.3 1.3 2.0 
    Thomas JO Br J Cancer (2003) Nigeria Cells GP5+/6+ 34 34/0 38.2 5.9 2.9 2.9 — 2.9 2.9 0.0 5.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 
    Xi LF Int J Cancer (2003) Senegal Cells MY09/11 86 86/0 51.2 8.1 1.2 1.2 3.5 1.2 3.5 1.2 9.3 2.3 4.7 0.0 2.3 2.3 2.3 0.0 
    Africa subtotal     301 271/30 59.1 9.6 3.6 1.0 5.2 2.3 4.0 1.3 5.6 2.7 5.3 1.0 3.3 1.3 3.7 1.3 
Asia                       
    Bhattarakosol P J Med Assoc Thai (2002) Thailand Biopsies MY09/11 27 0/27 33.3 0.0  — — — — — — 0.0 3.7 — 0.0 — — — 
    Chan PKS J Med Virol (1999) China Cells MY09/11 51 0/51 64.7 21.6 7.8 0.0 0.0 2.0 5.9 0.0 15.7 2.0 9.8 0.0 2.0 0.0 0.0 0.0 
    Chan PKS J Med Virol (1999) China Cells MY09/11 51 0/51 64.7 21.6 7.8 0.0 0.0 2.0 5.9 0.0 15.7 2.0 9.8 0.0 2.0 0.0 0.0 0.0 
    Cho NH Am J Obstet Gynecol (2003) Korea Cells GP5+/6+ 150 150/0 73.3 26.7 1.3 5.3 — 6.0 2.7 0.7 10.0 0.7 7.3 4.0 0.7 0.0 2.0 1.3 
    Hwang TS Gynecol Oncol (2003) Korea Cells GP5+/6+ 24 0/24 70.8 16.7 0.0 4.2 — 4.2 4.2 4.2 0.0 0.0 16.7 8.4 0.0 0.0 4.2 0.0 
    Asia subtotal     252 150/102 67.1 21.8 2.7 4.0 0.0 4.9 3.6 2.2 10.2 0.8 7.1 3.6 0.8 0.0 1.8 0.9 
Europe                       
    Astori G Virus Res (1997) Italy Cells MY09/11 111 111/0 77.5 24.3 5.4 0.0 7.2 0.9 0.0 0.0 7.2 10.8 5.4 0.9 0.0 0.9 1.8 0.0 
    Baay MFD Eur J Gynaecol Oncol (2001) Belgium Biopsies GP5+/6+ 58 0/58 69.0 24.1 1.7 3.4 — 5.2 1.7 1.7 0.0 0.0 19.0 0.0 0.0 0.0 0.0 5.2 
    Cuschieri KS J Clin Pathol (2004) United Kingdom Cells GP5+/6+ 243 243/0 90.9 28.0 12.8 17.3 — 9.9 12.3 11.9 5.0 0.0 9.5 9.1 7.4 8.6 2.1 5.3 
    Cuzick J Br J Cancer (1999) United Kingdom Cells MY09/11 50 0/50 42.0 12.0 0.0 2.0 — 4.0 12.0 — 2.0 — 10.0 — 2.0 — 0.0 — 
    Giannoudis A Int J Cancer (1999) United Kingdom Biopsies GP5+/6+ 118 118/0 100.0 12.7 5.1 7.6 — 5.9 — 11.9 7.6 15.3 7.6 0.8 0.8 2.5 14.4 2.5 
    Grce M Eur J Epidemiol (1997) Croatia Cells MY09/11 183 183/0 35.5 6.0 8.7 — — — — — — — 2.2 — 1.6 — — — 
    Grce M Anticancer Res (2001) Croatia Cells MY09/11 1,028 1,028/0 54.5 11.6 5.8 — — — — — — — 2.9 — 3.1 — — — 
    Humbey O Eur J Obstet Gynecol Reprod Biol (2002) France Cells MY09/11 40 40/0 60.0 30.0 — 5.0 — — 5.0 — 7.5 2.5 10.0 — 7.5 — 2.5 2.5 
    Kalantari M Hum Pathol (1997) Sweden Cells MY09/11 141 0/141 70.9 17.7 5.7 — — — — — — — 12.1 — 5.0 — — — 
    Labropoulou V Sex Transm Dis (1997) Greece Biopsies/cells MY09/11 51 0/51 90.2 11.8 9.8 0.0 2.0 — — 2.0 — 11.8 11.8 — 9.8 — — — 
    Laconi S Pathologica (2000) Italy Biopsies GP5+/6+ 20 0/20 95.0 30.0 0.0 20.0 — 0.0 0.0 — 0.0 10.0 0.0 0.0 0.0 — 0.0 — 
    Medeiros R Int Meet Gynecol Oncol (1997) Portugal Biopsies MY09/11 31 0/31 74.2 35.5 — — — — — — — — 3.2 — 0.0 — — — 
