This report focuses on low-penetrance genes that are associated with colorectal adenoma and/or cancer or that are in strong linkage disequilibrium with colorectal adenoma and/or cancer causing variants. A pooled analysis was performed for 30 polymorphisms in 20 different genes that have been reported in more than one colorectal adenoma or cancer study. An association with colorectal cancer was found for seven polymorphisms in seven genes reported in more than one study; no associations were found with colorectal adenoma. Four of the polymorphisms exhibited an increased colorectal cancer risk [GSTT1, NAT2 (phenotype), HRAS1, and ALDH2]. Two others [MTHFR, Tp53 (intron 3)] exhibited a decreased risk. For the tumor necrosis factor (TNF)a polymorphism of the TNF-α gene, one allele was associated with an increased risk (a2 allele) and two other TNFa alleles with decreased risks (a5 and a13 allele). No association with colorectal adenoma and/or cancer was detected for 23 other polymorphisms in 15 genes. However, of all 30 polymorphisms, only three pooled analyses had sufficiently large samples to confirm (MTHFR) or to exclude (GSTM1 and NAT2 genotype) the association with a P < 0.0026 and a power of 90%. Eighteen polymorphisms in 15 genes were each described in only one study, all with very small sample sizes. For 11 polymorphisms in 10 of these genes, an association with colorectal adenoma and/or cancer was found. Only simultaneous genotyping and combined analysis of different polymorphisms in large numbers of patients and controls, stratified by ethnicity, gender, and tumor localization and taking relevant dietary and lifestyle habits into account, will make it possible to describe the exact relations between polymorphisms and colorectal cancer susceptibility with an adequate power.

Colorectal cancer is an important cause of death from cancer in the Western countries. In the Netherlands, colorectal cancer is the second cause of death from malignant disease in women (after breast cancer) and the third cause of death in men (after lung and prostate cancer; Ref. 1). The genesis of colorectal cancer involves a series of steps in which environmental and/or endogenous carcinogens induce or promote cancer development. These steps include the activation of oncogenes, such as ras, and inactivation of tumor suppressor genes, such as APC, Tp53, and DCC, and genes involved in DNA mismatch repair (2, 3, 4, 5).

Colorectal cancer is a multifactorial disease, i.e., there are many factors contributing to its development. These include on the one hand dietary and lifestyle habits and on the other hand genetic predispositions.

Epidemiological studies indicate that diets high in red meat, diets low in vegetables and fiber, obesity, and smoking are associated with an increased colorectal cancer risk (6, 7, 8, 9, 10, 11). Diets high in calcium and folate and regular physical activity are associated with a reduced risk (8, 9, 10, 12). However, some of these associations are still controversial.

Genetic syndromes predisposing to colorectal cancer include the polyposis syndromes (FAP3 , Peutz Jeghers syndrome, and juvenile polyposis) and HNPCC. These syndromes account for only ∼3% of all cases (13, 14, 15, 16) and are not responsible for the 2-fold increased risk in first-degree relatives of sporadic colorectal cancer patients. This increased risk in relatives suggests a mild genetic predisposition, i.e., the involvement of low-penetrance genes or gene variants. Candidates for this are genes involved in metabolic pathways (17, 18) or in methylation, those modifying the colonic microenvironment, oncogenes, tumor suppressor genes, and genes involved in immune response. Low-penetrance variants in high-penetrance genes (e.g., APC, MLH1, or MSH2) might also be important in sporadic and in familial colorectal cancer.

The phenotypes of FAP and HNPCC, with regard to the colonic disease, vary considerably, not only between families but also within families (19, 20). The cause of this variation is not known but might at least, in part, be because of additional genetic factors, i.e., modifier genes (21). Such modifier genes might be the same genes as the low-penetrance genes involved in sporadic colorectal cancer (19).

The allelic differences in low-penetrance genes may account for the wide interindividual differences in the sensitivity to cancer-inducing or cancer-promoting compounds (18, 22). The increased cancer risk for the individual carrying a variant in one of these genes is estimated to be small, but the high frequency in the population of some of these variants suggests that the population attributable risk can be high (23).

This report focuses on low-penetrance genes and gene variants involved in colorectal cancer susceptibility other than possible low-penetrance variants in the APC gene and the mismatch repair genes. The external variables taken into account were ethnicity, gender, and tumor localization whenever possible. Pooled analyses were performed on all polymorphisms reported in more than one study. In addition, the sample size required to detect an association with colorectal cancer susceptibility with sufficient power was addressed.

Literature Search.

Published studies were traced using the PubMed databases from 1980 to 2001 (until September), using the search terms colorectal, adenoma, cancer, risk, and polymorphism(s) to identify candidate genes. For each specific candidate gene, a separate search was performed. For example, the terms HRAS1, colorectal, adenoma, cancer, and risk were used for HRAS1. In addition, the bibliographies of studies identified by the electronic searches were used as source. Studies eligible for our pooled analysis were those that compared genotype or allele frequencies of candidate genes in colorectal adenoma and cancer cases with healthy controls using genomic DNA. Only studies describing primary data or data that superseded earlier work were taken into account.

Pooled Analysis.

For a better insight in the possible effects of the various genes on colorectal cancer susceptibility, a pooled analysis for each polymorphism was performed. The studies and the results of the pooled analyses are shown in Table 1. The allele frequencies were based on the control individuals. The raw number of cases and controls from comparable studies were analyzed together. The genotype-specific ORs and 95% CIs were calculated for all studies combined, without adjustment for external variables. This can result in values that differ from those in the original article. Whenever possible, a distinction was made between heterozygous and homozygous carriers of the variant allele. ORs from colonoscopy- or sigmoidoscopy-based studies may not be interpretable as relative risks because the indication for colonoscopy is often a positive family history for colorectal cancer. In these patients, even when no polyps have been found with colonoscopy, the risk of colorectal cancer can still be increased. Therefore, caution should be taken by extrapolating the findings in these studies to the general population. No adjustment has been made for these studies in the pooled analysis. The colonoscopy or sigmoidoscopy based studies are marked in the tables.

Where metabolic polymorphisms were assumed to be associated with a specific phenotype, a distinction was made between phenotype- and genotype-based studies (e.g., CYP2D6 and NAT2). For the genotype studies of CYP2D6 and NAT2, genotypes were combined according to phenotypic classes. Also, where possible, separate analyses were performed for the three major ethnicity subgroups (white, African-American, and Asian; Table 1) for gender (Table 2) and for tumor localization (Table 3). A difference in interpretation was made between statistically significant results for polymorphisms reported in one study and that obtained from a pooled analysis of several because all of the single studies were small, and the results have to be replicated. Therefore, the polymorphisms reported in one study are shown in a separate table (Table 4) and are not described in the results section. This separation is present also in the “Discussion.”

Finally, sample sizes required to detect an association with colorectal cancer susceptibility with sufficient power were calculated as described previously (24).

The polymorphisms that were reported in colorectal adenoma and/or cancer patients and controls in more than one study each are described separately and summarized in Tables 1, 2, and 3. The polymorphisms reported in only one study are shown in Table 4.

Genes Involved in Metabolic Pathways

One of the strongest dietary associations with colorectal cancer susceptibility reported is that with diets high in meat (25, 26). For this association, HAAs formed during the cooking of meat may be mediators (27). Like many other chemical carcinogens, these substances/compounds require metabolic activation to bind to DNA and contribute to cancer causation. In the case of HAAs, the enzymes CYP1A2, NAT1, and NAT2 mediate this activation (28, 29, 30). On the other hand, HAAs can be detoxified by GST enzymes (31). Polymorphisms in these genes may affect the enzyme activity or inducibility. The GST enzymes are also involved in the detoxification of PAHs (32). PAHs are carcinogens present in cigarette smoke. PAHs are activated by CYP1A1 (33).