    Meyer T Int J Gynecol Cancer (2001) Germany Biopsies/cells MY09/11 130 130/0 69.2 13.1 13.1 3.1 2.3 0.8 3.1 3.8 5.4 3.1 2.3 1.5 5.4 0.0 3.1 0.8 
    Nindl I J Clin Pathol (1999) Germany Cells GP5+/6+ 49 0/49 53.1 12.2 2.0 4.1 — 4.1 0.0 2.0 8.2 — 0.0 2.0 6.1 0.0 0.0 4.1 
    Reesink-Peters N Eur J Obstet Gynecol Reprod Biol (2001) Netherlands Cells SPF10 35 0/35 97.1 28.6 31.4 — — 11.4 — — — — 31.4 — 17.1 — — — 
    Southern S Hum Pathol (2001) United Kingdom Biopsies GP5+/6+ 49 0/49 100.0 10.2 2.0 4.1 — 2.0 6.1 6.1 10.2 24.5 8.2 4.1 2.0 0.0 0.0 0.0 
    Tachezy R J Med Virol (1999) Czech Republic Cells MY09/11 87 87/0 52.9 34.5 2.3 1.1 2.3 0.0 1.1 0.0 5.7 — 4.6 0.0 2.3 0.0 2.3 1.1 
    Venturoli S J Clin Virol (2002) Italy Cells MY09/11 40 40/0 47.5 7.5 10.0 — — — — — — 5.0 2.5 — 2.5 — — 0.0 
    Voglino G Pathologica (2000) Italy Biopsies MY09/11 1,499 0/1,499 73.0 24.7 15.9 — — — — — — — 4.2 — 8.9 — 4.3 — 
    Zehbe I Virchows Arch (1996) Sweden Biopsies GP5+/6+ 45 0/45 93.3 40.0 11.1 — — 6.7 2.2 — 6.7 6.7 6.7 — 2.2 — 2.2 0.0 
    Zerbini M J Clin Pathol (2001) Italy Cells MY09/11 43 43/0 53.5 14.0 4.7 — — — — — — 9.3 0.0 — 9.3 — — 2.3 
    Europe subtotal     4,051 2,023/2,028 67.8 19.4 10.4 6.9 3.7 4.8 5.4 6.0 5.7 6.8 5.1 3.4 5.7 3.0 3.8 2.5 
North America                       
    Adam E Am J Obstet Gynecol (2000) United States Cells MY09/11 161 0/161 72.7 45.3 3.1 — — — — — — — 23.6 — 6.2 — 17.4 — 
    ASCUS-LSIL Triage Study Group Am J Obstet Gynecol (2003) United States Cells PGMY09/11 1,242 1,242/0 92.4 21.5 9.0 16.1 11.1 12.8 11.7 10.9 7.6 6.8 10.5 11.0 4.4 10.0 7.0 6.0 
    Brown DR Sex Transm Dis (2002) United States Cells MY09/11 25 25/0 88.0 40.0 12.0 4.0 4.0 20.0 12.0 24.0 4.0 4.0 0.0 8.0 4.0 8.0 12.0 0.0 
    Evans MF Mod Pathol (2002) United States Biopsies GP5+/6+ 26 0/28 100.0 7.1 7.1 10.7 0.0 3.6 7.1 10.7 0.0 7.1 3.6 10.7 3.6 10.7 3.6 3.6 
    Jarboe EA Hum Pathol (2004) United States Cells PGMY09/11 95 0/95 55.8 7.4 3.2 4.2 8.4 3.2 9.5 5.3 2.1 2.1 3.2 1.1 0.0 10.5 2.1 5.3 
    Kulasingam S JAMA (2002) United States Cells MY09/11 166 166/0 79.0 15.7 3.6 15.0 11.4 7.2 8.4 9.0 5.4 10.2 3.6 7.8 3.0 3.6 4.2 2.4 
    Liaw K J Natl Cancer Inst (1999) United States Cells MY09/11 173 173/0 42.2 7.5 4.0 6.4 4.6 4.6 1.7 1.2 3.5 — 1.7 2.9 1.7 0.0 1.7 1.2 
    Richardson H Cancer Epidemiol Biomarkers Prev (2003) Canada Cells MY09/11 44 44/0 88.6 18.2 2.3 18.2 18.2 20.5 4.5 9.1 6.8 0.0 9.1 6.8 0.0 2.3 2.3 0.0 
    Schiff M Am J Epidemiol (2000) United States Cells MY09/11 190 0/190 58.4 5.8 8.9 4.2 10.5 7.4 4.7 6.8 10.5 4.2 4.7 7.4 4.2 6.3 1.1 4.7 
    Sellors JW CMAJ (2000) Canada Cells MY09/11 22 22/0 90.9 50.0 4.5 0.0 0.0 4.5 0.0 — 0.0 4.5 4.5 4.5 0.0 0.0 0.0 0.0 
    Sellors JW CMAJ (2000) Canada Cells MY09/11 24 24/0 95.8 37.5 12.5 0.0 0.0 0.0 0.0 — 4.2 4.2 25.0 0.0 4.2 0.0 0.0 0.0 
    Tortolero-Luna Cad Saude Publica (1998) United States Cells MY09/11 175 175/0 64.6 12.6 6.9 — — — — — — — 8.0 — — — 4.0 9.1 
    Tran-Thanh D Am J Obstet Gynecol (2003) Canada Biopsies MY09/11 80 0/80 83.8 15.0 8.8 3.8 8.8 15.0 8.0 8.8 6.3 6.3 8.8 7.5 5.0 3.8 0.0 1.3 
    North America subtotal     2,425 1,872/554 80.2 19.4 7.4 12.6 10.1 10.7 9.3 9.3 6.8 6.3 9.2 8.8 3.9 7.6 5.8 5.0 
South/Central America                       
    Abba MC Rev Argent Microbiol (2003) Argentina Cells MY09/11 279 279/0 80.3 26.5 2.5 0.7 — — — — — 22.9 2.5 — 5.4 — — — 
    Ferrera A Int J Cancer (1999) Honduras Cells MY09/11 44 0/44 47.7 11.4 11.4 0.0 4.5 0.0 0.0 0.0 2.3 0.0 6.8 0.0 0.0 0.0 0.0 2.3 
    Franco E Pan Am J Public Health (1999) Brazil Cells MY09/11 27 27/0 81.5 26.0 11.0 14.8 14.8 3.7 11.1 0.0 11.1 0.0 0.0 3.7 3.7 3.7 3.7 0.0 
    Giuliano A Cancer Epidemiol Biomarkers Prev (2001) Mexico (some United States) Cells PGMY09/11 40 40/0 62.5 15.0 0.0 7.5 2.5 5.0 7.5 5.0 5.0 2.5 2.5 10.0 0.0 7.5 2.5 2.5 
    Gonzalez-Losa MdR J Clin Virol (2004) Mexico Biopsies MY09/11 104 104/0 28.8 5.8 2.9 1.9 2.9 1.0 1.9 1.9 6.7 3.8 3.8 1.0 1.0 1.9 0.0 1.0 
    Herrero R J Natl Cancer Inst (2000) Costa Rica Cells MY09/11 181 181/0 73.0 12.2 7.2 9.9 6.1 8.8 7.2 4.4 8.8 6.1 4.4 6.6 1.1 1.7 2.2 3.9 
    Illades-Aguiar B Int Papillomarivus Conf Proc (2001) Mexico Biopsies MY09/11 148 0/148 86.5 12.8 2.0 0.0 0.7 0.0 0.7 0.0 3.4 2.0 0.7 0.0 36.5 0.0 0.7 4.1 
    Lorenzato F Int J Gynecol Cancer (2000) Brazil Cells MY09/11 62 0/62 67.7 19.4 22.6 — — — 0.0 — 6.5 0.0 3.2 — 11.3 — 4.8 0.0 
    Molano J Br J Cancer (2002) Colombia Cells GP5+/6+ 70 70/0 55.7 10.0 4.3 4.3 — 4.3 7.1 1.4 5.7 2.9 7.1 4.3 8.6 0.0 2.9 4.3 
    Rattray C J Infect Dis (1996) Jamaica Cells MY09/11 62 62/0 80.6 9.7 8.1 — — — — — — 4.8 4.8 — 12.9 — 8.1 16.1 
    Strickler H J Med Virol (1999) Jamaica Cells MY09/11 186 186/0 54.3 4.3 1.6 1.6 2.7 1.6 2.7 2.2 2.2 2.2 2.7 1.6 1.6 0.5 2.2 0.5 
    Tonon SA Infect Dis Obstet Gynecol (1999) Argentina/Paraguay Cells GP5+/6+ 55 55/0 96.4 74.5 — — — — — — — 5.5 12.7 — — — — — 
    Torroella-Kouri M Gynecol Oncol (1998) Mexico Biopsies/cells MY09/11 21 21/0 33.3 4.8 0.0 4.8 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 
    South/Central America subtotal     1,279 1,025/254 68.3 16.7 4.8 3.3 3.6 3.3 3.6 2.1 5.2 7.4 3.6 2.9 7.9 1.2 2.2 3.3 
Total     8,308 5,341/2,967 71.2 18.7 8.2 8.0 7.6 7.2 6.7 6.5 6.3 6.2 6.1 5.8 5.3 4.6 4.3 3.7 
First authorReferenceCountryHPV DNA sourcePCR primersCases nLSIL/CIN1HPV prevalence (% of all LSILs tested)
Any16315153565266586183933593545
Africa                       
    de Vuyst H Sex Transm Dis (2002) Kenya Cells SPF10 30 0/30 60.0 13.3 3.3 3.3 10.0 3.3 13.3 3.3 6.7 0.0 6.7 0.0 0.0 0.0 23.3 3.3 