CYP Family.

Certain substrates, including almost all carcinogens, are metabolically activated by the CYP enzymes, which results in the formation of chemically reactive mutagenic electrophiles (18). Most prescribed drugs are substrates for one or more CYP isoenzymes. Individual CYP isoenzymes have a unique substrate specificity, although a certain overlap between the enzymes is present (18).

CYP1A1 Gene.

The CYP1A1 gene encodes the strongly inducible aryl hydrocarbon hydroxylase enzyme responsible for the activation of PAHs (33). Differences in xenobiotic metabolic activity between individuals can be >200-fold, even within one family (34). Two polymorphisms have been examined in relation to colorectal cancer, namely the m1 (MspI RFLP) and m2 (A462G, exon 7) polymorphisms. These polymorphisms are in linkage disequilibrium (18). The functional significance of the m1 polymorphism is unknown, whereas the m2 polymorphism gives an increased enzymatic activity (35). This might result in a higher concentration of activated PAH metabolites.

Pooled analysis for both polymorphisms revealed no association, regardless whether the studies were analyzed separately or combined (36, 37, 38, 39, 40, 41, 42). For the combination of the two polymorphisms, examined in one study, no association with an increased colorectal adenoma or cancer risk was found (37).

CYP2D6 Gene.

The CYP2D6 variant allele is the result of a deletion of a 17.5-kb region, including the entire CYP2D6 gene (43). In the Caucasian population, 5% is homozygous for this mutation (18, 44), referred to as poor metabolizers (18). The CYP2D6 gene mutation is characterized by the inability of homozygous carriers to metabolize specific drugs (e.g., debrisoquine, sparteine, and bufuralol; Ref. 18). The CYP2D6 gene mutation was examined in one phenotype (45) and two genotype studies(40, 46). These studies found no association with colorectal cancer either separately or when combined.

CYP2E1 Gene.

CYP2E1 is an ethanol inducible enzyme, involved in the activation of N-nitrosamines (47). Variant allele carriers (in particular homozygous individuals) of a polymorphism (G1259C) in the CYP2E1 gene have a higher enzyme level (48). This could lead to a faster activation of carcinogens, which may induce colorectal cancer. For this polymorphism and another polymorphism in intron 6, no association was found with colorectal cancer (40, 42).

GST Genes.

GSTs belong to a superfamily of detoxification enzymes that provide critical defenses against a large variety of chemical carcinogens and environmental toxins (49, 50). HAAs and PAHs are considered carcinogens that potentially cause colorectal cancer in humans and that are detoxified by GSTs (31, 32, 51). Foods that are known to induce GST synthesis are thought to be protective against colorectal cancer (52).

Deletion variants that are associated with a lack of enzyme function occur at the GSTM1 and GSTT1 gene locus (53). Individuals homozygous for null deletions in the GSTM1 and/or GSTT1 genes may have an impaired ability to metabolically eliminate carcinogens and may therefore be at increased cancer risk. Because GSTM1 is expressed at low levels in the colon, it seems, however, unlikely that the GSTM1 null genotype predisposes to colorectal cancer (54). GSTP1 is a more obvious candidate for a colorectal cancer susceptibility gene as it is present at high levels in the colon (31, 54). For the GSTT1 enzyme, there are no data available concerning the expression in the colon.

GSTM1 Gene.

Our pooled analysis for GSTM1 revealed no association with colorectal adenoma or cancer (38, 40, 42, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71).

GSTP1 Gene.

Two polymorphisms have been described in the GSTP1 gene, one in codon 105 and one in codon 114. These codons are only ∼1-kb apart, and the polymorphisms exhibit strong linkage disequilibrium with each other (62). The codon 114 variant allele is only found in combination with the codon 105 variant allele. The codon 105 polymorphism modifies the enzyme’s specific activity (72). No association with colorectal cancer was observed for both polymorphisms (62, 68, 70, 73, 74).

GSTT1 Gene.

The GSTT1 null genotype frequencies show a large variation among racial groups. Our pooled analysis showed that the GSTT1 null genotype was associated with a small increase in colorectal cancer risk (40, 57, 58, 60, 61, 64, 66, 68, 69, 70, 71). This overall association was caused by three strong studies and five studies with a modest nonsignificant association. Subgroup analyses for gender and tumor localization revealed no association with colorectal cancer, but these analyses were based on relatively small numbers of cases and controls as compared with the overall pooled analysis.

Combinations of GSTM1, GSTM3, GSTP1, and GSTT1.

One study examined both GSTM1 and GSTM3 polymorphisms (70). The combined high-risk genotype was associated with an increased risk (OR = 2.4, 95% CI: 1.32–4.3). Two other studies examined the GSTM1 and GSTP1 (codon 105) polymorphisms (62, 75), and five studies examined the GSTM1 and GSTT1 polymorphisms (58, 61, 66, 68, 75). Pooled analyses showed no associations. In one study, the GSTP1 (codon 105) and GSTT1 polymorphisms were studied (75). Again, no association was observed. There are no studies available that tested the combination of polymorphisms in three or four genes.

NAT Genes.

Epithelial cells of the colonic mucosa express both NAT1 and NAT2 activity (76, 77), although the human colonic epithelium appears to contain 100–200-fold more NAT1 than NAT2 (76, 78, 79). Furthermore, the ratio of NAT1:NAT2 activities show large interindividual variations (77). Polymorphic forms of the NAT genes have the potential to affect an individual’s response to carcinogens, thereby influencing cancer risk. There is linkage disequilibrium between the NAT1*10 allele and the NAT2*4 allele (80).

NAT1 Gene.

NAT1*4 is the most common NAT1 allele and is presumed to be the wild type, whereas NAT1*10, present in ∼30% in populations of European ancestry, is associated with increased NAT1 activity (81). NAT1 fast acetylators are defined as carriers of at least one copy of the NAT1*10 allele. There may be some misclassification of NAT1*10 alleles because a common test to detect the NAT1*10 allele does not distinguish between NAT1*10 and NAT1*14 or other NAT1 alleles (82). In the overall pooled analysis, no association was found between colorectal cancer and the NAT1 fast genotype (64, 81, 83, 84, 86). Two studies were excluded in the pooled analyses because of lack of data on the NAT1*10 allele (86) or of raw numbers of genotypes for cases and controls (40). Tumor localization was taken into account in the one study that showed an association (81). Only for distal tumors, the association remained significant.

NAT2 Gene.