    La Ruche G Int J Cancer (1998) Ivory Coast Cells MY09/11 151 151/0 68.2 10.6 5.3 0.0 — 2.6 2.6 — 3.3 3.3 6.0 2.0 5.3 1.3 1.3 2.0 
    Thomas JO Br J Cancer (2003) Nigeria Cells GP5+/6+ 34 34/0 38.2 5.9 2.9 2.9 — 2.9 2.9 0.0 5.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 
    Xi LF Int J Cancer (2003) Senegal Cells MY09/11 86 86/0 51.2 8.1 1.2 1.2 3.5 1.2 3.5 1.2 9.3 2.3 4.7 0.0 2.3 2.3 2.3 0.0 
    Africa subtotal     301 271/30 59.1 9.6 3.6 1.0 5.2 2.3 4.0 1.3 5.6 2.7 5.3 1.0 3.3 1.3 3.7 1.3 
Asia                       
    Bhattarakosol P J Med Assoc Thai (2002) Thailand Biopsies MY09/11 27 0/27 33.3 0.0  — — — — — — 0.0 3.7 — 0.0 — — — 
    Chan PKS J Med Virol (1999) China Cells MY09/11 51 0/51 64.7 21.6 7.8 0.0 0.0 2.0 5.9 0.0 15.7 2.0 9.8 0.0 2.0 0.0 0.0 0.0 
    Chan PKS J Med Virol (1999) China Cells MY09/11 51 0/51 64.7 21.6 7.8 0.0 0.0 2.0 5.9 0.0 15.7 2.0 9.8 0.0 2.0 0.0 0.0 0.0 
    Cho NH Am J Obstet Gynecol (2003) Korea Cells GP5+/6+ 150 150/0 73.3 26.7 1.3 5.3 — 6.0 2.7 0.7 10.0 0.7 7.3 4.0 0.7 0.0 2.0 1.3 
    Hwang TS Gynecol Oncol (2003) Korea Cells GP5+/6+ 24 0/24 70.8 16.7 0.0 4.2 — 4.2 4.2 4.2 0.0 0.0 16.7 8.4 0.0 0.0 4.2 0.0 
    Asia subtotal     252 150/102 67.1 21.8 2.7 4.0 0.0 4.9 3.6 2.2 10.2 0.8 7.1 3.6 0.8 0.0 1.8 0.9 
Europe                       
    Astori G Virus Res (1997) Italy Cells MY09/11 111 111/0 77.5 24.3 5.4 0.0 7.2 0.9 0.0 0.0 7.2 10.8 5.4 0.9 0.0 0.9 1.8 0.0 
    Baay MFD Eur J Gynaecol Oncol (2001) Belgium Biopsies GP5+/6+ 58 0/58 69.0 24.1 1.7 3.4 — 5.2 1.7 1.7 0.0 0.0 19.0 0.0 0.0 0.0 0.0 5.2 
    Cuschieri KS J Clin Pathol (2004) United Kingdom Cells GP5+/6+ 243 243/0 90.9 28.0 12.8 17.3 — 9.9 12.3 11.9 5.0 0.0 9.5 9.1 7.4 8.6 2.1 5.3 
    Cuzick J Br J Cancer (1999) United Kingdom Cells MY09/11 50 0/50 42.0 12.0 0.0 2.0 — 4.0 12.0 — 2.0 — 10.0 — 2.0 — 0.0 — 
    Giannoudis A Int J Cancer (1999) United Kingdom Biopsies GP5+/6+ 118 118/0 100.0 12.7 5.1 7.6 — 5.9 — 11.9 7.6 15.3 7.6 0.8 0.8 2.5 14.4 2.5 
    Grce M Eur J Epidemiol (1997) Croatia Cells MY09/11 183 183/0 35.5 6.0 8.7 — — — — — — — 2.2 — 1.6 — — — 
    Grce M Anticancer Res (2001) Croatia Cells MY09/11 1,028 1,028/0 54.5 11.6 5.8 — — — — — — — 2.9 — 3.1 — — — 
    Humbey O Eur J Obstet Gynecol Reprod Biol (2002) France Cells MY09/11 40 40/0 60.0 30.0 — 5.0 — — 5.0 — 7.5 2.5 10.0 — 7.5 — 2.5 2.5 
    Kalantari M Hum Pathol (1997) Sweden Cells MY09/11 141 0/141 70.9 17.7 5.7 — — — — — — — 12.1 — 5.0 — — — 
    Labropoulou V Sex Transm Dis (1997) Greece Biopsies/cells MY09/11 51 0/51 90.2 11.8 9.8 0.0 2.0 — — 2.0 — 11.8 11.8 — 9.8 — — — 
    Laconi S Pathologica (2000) Italy Biopsies GP5+/6+ 20 0/20 95.0 30.0 0.0 20.0 — 0.0 0.0 — 0.0 10.0 0.0 0.0 0.0 — 0.0 — 
    Medeiros R Int Meet Gynecol Oncol (1997) Portugal Biopsies MY09/11 31 0/31 74.2 35.5 — — — — — — — — 3.2 — 0.0 — — — 
    Meyer T Int J Gynecol Cancer (2001) Germany Biopsies/cells MY09/11 130 130/0 69.2 13.1 13.1 3.1 2.3 0.8 3.1 3.8 5.4 3.1 2.3 1.5 5.4 0.0 3.1 0.8 
    Nindl I J Clin Pathol (1999) Germany Cells GP5+/6+ 49 0/49 53.1 12.2 2.0 4.1 — 4.1 0.0 2.0 8.2 — 0.0 2.0 6.1 0.0 0.0 4.1 
    Reesink-Peters N Eur J Obstet Gynecol Reprod Biol (2001) Netherlands Cells SPF10 35 0/35 97.1 28.6 31.4 — — 11.4 — — — — 31.4 — 17.1 — — — 
    Southern S Hum Pathol (2001) United Kingdom Biopsies GP5+/6+ 49 0/49 100.0 10.2 2.0 4.1 — 2.0 6.1 6.1 10.2 24.5 8.2 4.1 2.0 0.0 0.0 0.0 
    Tachezy R J Med Virol (1999) Czech Republic Cells MY09/11 87 87/0 52.9 34.5 2.3 1.1 2.3 0.0 1.1 0.0 5.7 — 4.6 0.0 2.3 0.0 2.3 1.1 
    Venturoli S J Clin Virol (2002) Italy Cells MY09/11 40 40/0 47.5 7.5 10.0 — — — — — — 5.0 2.5 — 2.5 — — 0.0 
    Voglino G Pathologica (2000) Italy Biopsies MY09/11 1,499 0/1,499 73.0 24.7 15.9 — — — — — — — 4.2 — 8.9 — 4.3 — 
    Zehbe I Virchows Arch (1996) Sweden Biopsies GP5+/6+ 45 0/45 93.3 40.0 11.1 — — 6.7 2.2 — 6.7 6.7 6.7 — 2.2 — 2.2 0.0 
    Zerbini M J Clin Pathol (2001) Italy Cells MY09/11 43 43/0 53.5 14.0 4.7 — — — — — — 9.3 0.0 — 9.3 — — 2.3 
    Europe subtotal     4,051 2,023/2,028 67.8 19.4 10.4 6.9 3.7 4.8 5.4 6.0 5.7 6.8 5.1 3.4 5.7 3.0 3.8 2.5 
North America                       
    Adam E Am J Obstet Gynecol (2000) United States Cells MY09/11 161 0/161 72.7 45.3 3.1 — — — — — — — 23.6 — 6.2 — 17.4 — 
    ASCUS-LSIL Triage Study Group Am J Obstet Gynecol (2003) United States Cells PGMY09/11 1,242 1,242/0 92.4 21.5 9.0 16.1 11.1 12.8 11.7 10.9 7.6 6.8 10.5 11.0 4.4 10.0 7.0 6.0 
    Brown DR Sex Transm Dis (2002) United States Cells MY09/11 25 25/0 88.0 40.0 12.0 4.0 4.0 20.0 12.0 24.0 4.0 4.0 0.0 8.0 4.0 8.0 12.0 0.0 
    Evans MF Mod Pathol (2002) United States Biopsies GP5+/6+ 26 0/28 100.0 7.1 7.1 10.7 0.0 3.6 7.1 10.7 0.0 7.1 3.6 10.7 3.6 10.7 3.6 3.6 
    Jarboe EA Hum Pathol (2004) United States Cells PGMY09/11 95 0/95 55.8 7.4 3.2 4.2 8.4 3.2 9.5 5.3 2.1 2.1 3.2 1.1 0.0 10.5 2.1 5.3 
    Kulasingam S JAMA (2002) United States Cells MY09/11 166 166/0 79.0 15.7 3.6 15.0 11.4 7.2 8.4 9.0 5.4 10.2 3.6 7.8 3.0 3.6 4.2 2.4 
    Liaw K J Natl Cancer Inst (1999) United States Cells MY09/11 173 173/0 42.2 7.5 4.0 6.4 4.6 4.6 1.7 1.2 3.5 — 1.7 2.9 1.7 0.0 1.7 1.2 
    Richardson H Cancer Epidemiol Biomarkers Prev (2003) Canada Cells MY09/11 44 44/0 88.6 18.2 2.3 18.2 18.2 20.5 4.5 9.1 6.8 0.0 9.1 6.8 0.0 2.3 2.3 0.0 
    Schiff M Am J Epidemiol (2000) United States Cells MY09/11 190 0/190 58.4 5.8 8.9 4.2 10.5 7.4 4.7 6.8 10.5 4.2 4.7 7.4 4.2 6.3 1.1 4.7 