Different point mutations are present in the NAT2 gene. These mutations (variants) cause defective NAT2 alleles. NAT2*4 is the wild-type allele. In the Caucasian population, ∼60% of the individuals have two defective NAT2 alleles. The NAT2 presumed phenotypes are classified as fast (homozygous and heterozygous NAT2*4 allele carriers) and slow (homozygous variant allele carriers) acetylators. Pooled analysis revealed an association between colorectal cancer and fast acetylatorship [Refs. 87, 88, 89; excluding one study that did not provide the raw numbers (90)]. The pooled analysis for genotype studies [Refs. 65, 81, 84, 85, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101; excluding one study that did not provide the raw numbers (40)] detected neither an association between colorectal adenoma or cancer and presumed fast acetylatorship overall, nor in subgroup analyses for ethnicity, gender, and tumor localization. Thus, whereas the phenotype studies showed a positive association between fast acetylatorship and colorectal cancer, the genotype studies revealed no association. A possible explanation for these conflicting results is that some of the negative studies have been carried out in Japan, with a high proportion of fast acetylators and a low incidence of colorectal cancer. However, when Asian studies were excluded in the pooled analysis, still no association was detected between the fast NAT2 genotype and colorectal cancer (OR = 1.05, 95% CI: 0.96–1.14). Furthermore, there is some evidence that phenotype study methods may be influenced by disease or surgery (102, 103) by the specificity of substrates used and by overlapping activity of NAT1. The drug tests are also under the influence of liver and renal functions (104). Apart from these explanations for the conflicting results, it may well be that the result for the combined phenotype studies is falsely positive; as for the genotype studies, pooled analysis was performed on a large sample size (3554 cancer patients and 4070 controls), whereas the pooled analysis for the phenotype studies was based on a small sample size (201 cancer patients and 223 controls).

NAT1 and NAT2 Combined.

Two studies examined colorectal adenoma and cancer risk for the genotype combinations of NAT1 and NAT2(83, 84). No association was detected.

NQO1 Gene.

NQO1 is a polymorphic enzyme involved in the detoxification of potentially mutagenic and carcinogenic quinones (105) and HAAs (106). NQO1 also plays a role in the activation of the potent antioxidant vitamin K (107). The homozygous C609T genotype, which is associated with nondetectable NQO1 activity (108, 109), is found in 2–20% of individuals (110). The heterozygous genotype was shown to have a 3-fold decreased NQO1 activity (111). Our pooled analysis, however, showed no association with colorectal cancer for this polymorphism (112, 113). Another polymorphism (Pro187Ser) generates a null allele and produces no active enzyme (114). One study, which did not provide the raw numbers, found this polymorphism in 19% of colon cancer patients and in 20% of healthy controls (109).

Genes Involved in Methylation

Imbalanced DNA methylation, characterized by genomic hypomethylation (115, 116) and methylation of usually unmethylated CpG sites (117, 118), is observed consistently in colon cancer (119).

The 5,10 MTHFR enzyme and the MTR enzyme play an important role in folate and methionine metabolism and are both important for DNA methylation and synthesis (120).

MTHFR Gene.

A common polymorphism (C677T) in the MTHFR gene is associated with decreased enzyme activity (121), lower plasma folate levels, and increased plasma homocysteine levels (122, 123). Enzyme activity is 70% lower in homozygous carriers of the variant allele and 35% in heterozygous carriers than in homozygous carriers of the wild-type allele (121). Pooled analysis did not show an association between adenoma risk and the polymorphism (124, 125, 126, 127, 128, 129, 130, 131). However, for colorectal cancer, a decreased risk was observed for homozygous carriers of the risk allele. Analysis by gender revealed a decreased cancer risk for both subgroups, although the association reached significance only for the males (OR = 0.70, 95% CI: 0.55–0.91; females OR = 0.86, 95% CI: 0.61–1.22).

The lack of association with adenoma risk suggests that the MTHFR enzyme plays a role in a late stage of colorectal tumorigenesis. Homozygous carriers of the C677T polymorphism probably represent a subpopulation with increased folate needs. The homozygous carriers with adequate folate levels seem to be at lower risk for colorectal cancer (132). However, when folate levels are low (because of low intake or depleted by alcohol consumption), both DNA methylation and DNA synthesis (as a result of disturbances in nucleotide synthesis) might be impaired among homozygous carriers, resulting in an increased colorectal cancer risk (132).

MTR Gene.

The most common polymorphism of this gene (Asp919Gly) alters the amino acid sequence of the protein at a potentially functional site (133). However, no difference in biological function has been reported for this polymorphism. Although decreased risks were found for two studies, one in women with adenomas (134) and one in men with cancer (135), statistical significance was not reached.

Colonic Microenvironment Modifying Genes

APOE Gene.

The APOE enzyme plays a role in the regulation of cholesterol and bile acid metabolism (136). APOE also effects immunoregulation and cell proliferation (137, 138). The human APOE gene has three common alleles (ε2, ε3, and ε4). Individuals with the ε4 allele have higher levels of serum total and low density lipoprotein cholesterol, whereas individuals with the ε2 allele have lower levels (139, 140). In the pooled analysis, no association with colorectal adenoma or cancer was discovered (40, 141, 142). However, in subgroup analyses for localization, decreased risks were found for proximal adenomas and cancer in carriers of the ε4 allele.

PLA2G2A Gene.

The PLA2G2A gene encodes for secretory phospholipase A2, which is involved in synthesis of prostaglandins. A possible role for PLA2G2A in colorectal cancer susceptibility was revealed by studies in the Min mouse. The Min mouse, with a germ-line mutation in the APC gene, is a model for FAP. Mutations in the PLA2G2A gene dramatically increase the number of intestinal polyps in the Min mouse. Fourteen patients with FAP and 20 patients with sporadic colorectal cancer were screened for PLA2GA2 germ-line and somatic mutations (143). In one sporadic colorectal cancer patient, a frameshift germ-line mutation was detected. The wild-type allele was somatically lost in the tumor of this patient. Because this loss of heterozygosity did not include a flanking microsatellite locus (D1S436), the authors concluded that the homozygous loss of the PLA2G2A gene itself might have contributed to cancer development. This marker was located telomeric to the PLA2G2A gene, the region centromeric to the gene was not examined for loss of heterozygosity. Two polymorphisms have been described in the PLA2G2A gene, one in exon 1 and one in exon 3. Both polymorphisms are unlikely to have any functional effect (144). No association was found in the one study that examined both polymorphisms (144).

Oncogenes and Tumor Suppressor Genes

HRAS1 Gene.

The proto-oncogene HRAS1 encodes a protein involved in mitogenic signal transduction and differentiation (145). The HRAS1 gene is highly polymorphic in the human population (146). It encompasses four exons with a variable number of tandem repeats region at the 3′ end (147), with four common alleles and dozens of variants. Each variant is derived from the common allele nearest in size to it (148). Allele-specific effects have been observed (149). The available studies for the HRAS1 polymorphism were heterogeneous; the number of different HRAS1 alleles range from 5 or 6 to >20 according to different authors, and this situation makes it difficult to compare data obtained in different laboratories. However, in most studies there are four common alleles, and the rest of the alleles are listed as rare. Our pooled analysis revealed that the rare HRAS1 alleles were associated with a moderately increased colorectal cancer risk (150, 151, 152, 153, 154).

L-myc Gene.

The L-myc gene encodes a DNA-binding, nucleus-associated protein that is sometimes activated late in tumorigenesis (155). A polymorphism has been described in this gene, with a large (L) allele and a small (S) allele (156). There is no evidence for the functional significance of this polymorphism.

No association with colorectal cancer was observed, regardless whether the studies were analyzed separately or combined (57, 157, 158, 159).

Tp53 Gene.

The Tp53 gene plays a role in the protection against replication of damaged DNA (160, 161). Somatic mutations in the Tp53 gene have been found in many tumor types (162, 163), including colorectal cancer (164). Three different Tp53 polymorphisms (i.e., in intron 3, exon 4, and intron 6) have been studied in colorectal cancer patients. All three polymorphisms exhibit strong linkage disequilibrium with each other (165). The exon 4 polymorphism appears to be functionally relevant because the wild-type allele (Arg) has in vitro a weaker affinity for several transcription-activating factors (166). Although the functional significance of the intron 3 and intron 6 polymorphisms is unclear, intronic sequences in Tp53 have been implicated in the regulation of gene expression and in DNA protein interactions (167, 168).