    Sellors JW CMAJ (2000) Canada Cells MY09/11 22 22/0 90.9 50.0 4.5 0.0 0.0 4.5 0.0 — 0.0 4.5 4.5 4.5 0.0 0.0 0.0 0.0 
    Sellors JW CMAJ (2000) Canada Cells MY09/11 24 24/0 95.8 37.5 12.5 0.0 0.0 0.0 0.0 — 4.2 4.2 25.0 0.0 4.2 0.0 0.0 0.0 
    Tortolero-Luna Cad Saude Publica (1998) United States Cells MY09/11 175 175/0 64.6 12.6 6.9 — — — — — — — 8.0 — — — 4.0 9.1 
    Tran-Thanh D Am J Obstet Gynecol (2003) Canada Biopsies MY09/11 80 0/80 83.8 15.0 8.8 3.8 8.8 15.0 8.0 8.8 6.3 6.3 8.8 7.5 5.0 3.8 0.0 1.3 
    North America subtotal     2,425 1,872/554 80.2 19.4 7.4 12.6 10.1 10.7 9.3 9.3 6.8 6.3 9.2 8.8 3.9 7.6 5.8 5.0 
South/Central America                       
    Abba MC Rev Argent Microbiol (2003) Argentina Cells MY09/11 279 279/0 80.3 26.5 2.5 0.7 — — — — — 22.9 2.5 — 5.4 — — — 
    Ferrera A Int J Cancer (1999) Honduras Cells MY09/11 44 0/44 47.7 11.4 11.4 0.0 4.5 0.0 0.0 0.0 2.3 0.0 6.8 0.0 0.0 0.0 0.0 2.3 
    Franco E Pan Am J Public Health (1999) Brazil Cells MY09/11 27 27/0 81.5 26.0 11.0 14.8 14.8 3.7 11.1 0.0 11.1 0.0 0.0 3.7 3.7 3.7 3.7 0.0 
    Giuliano A Cancer Epidemiol Biomarkers Prev (2001) Mexico (some United States) Cells PGMY09/11 40 40/0 62.5 15.0 0.0 7.5 2.5 5.0 7.5 5.0 5.0 2.5 2.5 10.0 0.0 7.5 2.5 2.5 
    Gonzalez-Losa MdR J Clin Virol (2004) Mexico Biopsies MY09/11 104 104/0 28.8 5.8 2.9 1.9 2.9 1.0 1.9 1.9 6.7 3.8 3.8 1.0 1.0 1.9 0.0 1.0 
    Herrero R J Natl Cancer Inst (2000) Costa Rica Cells MY09/11 181 181/0 73.0 12.2 7.2 9.9 6.1 8.8 7.2 4.4 8.8 6.1 4.4 6.6 1.1 1.7 2.2 3.9 
    Illades-Aguiar B Int Papillomarivus Conf Proc (2001) Mexico Biopsies MY09/11 148 0/148 86.5 12.8 2.0 0.0 0.7 0.0 0.7 0.0 3.4 2.0 0.7 0.0 36.5 0.0 0.7 4.1 
    Lorenzato F Int J Gynecol Cancer (2000) Brazil Cells MY09/11 62 0/62 67.7 19.4 22.6 — — — 0.0 — 6.5 0.0 3.2 — 11.3 — 4.8 0.0 
    Molano J Br J Cancer (2002) Colombia Cells GP5+/6+ 70 70/0 55.7 10.0 4.3 4.3 — 4.3 7.1 1.4 5.7 2.9 7.1 4.3 8.6 0.0 2.9 4.3 
    Rattray C J Infect Dis (1996) Jamaica Cells MY09/11 62 62/0 80.6 9.7 8.1 — — — — — — 4.8 4.8 — 12.9 — 8.1 16.1 
    Strickler H J Med Virol (1999) Jamaica Cells MY09/11 186 186/0 54.3 4.3 1.6 1.6 2.7 1.6 2.7 2.2 2.2 2.2 2.7 1.6 1.6 0.5 2.2 0.5 
    Tonon SA Infect Dis Obstet Gynecol (1999) Argentina/Paraguay Cells GP5+/6+ 55 55/0 96.4 74.5 — — — — — — — 5.5 12.7 — — — — — 
    Torroella-Kouri M Gynecol Oncol (1998) Mexico Biopsies/cells MY09/11 21 21/0 33.3 4.8 0.0 4.8 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 
    South/Central America subtotal     1,279 1,025/254 68.3 16.7 4.8 3.3 3.6 3.3 3.6 2.1 5.2 7.4 3.6 2.9 7.9 1.2 2.2 3.3 
Total     8,308 5,341/2,967 71.2 18.7 8.2 8.0 7.6 7.2 6.7 6.5 6.3 6.2 6.1 5.8 5.3 4.6 4.3 3.7 
*

HPV prevalence represents that at study enrollment and not at LSIL diagnosis.