In one study, all three polymorphisms were examined (169) and, in another study, only the exon 4 polymorphism (170). The only association found with polymorphisms individually was with the intron 3 polymorphism (169). For both heterozygous and homozygous carriers of the variant allele, a decreased colorectal cancer risk was detected, although only the OR for heterozygous carriers reached significance (169). The same study examined all three polymorphisms and analyzed the three possible combinations of two polymorphisms (169). For the haplotype composed of two variant alleles, decreased colorectal cancer risks were detected for all three possible combinations, although for only one combination, significance was reached (combination intron 3 and exon 4, OR = 0.49, 95% CI: 0.28–0.85). For the two haplotypes composed each of one variant allele and one wild-type allele, increased risks were found for all three combinations. Two combinations reached significance, i.e., the combination of intron 3 and exon 4 (OR = 1.80, 95% CI: 1.26–2.58) and that of exon 4 and intron 6 (OR = 1.66, 95% CI: 1.14–2.42). When the genotypes were combined for all three polymorphisms, an association was observed for carriers of two variant alleles (OR = 1.85, 95% CI: 1.07–3.22) and three variant alleles (OR = 2.44, 95% CI: 1.41–4.22). No explanation was given for these conflicting results. One possible explanation is that the polymorphisms themselves are nonfunctional but in linkage disequilibrium with other variants. However, the small sample size of the Tp53 studies might also be an explanation.

Genes Involved in the Immune Response

TNF-α and TNF-β play an important role in the inflammatory response (171, 172). The TNF cytokines are well known for their cytotoxic and antitumor activity. However, some of their properties such as enhanced angiogenesis and up-regulation of adhesion molecules could be advantageous for cancer development. Increased serum TNF-α levels have been described in cancer patients, including those with colon cancer (173, 174).

TNF-α Gene.

One polymorphism (TNFa) in the vicinity of the TNF-α gene has 14 different alleles (a1–a14). It has been a matter of controversy whether or not the a2 allele is associated with a change in TNF-α production. The a6 allele was associated with lower TNF-α secretion from activated monocytes (175). Two other polymorphisms in the TNF-α promoter region have been described at position −308 (G to A substitution) and −238 (G to A substitution). The −308 polymorphism is associated with increased TNF-α production (176), whereas the functional significance of the −238 polymorphism is unknown. In the pooled analysis for the TNFa polymorphism, associations with colorectal cancer were detected for the a2, the a5, and the a13 alleles (177, 178). The studies for the −308 and −238 polymorphisms revealed no association with colorectal cancer separately or when combined (179, 180).

Genes Involved in Iron Metabolism

Experimental, clinical and epidemiological investigations have shown that iron can influence carcinogenesis (181). Increased body iron stores have been associated with an increased colorectal adenoma and cancer risk (182, 183, 184). A number of genes is involved in iron metabolism, including the HFE gene and the TFR gene.

HFE Gene.

Two point mutations (Cys282Tyr and His63Asp) have been detected in the HFE gene in HH. Over 80% of the HH patients are homozygous for the Cys282Tyr mutation (185). Heterozygous carriers, comprising 15% of the American population, have, on average, increased iron stores as compared with noncarriers (186, 187). In a study of 1950 HH heterozygotes (parents of HH patients, genotype unknown) and 1656 controls, an increased colorectal cancer risk was detected in males (OR = 1.28, 95% CI: 1.07–1.53) and an increased colorectal adenoma risk in females (OR = 1.29, 95% CI: 1.08–1.53; Ref. 187). The other studies that examined the Cys282Tyr genotype found no association with colorectal cancer separately or combined (188, 189, 190). The study of HH heterozygotes was not included in the pooled analysis because of the difference in study design. The His63Asp genotype was examined in one of these studies (188). No association was found.

Other Genes

ALDH2 Gene.

The ALDH2 gene encodes a mitochondrial enzyme responsible for the oxidation of acetaldehyde that is generated in alcohol metabolism. This is of interest as acetaldehyde induces cytotoxicity (191) and DNA damage (192) and enhances folate deficiency. A polymorphism in codon 487, only prevalent in Asians, dramatically diminishes the enzyme activity (193). Homozygous carriers of the variant alleles are highly intolerant to alcohol and, consequently, do almost not drink alcohol. The tolerance of heterozygous carriers is intermediate. In an alcohol-challenge study, heterozygous carriers of the variant allele had blood acetaldehyde concentrations almost six times higher than homozygous carriers of the wild-type allele (194). Our pooled analysis for this polymorphism revealed increased colorectal cancer risks for heterozygous as well as for homozygous carriers of the risk allele (195, 196).

VDR Gene.

The VDR belongs to the steroid/thyroid receptor family. Apart from the regulation of calcium metabolism, vitamin D3 plays an essential role in cell proliferation and differentiation in several tissues, including colonic epithelium (197). Several polymorphisms have been described in the VDR gene. The BsmI polymorphism is located in the 3′ region of the gene, and the FokI polymorphism is located in the start codon. These polymorphisms are not in linkage disequilibrium (198). The BsmI polymorphism appears to have phenotypic consequences for calcium and vitamin D metabolism (199, 200, 201). The FokI polymorphism produces receptor variants differing in size and activity (202). For both polymorphisms, no association with colorectal adenoma and cancer was found for the studies separately or when combined (203, 204, 205).

Combination of Polymorphisms in Different Genes

Nine combinations of two polymorphisms in different genes were studied. Two of these combinations, i.e., the combination CYP1A2 and NAT2 (OR = 2.77, 95% CI: 1.51–5.06; Ref. 30) and GSTT1 and NAT2 (OR = 2.33, 95% CI: 1.15–4.72; Ref. 68), showed an association with colorectal cancer risk for the combined high risk genotype. However, another study found no association with colorectal cancer risk for the CYP1A2 and NAT2 combination (206). Unfortunately, the raw numbers were not provided. For the other combinations, i.e., CYP1A1 and GSTM1(38), GSTM1 and NAT1(75), GSTM1 and NAT2(65), GSTP1 and NAT1(75), GSTT1 and NAT1(75), GSTM1 and L-myc (57), and the combination HFE and TFR(189), no associations with colorectal cancer were found.

One study examined the combination of polymorphisms in three genes, i.e., CYP1A1, CYP2E1, and GSTM1(42). The genotype of the three variant alleles was associated with an increased colorectal cancer risk (OR = 4.62, 95% CI: 1.29–16.54).

HNPCC

In two studies, the GSTM1 and GSTT1 polymorphisms were examined in HNPCC patients (64, 207). In the first study, which compared 26 unaffected- and 48 cancer-affected HNPCC mutation carriers, neither an association was observed between the null genotypes (separately or combined null) and the occurrence of cancer, nor with the age at onset of the tumor or localization of the tumor (207). In the second study, only 114 affected HNPCC mutation (MLH1 exon 16 deletion) carriers were examined, and there were no unaffected mutation carriers examined (64). Both of the null genotypes were associated with a younger age at onset. Furthermore, the GSTT1 null genotype and the combined null genotype were associated with a proximal tumor localization.

In the first study, also the NAT2 genotype was examined (207). An increased colorectal cancer risk was observed for carriers of the slow NAT2 acetylator genotype, whereas no association was found with age at onset of colorectal cancer. The second study also examined the NAT1 genotype (64). The NAT1*10 genotype was associated with a younger age at onset and with a distal colon tumor localization.