Grant support: IARC postdoctoral fellowship (G.M. Clifford).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Mark Schiffman for his critical review of the study design and article as well as all those authors who made additional data available from their published studies, including Eduardo Franco (16, 26), Francois Coutlee and Diane Provencher (25), Harriet Richardson and Francois Coutlee (26), Luisa Villa (16), Mark Schiffman and Diane Solomon (27), Cosette Wheeler (HPV Testing Laboratory for the Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study; ref. 27), Melissa Schiff (28), Laura Koutsky and Shalini Kulasingam (29), Simona Venturoli and Marialuisa Zerbini (17), Elke Jarboe (18), Gianfranco Voglino (19), Magdalena Grce (20, 21), Janusz Kaczorowski and John Sellors (22), Olivier Humbey and Christiane Mougin (30), Erwin Adam and R. Kaufman (23), Carlos Golijow and Martin Abba (31), and David Swan (24).

1
The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. Human papillomavirus testing for triage of women with cytologic evidence of low-grade squamous intraepithelial lesions: baseline data from a randomized trial.
J Natl Cancer Inst
2000
;
92
:
397
–402.
2
Wright TC Jr, Cox JT, Massad LS, Carlson J, Twiggs LB, Wilkinson EJ. 2001 Consensus guidelines for the management of women with cervical intraepithelial neoplasia.
Am J Obstet Gynecol
2003
;
189
:
295
–304.
3
Rogstad KE. The psychological impact of abnormal cytology and colposcopy.
Br J Obstet Gynaecol
2002
;
109
:
364
–68.
4
Holowaty P, Miller AB, Rohan T, To T. Natural history of dysplasia of the uterine cervix.
J Natl Cancer Inst
1999
;
91
:
252
–8.
5
Bosch FX, de Sanjosé S. Chapter 1: Human papillomavirus and cervical cancer—burden and assessment of causality.
J Natl Cancer Inst Monogr
2003
;
31
:
3
–13.
6
Schlecht NF, Platt RW, Duarte-Franco E, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia.
J Natl Cancer Inst
2003
;
95
:
1336
–43.
7
Franco EL. Chapter 13: Primary screening of cervical cancer with human papillomavirus tests.
J Natl Cancer Inst Monogr
2003
;
31
:
89
–96.
8
Solomon D. Chapter 14: Role of triage testing in cervical cancer screening.
J Natl Cancer Inst Monogr
2003
;
31
:
97
–101.
9
Galloway DA. Papillomavirus vaccines in clinical trials.
Lancet Infect Dis
2003
;
3
:
469
–75.
10
Wright TC Jr, Cox JT, Massad LS, Twiggs LB, Wilkinson EJ. 2001 Consensus Guidelines for the management of women with cervical cytological abnormalities.
JAMA
2002
;
287
:
2120
–9.
11
Richart RM. Cervical intraepithelial neoplasia.
Pathol Annu
1973
;
8
:
301
–28.
12
Bernard HU, Chan SY, Manos MM, et al. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms.
J Infect Dis
1994
;
170
:
1077
–85.
13
Gravitt PE, Peyton CL, Alessi TQ, et al. Improved amplification of genital human papillomaviruses.
J Clin Microbiol
2000
;
38
:
357
–61.
14
Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR.
J Gen Virol
1995
;
76
:
1057
–62.
15
Kleter B, van Doorn LJ, Schrauwen L, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus.
J Clin Microbiol
1999
;
37
:
2508
–17.
16
Franco E, Villa L, Rohan T, Ferenczy A, Petzl-Erler M, Matlashewski G. Design and methods of the Ludwig-McGill longitudinal study of the natural history of human papillomavirus infection and cervical neoplasia in Brazil. Ludwig-McGill Study Group.
Rev Panam Salud Publica
1999
;
6
:
223
–33.
17
Zerbini M, Venturoli S, Cricca M, et al. Distribution and viral load of type specific HPVs in different cervical lesions as detected by PCR-ELISA.
J Clin Pathol
2001
;
54
:
377
–80.
18
Jarboe EA, Thompson LC, Heinz D, McGregor JA, Shroyer KR. Telomerase and human papillomavirus as diagnostic adjuncts for cervical dysplasia and carcinoma.
Hum Pathol
2004
;
35
:
396
–402.
19
Voglino G, Poso F, Privitera S, et al. The role of human papillomavirus in cyto-histological practice: distribution and prevalence of high-risk strains (16, 18, 31, 33, and 35) in intraepithelial lesions and neoplasia of the uterine cervix.