The exon 4 polymorphism in the CCND1 gene was examined in two studies in HNPCC mutation carriers (208, 209). In the first study in 49 affected and 37 unaffected mutation carriers, patients with the AA or AG genotypes were 2.5 times more likely to develop colorectal cancer at any age than were patients with the GG genotype (208). Also an association was observed between variant allele carriers and the age at onset. However, in another study in 146 affected mutation carriers, no association was found with the age at onset (209).

In a study in 43 affected and 24 unaffected HNPCC mutation carriers, the ATM 1853N genotype was associated with a higher incidence of colorectal cancer and other HNPCC-related cancers (OR = 8.90, 95% CI: 1.08–73.44) but not with a younger age at diagnosis (210).

FAP

The genotypes of 46 mutation carriers and 31 noncarriers from a FAP kindred were determined at 14 microsatellites surrounding the PLA2GA2 locus on chromosome 1p35–36 (211). The development of extracolonic symptoms was associated with one of the markers. However, this marker (D1S211) was far apart (27 cM) from the PLA2GA2 locus. In another study, a polymorphism in exon 3 in the PLA2GA2 gene was associated with relatively severe colonic FAP (144). Two other studies detected no associations between the PLA2G2A gene and the colonic (212) or extracolonic phenotype (213) of FAP.

Many studies have shown that polymorphisms in a significant number of genes affect colorectal cancer risk. Recently, Houlston et al.(214) described an analysis similar to ours. Whereas they studied 21 polymorphisms in 15 genes, we studied 48 polymorphisms in 35 genes. Houlston et al.(214) concluded in their review that HRAS1-variable number of tandem repeats, MTHFR variants, and APC variants represent the strongest candidates for low-penetrance susceptibility alleles identified to date. We also found an increased risk for the first one and a decreased risk for the second, with similar ORs to the ones they reported. We did not study the APC-I1307K polymorphism.

Houlston et al.(214) did not find an association for the GSTT1 gene. In contrast, our pooled analysis revealed a significant association between this gene and colorectal cancer, although the increase in risk we detected was small to moderate. This discrepancy is probably attributable to the larger sample size that we included in our analysis. Significant associations were found for three other polymorphisms in our pooled analysis, namely the intron 3 polymorphism in the Tp53 gene, the TNFa polymorphism in the TNF-α gene, and the polymorphism in the ALDH2 gene. Houlston et al.(214) only addressed the Tp53 polymorphism and not the other two.

Furthermore, tumor localization and gender were considered separately in our review and studies examining the effects of modifier genes in HNPCC and FAP patients were included.

We examined 30 polymorphisms in 20 different genes, described in more than one study, whenever possible by pooled analysis. This revealed an association with colorectal cancer for seven polymorphisms in seven genes. As mentioned above, increased colorectal cancer risks were found for the polymorphisms in GSTT1, NAT2 (phenotype), HRAS1, TNF-α (a2 allele of the TNFa polymorphism), and ALDH2, with population-attributable risks ranging from 4 to 37%. Decreased colorectal cancer risks were found for MTHFR, Tp53 (intron 3), and TNF-α (a5 and a13 allele of the TNFa polymorphism). For most of these polymorphisms, except for GSTT1 and MTHFR, the pooled analysis was performed on a few cases, ranging from 155 to 399, resulting in low statistical power. Because of this, the associations with colorectal cancer are not firm. Much larger sample sizes are needed to confirm or to refute the described associations. For the MTHFR polymorphism, the pooled analysis was performed on a large sample size (for adenomas 1461 cases and 2088 controls, for cancer 2064 cases and 3229 controls). Therefore, there is strong evidence for the decreased colorectal cancer risk associated with this polymorphism. For the GSTT1 polymorphism, the pooled sample size was intermediate (1490 cases and 2026 controls).

The pooled analysis for 24 polymorphisms in 16 genes, reported in more than one study, namely CYP1A1 (m1 and m2), CYP2D6, CYP2E1 (G1259C and intron 6), GSTM1, GSTP1 (codon 105 and 114), NAT1, NAT2 (genotype), NQO1, MTR, APOE, PLA2G2A (exon 1 and 3), L-myc, Tp53 (exon 4 and intron 6), TNF-α (−308 and −238), HFE (C262Y and H63D), and VDR (BsmI and FokI), revealed no association with colorectal adenoma and/or cancer. For the polymorphisms with large sample sizes, i.e., GSTM1 and NAT2 (genotype), an association with colorectal adenoma and cancer can be excluded. For two polymorphisms, i.e., NAT1 and APOE, with pooled analysis performed on an intermediate sample size, there is probably no association with colorectal adenoma and cancer, although an association cannot be completely excluded. Indeed, subgroup analysis for localization for the APOE polymorphism revealed a decreased proximal colorectal adenoma and cancer risk in carriers of the ε4 allele, although the sample size of this subgroup was small (109 proximal adenomas with 419 controls and 41 proximal carcinomas with 199 controls).

For all other polymorphisms with small sample sizes ranging from 27 to 862 cases, an association with colorectal adenoma and cancer is still unknown.

Eighteen polymorphisms in 15 genes, i.e., CCND1(215), CYP1A2(30), CYP1B1(37), CYP2C9(216), DCC(217), EphB2(218), ER (PvuII and XbaI; Ref. 205), GSTM3(70), mEPHX (exon 3 and exon 4; Ref. 219), TFR(189), TGFB1(220), TNF-β(175), TSER(221), uPAR(222), and XRCC1 (codon 194 and codon 399; Ref. 223) are each described in only one study, all with very small sample sizes ranging from 31 to 206 cases (Table 4). For 11 polymorphisms in 10 of these genes, an association with colorectal adenoma and/or cancer was found, whereas no association was found for the other seven polymorphisms in five genes. To replicate positive studies for polymorphisms described in only one study, a sample size of roughly four times that of the initial study is needed to conclude from a positive study that the original effect is likely to be an artifact (24).

Five studies examined the role of certain polymorphisms in HNPCC mutation carriers (64, 207, 208, 209, 210). Although associations were found, some results were conflicting, and the sample sizes were too small to draw firm conclusions.

The PLA2G2A gene region (chromosome 1p35–36) was examined in FAP patients. Although a modifier gene was likely to exist in the chromosome region 1p35–36, it was doubtful whether the PLA2G2A gene itself was this gene.

Because the products of several genes interact (almost half of the reviewed genes are metabolic pathway genes), interactions between the genes with respect to cancer risk are likely. For polymorphisms not associated with colorectal adenoma or cancer when studied separately, an association with colorectal adenoma or cancer is still possible in combination with other polymorphisms. Nine combinations of two polymorphisms in different genes were described. For two of these combinations, an association with colorectal cancer was shown with the combined high-risk genotypes of CYP1A2 and NAT2(30) and of GSTT1 and NAT2(68). However, all studies were performed on small sample sizes, resulting in low statistical power. One study examined the combination of polymorphisms in three genes, i.e., CYP1A1, CYP2E1, and GSTM1(42). The genotype of the three variant alleles was found to be associated with an increased colorectal cancer risk but again the sample size was small.

With regard to the pooled analyses, some notes have to be made. Most important is the possibility of publication bias. In general, negative findings might be more difficult to get published. Another important issue is the pooling of the results of the different ethnicity groups because in many studies the ethnicity of subjects is not reported. Linkage disequilibrium for certain variants often differ between populations (224). The overall risk for all samples may therefore be invalid, when the variant itself is nonfunctional, but in linkage disequilibrium with some other functional variant. In most studies, no distinction is made between gender and localization of the tumor. Several lines of evidence suggest that proximal and distal colorectal cancers may differ at least partly in their etiology (225, 226). Thus, it is possible that different genes play a role in proximal as compared with distal colorectal cancer. This may also be true for women versus men. In our pooled analysis, external variables like dietary or lifestyle factors are not taken into account. It is possible or even likely that some of the candidate low-penetrance genes only contribute to colorectal cancer in combination with certain dietary and/or lifestyle factors.

In conclusion, truly reliable judgments on these associations should for most of the candidate low-penetrance genes be based on much larger numbers of affected and unaffected subjects than we were able to study with available data from the literature. Actually, before a study is performed, the sample size required to detect an association with sufficient power should be calculated. It is important to realize then that the genetic effect or OR is often overestimated, resulting in too small samples after all.

Only simultaneous genotyping and combined analysis of different polymorphisms in large numbers of patients and controls, stratified by ethnicity, gender, and tumor localization, and taking relevant dietary and lifestyle habits into account, will make it possible to describe the exact relations between polymorphisms and colorectal cancer susceptibility with an adequate power.

The ability to identify these genes and to understand their interactions with other relevant environmental, endogenous, and genetic factors is important. It will help to identify high-risk individuals for entry into surveillance programs and to reveal causative factors, allowing more effective prevention strategies (93), thereby reducing the morbidity and mortality of colorectal cancer (227).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

Supported by Grant RUG-98-1665 of the Dutch Cancer Society.

3

The abbreviations used are: FAP, familial adenomatous polyposis; HNPCC, hereditary nonpolyposis colorectal cancer; OR, odds ratio; CI, confidence interval; HAA, heterocyclic amine; GST, glutathione S-transferase; PAH, polycyclic aromatic hydrocarbon; CYP, cytochrome P-450; NAT, N-acetyltransferase; NQO1, NAD(P)H quinone oxidoreductase; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; APOE, apolipoprotein E; PLA2G2A, secretory phospholipase 2; TNF, tumor necrosis factor; HFE, hemochromatosis; TFR, transferrin receptor; HH, hereditary hemochromatosis; ALDH2, aldehyde dehydrogenase 2; VDR, vitamin D receptor.

Table 1

Studies of genetic polymorphisms (reported in more than one study) and colorectal adenoma and/or cancer risk for the studies separately and combined. Significant results are typed in bold.