Pathologica
2000
;
92
:
516
–23.
20
Grce M, Husnjak K, Magdic L, et al. Detection and typing of human papillomaviruses by polymerase chain reaction in cervical scrapes of Croatian women with abnormal cytology.
Eur J Epidemiol
1997
;
13
:
645
–51.
21
Grce M, Husnjak K, Bozikov J, et al. Evaluation of genital human papillomavirus infections by polymerase chain reaction among Croatian women.
Anticancer Res
2001
;
21
:
579
–84.
22
Sellors JW, Mahony JB, Kaczorowski J, et al. Prevalence and predictors of human papillomavirus infection in women in Ontario, Canada. Survey of HPV in Ontario Women (SHOW) Group.
CMAJ
2000
;
163
:
503
–8.
23
Adam E, Berkova Z, Daxnerova Z, Icenogle J, Reeves WC, Kaufman RH. Papillomavirus detection: demographic and behavioral characteristics influencing the identification of cervical disease.
Am J Obstet Gynecol
2000
;
182
:
257
–64.
24
Tortolero-Luna G, Mitchell MF, Swan DC, Tucker RA, Wideroff L, Icenogle JP. A case-control study of human papillomavirus and cervical squamous intraepithelial lesions (SIL) in Harris County, Texas: differences among racial/ethnic groups.
Cad Saude Publica
1998
;
14
:
149
–59.
25
Tran-Thanh D, Provencher D, Koushik A, et al. Herpes simplex virus type II is not a cofactor to human papillomavirus in cancer of the uterine cervix.
Am J Obstet Gynecol
2003
;
188
:
129
–34.
26
Richardson H, Kelsall G, Tellier P, et al. The natural history of type-specific human papillomavirus infections in female university students.
Cancer Epidemiol Biomarkers Prev
2003
;
12
:
485
–90.
27
The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance.
Am J Obstet Gynecol
2003
;
188
:
1383
–92.
28
Schiff M, Miller J, Masuk M, et al. Contraceptive and reproductive risk factors for cervical intraepithelial neoplasia in American Indian women.
Int J Epidemiol
2000
;
29
:
983
–90.
29
Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral.
JAMA
2002
;
288
:
1749
–57.
30
Humbey O, Aubin F, Cairey-Remonnay S, et al. TP53 polymorphism at exon 4 in Caucasian women from eastern France: lack of correlation with HPV status and grade of cervical precancerous lesions.
Eur J Obstet Gynecol Reprod Biol
2002
;
103
:
60
–4.
31
Abba MC, Gomez MA, Golijow CD. Distribucion de los genotipos del virus papiloma humano en infecciones cervicales en mujeres de La Plata, Argentina.
Rev Argent Microbiol
2003
;
35
:
74
–9.
32
Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis.
Br J Cancer
2003
;
88
:
63
–73.
33
Iftner T, Villa LL. Chapter 12: Human papillomavirus technologies.
J Natl Cancer Inst Monogr
2003
;
31
:
80
–8.
34
Ruhl CE, Everhart JE. Association of diabetes, serum insulin, and C-peptide with gallbladder disease.
Hepatology
2000
;
31
:
299
–303.
35
Plummer M. Improved estimates of floating absolute risk.
Stat Med
2004
;
23
:
93
–104.
36
Easton DF, Peto J, Babiker AG. Floating absolute risk: an alternative to relative risk in survival and case-control analysis avoiding an arbitrary reference group.
Stat Med
1991
;
10
:
1025
–35.
37
Clifford GM, Smith JS, Aguado T, Franceschi S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis.
Br J Cancer
2003
;
89
:
101
–5.
38
Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review.
Virus Res
2002
;
89
:
229
–40.
39
Strickler HD, Palefsky JM, Shah KV, et al. Human papillomavirus type 16 and immune status in human immunodeficiency virus-seropositive women.
J Natl Cancer Inst
2003
;
95
:
1062
–71.
40
Muñoz N, Bosch FX, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer.
N Engl J Med
2003
;
348
:
518
–27.
41
Londesborough P, Ho L, Terry G, Cuzick J, Wheeler C, Singer A. Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities.
Int J Cancer
1996
;
69
:
364
–8.
42
Molano M, van den Brule A, Plummer M, et al. Determinants of clearance of human papillomavirus infections in Colombian women with normal cytology: a population-based, 5-year follow-up study.
Am J Epidemiol
2003
;
158
:
486
–94.
43
Woodman CB, Collins S, Winter H, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study.
Lancet
2001
;
357
:
1831
–6.
44
Castle PE, Schiffman M, Gravitt PE, et al. Comparisons of HPV DNA detection by MY09/11 PCR methods.
J Med Virol
2002
;
68
:
417
–23.