PolymorphismsEthnicityAllele freq.Type of tumorCases (n)Controls (n)Risk groupOR95% CI
CYP1A1         
 m1 (MspI RFLP)         
  Sivaraman et al. (36) Mixed 0.28 CRA 43 47 W/V 0.45 0.18–1.17 
      V/V 5.00 0.99–25.3 
  Fritsche et al. (37) White 0.05 CRA 31 101 W/V 1.96 0.66–5.83 
   CRC 187 101 W/V 1.90 0.92–3.92 
  Inou et al. (38) Asian 0.39 CRA 205 220 W/V 0.97 0.64–1.47 
      V/V 0.75 0.43–1.32 
  Ishibe et al. (39) White 0.13 CRC 211 221 W/V 0.78 0.48–1.27 
      V/V 0.80 0.21–3.01 
  Butler et al. (40)a White 0.11 CRC 185 200 V carriers 0.84 0.52–1.35 
Total m1 Mixed 0.28 CRA 279 368 W/V 1.25 0.89–1.75 
      V/V 1.42 0.87–2.32 
  0.11 CRC 398 322 W/V 1.00 0.68–1.47 
      V/V 0.81 0.23–2.82 
  0.20 CRC 583 522 V carriers 0.93 0.71–1.22 
 m2 (A462G)         
  Kawajiri et al. (41) Asian 0.20 CRC 85 358 W/V 0.77 0.44–1.33 
      V/V 1.16 0.41–3.28 
  Sivaraman et al. (36) Mixed 0.15 CRA 43 47 W/V 0.66 0.25–1.75 
      V carriers 0.81 0.32–2.05 
  Ishibe et al. (39) White 0.09 CRC 212 221 W/V 1.06 0.62–1.81 
      V/V 1.32 0.35–5.00 
  Kiss et al. (42) White 0.10 CRC 163 163 W/V 1.47 0.87–2.49 
      V carriers 1.57 0.93–2.65 
Total m2 Mixed 0.14 CRC 460 742 W/V 0.85 0.64–1.13 
      V/V 0.96 0.48–1.95 
CYP2D6         
 Ladero et al. (45) White 0.06 CRC 89 556 PM 0.72 0.25–2.09 
 Smith et al. (46) White 0.19 CRC 115 720 W/V 1.04 0.67–1.61 
      V/V 1.68 0.74–3.80 
 Butler et al. (40) White 0.22 CRC 194 200 V carriers 0.98 0.70–1.37 
Total                  CYP2D6 White 0.05 CRC 204 1276 PMb 1.16 0.62–2.20 
  0.20 CRC 309 920 V carriersc 1.12 0.90–1.40 
CYP2E1         
 G1259C         
  Kiss et al. (42) White 0.07 CRC 163 163 W/V 1.82 1.02–3.22 
      V carriers 1.91 1.08–3.38 
  Butler et al. (40) White 0.03 CRC 149 200 V carriers 0.44 0.14–1.38 
Total G1259C White 0.05 CRC 312 363 V carriers 1.53 0.97–2.42 
 Intron 6         
 Butler et al. (40) White 0.08 CRC 153 200 V carriers 0.63 0.34–1.18 
GSTM1  Null freq.       
 Strange et al. (55) White 0.41 CRC 26 49 Null 2.32 0.88–6.14 
 Zhong et al. (56) White 0.42 CRC 196 225 Null 1.78 1.21–2.62 
 Chenevix-Trench et al. (57) White 0.51 CRC 132 200 Null 0.92 0.59–1.43 
 Deakin et al. (58) White 0.55 CRC 252 577 Null 0.95 0.71–1.28 
 Guo et al. (59) Asian 0.26 CRC 19 23 Null 1.65 0.44–6.17 
 Katoh et al. (60) Asian 0.44 CRC 103 126 Null 1.54 0.91–2.60 
 Gertig et al. (61) White 0.53 CRC 211 221 Null 1.04 0.72–1.52 
 Harris et al. (62) Mixed 0.50 CRC 88 199 Null 0.79 0.48–1.30 
 Lee et al. (63) Asian 0.49 CRC 300 183 Null 1.19 0.77–1.84 
 Moisio et al. (64) White  CRC 70    
 Slattery et al. (65) Mixed 0.53 CRC 1567 1889 Null 0.94 0.82–1.07 
 Abdel-Rahman et al. (66) White 0.67 CRC 63 45 Null 0.71 0.32–1.58 
 Gawronska-Szklarz et al. (67) White 0.50 CRA 27 145 Null 1.72 0.74–4.02 
   CRC 28 145 Null 2.53 1.05–6.12 
 Welfare et al. (68) White 0.51 CRC 196 178 Null 1.07 0.71–1.62 
 Zhang et al. (69) White 0.51 CRC 94 109 Null 0.83 0.48–1.45 
 Inoue et al. (38) Asian 0.56 CRA 205 220 Null 0.88 0.60–1.29 
 Kiss et al. (42) White 0.44 CRC 163 163 Null 1.19 0.77–1.84 
 Butler et al. (40) White 0.54 CRC 203 200 Null 0.93 0.63–1.38 
 Loktionov et al. (70) White 0.59 CRC 206 355 Null 1.29 0.90–1.84 
 Saadat and Saadat (71) White 0.40 CRC 46 131 Null 1.75 0.89–3.45 
Total GSTM1 Mixed 0.53 CRA 232 365 Null 1.02 0.73–1.42 
  0.52 CRC 3945 4818 Null 1.00 0.92–1.09 
PolymorphismsEthnicityAllele freq.Type of tumorCases (n)Controls (n)Risk groupOR95% CI
CYP1A1         
 m1 (MspI RFLP)         
  Sivaraman et al. (36) Mixed 0.28 CRA 43 47 W/V 0.45 0.18–1.17 
      V/V 5.00 0.99–25.3 
  Fritsche et al. (37) White 0.05 CRA 31 101 W/V 1.96 0.66–5.83 
   CRC 187 101 W/V 1.90 0.92–3.92 
  Inou et al. (38) Asian 0.39 CRA 205 220 W/V 0.97 0.64–1.47 
      V/V 0.75 0.43–1.32 
  Ishibe et al. (39) White 0.13 CRC 211 221 W/V 0.78 0.48–1.27 
      V/V 0.80 0.21–3.01 
  Butler et al. (40)a White 0.11 CRC 185 200 V carriers 0.84 0.52–1.35 
Total m1 Mixed 0.28 CRA 279 368 W/V 1.25 0.89–1.75 
      V/V 1.42 0.87–2.32 
  0.11 CRC 398 322 W/V 1.00 0.68–1.47 
      V/V 0.81 0.23–2.82 
  0.20 CRC 583 522 V carriers 0.93 0.71–1.22 
 m2 (A462G)         
  Kawajiri et al. (41) Asian 0.20 CRC 85 358 W/V 0.77 0.44–1.33 
      V/V 1.16 0.41–3.28 
  Sivaraman et al. (36) Mixed 0.15 CRA 43 47 W/V 0.66 0.25–1.75 
      V carriers 0.81 0.32–2.05 
  Ishibe et al. (39) White 0.09 CRC 212 221 W/V 1.06 0.62–1.81 
      V/V 1.32 0.35–5.00 
  Kiss et al. (42) White 0.10 CRC 163 163 W/V 1.47 0.87–2.49 
      V carriers 1.57 0.93–2.65 
Total m2 Mixed 0.14 CRC 460 742 W/V 0.85 0.64–1.13 
      V/V 0.96 0.48–1.95 
CYP2D6         
 Ladero et al. (45) White 0.06 CRC 89 556 PM 0.72 0.25–2.09 
 Smith et al. (46) White 0.19 CRC 115 720 W/V 1.04 0.67–1.61 
      V/V 1.68 0.74–3.80 
 Butler et al. (40) White 0.22 CRC 194 200 V carriers 0.98 0.70–1.37 
Total                  CYP2D6 White 0.05 CRC 204 1276 PMb 1.16 0.62–2.20 
  0.20 CRC 309 920 V carriersc 1.12 0.90–1.40 
CYP2E1         
 G1259C         
  Kiss et al. (42) White 0.07 CRC 163 163 W/V 1.82 1.02–3.22 
      V carriers 1.91 1.08–3.38 
  Butler et al. (40) White 0.03 CRC 149 200 V carriers 0.44 0.14–1.38 
Total G1259C White 0.05 CRC 312 363 V carriers 1.53 0.97–2.42 
 Intron 6         
 Butler et al. (40) White 0.08 CRC 153 200 V carriers 0.63 0.34–1.18 
GSTM1  Null freq.       
 Strange et al. (55) White 0.41 CRC 26 49 Null 2.32 0.88–6.14 
 Zhong et al. (56) White 0.42 CRC 196 225 Null 1.78 1.21–2.62 
 Chenevix-Trench et al. (57) White 0.51 CRC 132 200 Null 0.92 0.59–1.43 
 Deakin et al. (58) White 0.55 CRC 252 577 Null 0.95 0.71–1.28 
 Guo et al. (59) Asian 0.26 CRC 19 23 Null 1.65 0.44–6.17 
 Katoh et al. (60) Asian 0.44 CRC 103 126 Null 1.54 0.91–2.60 
 Gertig et al. (61) White 0.53 CRC 211 221 Null 1.04 0.72–1.52 
 Harris et al. (62) Mixed 0.50 CRC 88 199 Null 0.79 0.48–1.30 
 Lee et al. (63) Asian 0.49 CRC 300 183 Null 1.19 0.77–1.84 
 Moisio et al. (64) White  CRC 70    
 Slattery et al. (65) Mixed 0.53 CRC 1567 1889 Null 0.94 0.82–1.07 
 Abdel-Rahman et al. (66) White 0.67 CRC 63 45 Null 0.71 0.32–1.58 
 Gawronska-Szklarz et al. (67) White 0.50 CRA 27 145 Null 1.72 0.74–4.02 
   CRC 28 145 Null 2.53 1.05–6.12 
 Welfare et al. (68) White 0.51 CRC 196 178 Null 1.07 0.71–1.62 
 Zhang et al. (69) White 0.51 CRC 94 109 Null 0.83 0.48–1.45 
 Inoue et al. (38) Asian 0.56 CRA 205 220 Null 0.88 0.60–1.29 
 Kiss et al. (42) White 0.44 CRC 163 163 Null 1.19 0.77–1.84 
 Butler et al. (40) White 0.54 CRC 203 200 Null 0.93 0.63–1.38 
 Loktionov et al. (70) White 0.59 CRC 206 355 Null 1.29 0.90–1.84 
 Saadat and Saadat (71) White 0.40 CRC 46 131 Null 1.75 0.89–3.45 
Total GSTM1 Mixed 0.53 CRA 232 365 Null 1.02 0.73–1.42 
  0.52 CRC 3945 4818 Null 1.00 0.92–1.09 
Table 1A

Continued

GSTP1
 Codon 105         
  Harries et al. (73) White 0.28 CRC 100 155 W/V 1.78 1.05–3.02 
      V/V 1.71 0.62–4.68 
  Harris et al. (62) Mixed 0.34 CRC 88 199 W/V 0.86 0.50–1.46 
      V/V 1.32 0.57–3.08 
  Katoh et al. (64) Asian 0.14 CRC 103 122 W/V 1.83 0.99–3.36 
      V carriers 1.51 0.84–2.72 
  Welfare et al. (68) White 0.33 CRC 196 178 W/V 1.07 0.70–1.65 
      V/V 0.61 0.30–1.25 
  Loktionov et al. (70) White 0.35 CRC 206 355 W/V 0.90 0.63–1.30 
      V/V 1.01 0.57–1.80 
Total codon 105 Mixed 0.31 CRC 693 1009 W/V 1.05 0.86–1.29 
      V/V 0.91 0.36–2.31 
 Codon 114         
  Harris et al. (62) Mixed 0.07 CRC 131 199 W/V 0.88 0.46–1.68 
      V carriers 0.93 0.50–1.76 
  Welfare et al. (68) White 0.19 CRC 196 178 W/V 0.99 0.55–1.78 
      V/V 0.18 0.02–1.53 
Total codon 114 Mixed 0.08 CRC 327 377 W/V 0.95 0.62–1.45 
      V/V 0.45 0.09–2.36 
GSTT1  Null freq.       
 Chenevix-Trench et al. (57) White 0.16 CRC 125 148 Null 1.27 0.68–2.37 
 Deakin et al. (58) White 0.18 CRC 211 509 Null 1.88 1.30–2.72 
 Katoh et al. (60) Asian 0.44 CRC 103 126 Null 1.18 0.70–1.99 
 Gertig et al. (61) White 0.23 CRC 209 220 Null 0.69 0.43–1.11 
 Mosio et al. (64) White  CRC 70    
 Abdel-Rahman et al. (66) White 0.41 CRC 59 51 Null 0.85 0.39–1.83 
 Welfare et al. (68) White 0.17 CRC 177 177 Null 1.21 0.70–2.07 
 Zhang et al. (69) White 0.20 CRC 94 100 Null 4.49 2.42–8.34 
 Butler et al. (40) White 0.20 CRC 190 200 Null 2.18 1.38–3.44 
 Loktionov et al. (70) White 0.15 CRC 206 355 Null 1.34 0.86–2.11 
 Saadat and Saadat (71) White 0.31 CRC 46 131 Null 1.41 0.70–2.84 
Total                  GSTT1 Mixed 0.21 CRC 1490 2026 Null 1.37 1.17–1.60 
         
NAT1  Fast freq.       
 Bell et al. (81) White 0.29 CRC 202 112 Fast 1.92 1.18–3.15 
 Probst-Hensch et al. (83)d Mixed 0.50 CRA 441 484 Fast 1.01 0.78–1.31 
 Chen et al. (84) White 0.44 CRC 212 221 Fast 0.96 0.66–1.44 
 Hubbard et al. (86)a White 0.04 CRC 260 323 Fast 1.36 0.61–3.04 
 Moisio et al. (64) White  CRC 70    
 Katoh et al. (85) Asian 0.63 CRC 103 122 Fast 1.04 0.60–1.78 
 Butler et al. (40)a White 0.19 CRC 198 198 10 allele 0.69 0.47–1.00 
Total                  NAT1 Mixed 0.45 CRC 587 455 Fast 1.09 0.85–1.40 
         
NAT2 phenotype  Fast freq.       
 Lang et al. (87) Mixed? 0.32 CRC 43 41 Fast 2.48 1.02–6.03 
 Ilett et al. (88) White 0.34 CRC 49 86 Fast 2.41 1.18–4.95 
 Ladero et al. (89) White 0.42 CRC 109 96 Fast 1.14 0.66–1.99 
 Roberts-Thomson et al. (90)a White  CRA 89 110 Fast 1.1e 0.6–2.1 
   CRC 110 110 Fast 1.8                  e 1.0–3.3 
Total                  NAT2                  phenotype Mixed 0.37 CRC 201 223 Fast 1.67 1.11–2.46 
NAT2 genotype  Fast freq.       
 Rodriguez et al. (91) Mixed 0.46 CRC 44 28 Fast 0.96 0.37–2.49 
 Shibuta et al. (92) Asian 0.91 CRC 234 329 Fast 0.83 0.48–1.44 
 Bell et al. (81) White 0.45 CRC 202 112 Fast 1.12 0.71–1.79 
 Spurr et al. (93) White 0.35 CRC 103 96 Fast 0.82 0.46–1.48 
 Probst-Hensch et al. (94)d Mixed 0.47 CRA 441 484 Fast 1.07 0.82–1.38 
 Hubbard et al. (95) White 0.41 CRC 275 343 Fast 0.83 0.60–1.15 
 Welfare et al. (97) White 0.43 CRC 174 174 Fast 0.95 0.62–1.46 
 Chen et al. (84) White 0.43 CRC 212 221 Fast 0.81 0.55–1.18 
 Gil and Lechner (97) White 0.40 CRC 114 201 Fast 2.04 1.28–3.25 
 Lee et al. (98) Asian 0.72 CRC 216 187 Fast 1.08 0.70–1.67 
 Slattery et al. (65) White 0.41 CRC 1624 1963 Fast 1.07 0.94–1.22 
 Oda et al. (99) Asian 0.92 CRC 36 36 Fast 1.00 0.19–5.32 
 Potter et al. (100)d Mixed? 0.41 CRA 527 633 Fast 1.09 0.87–1.38 
GSTP1
 Codon 105         
  Harries et al. (73) White 0.28 CRC 100 155 W/V 1.78 1.05–3.02 
      V/V 1.71 0.62–4.68 
  Harris et al. (62) Mixed 0.34 CRC 88 199 W/V 0.86 0.50–1.46 
      V/V 1.32 0.57–3.08 
  Katoh et al. (64) Asian 0.14 CRC 103 122 W/V 1.83 0.99–3.36 
      V carriers 1.51 0.84–2.72 
  Welfare et al. (68) White 0.33 CRC 196 178 W/V 1.07 0.70–1.65 
      V/V 0.61 0.30–1.25 
  Loktionov et al. (70) White 0.35 CRC 206 355 W/V 0.90 0.63–1.30 
      V/V 1.01 0.57–1.80 
Total codon 105 Mixed 0.31 CRC 693 1009 W/V 1.05 0.86–1.29 
      V/V 0.91 0.36–2.31 
 Codon 114         
  Harris et al. (62) Mixed 0.07 CRC 131 199 W/V 0.88 0.46–1.68 
      V carriers 0.93 0.50–1.76 
  Welfare et al. (68) White 0.19 CRC 196 178 W/V 0.99 0.55–1.78 
      V/V 0.18 0.02–1.53 
Total codon 114 Mixed 0.08 CRC 327 377 W/V 0.95 0.62–1.45 
      V/V 0.45 0.09–2.36 
GSTT1  Null freq.       
 Chenevix-Trench et al. (57) White 0.16 CRC 125 148 Null 1.27 0.68–2.37 
 Deakin et al. (58) White 0.18 CRC 211 509 Null 1.88 1.30–2.72 
 Katoh et al. (60) Asian 0.44 CRC 103 126 Null 1.18 0.70–1.99 
 Gertig et al. (61) White 0.23 CRC 209 220 Null 0.69 0.43–1.11 
 Mosio et al. (64) White  CRC 70    
 Abdel-Rahman et al. (66) White 0.41 CRC 59 51 Null 0.85 0.39–1.83 
 Welfare et al. (68) White 0.17 CRC 177 177 Null 1.21 0.70–2.07 
 Zhang et al. (69) White 0.20 CRC 94 100 Null 4.49 2.42–8.34 
 Butler et al. (40) White 0.20 CRC 190 200 Null 2.18 1.38–3.44 
 Loktionov et al. (70) White 0.15 CRC 206 355 Null 1.34 0.86–2.11 
 Saadat and Saadat (71) White 0.31 CRC 46 131 Null 1.41 0.70–2.84 
Total                  GSTT1 Mixed 0.21 CRC 1490 2026 Null 1.37 1.17–1.60 
         
NAT1  Fast freq.       
 Bell et al. (81) White 0.29 CRC 202 112 Fast 1.92 1.18–3.15 
 Probst-Hensch et al. (83)d Mixed 0.50 CRA 441 484 Fast 1.01 0.78–1.31 
 Chen et al. (84) White 0.44 CRC 212 221 Fast 0.96 0.66–1.44 
 Hubbard et al. (86)a White 0.04 CRC 260 323 Fast 1.36 0.61–3.04 
 Moisio et al. (64) White  CRC 70    
 Katoh et al. (85) Asian 0.63 CRC 103 122 Fast 1.04 0.60–1.78 
 Butler et al. (40)a White 0.19 CRC 198 198 10 allele 0.69 0.47–1.00 
Total                  NAT1 Mixed 0.45 CRC 587 455 Fast 1.09 0.85–1.40 
         
NAT2 phenotype  Fast freq.       
 Lang et al. (87) Mixed? 0.32 CRC 43 41 Fast 2.48 1.02–6.03 
 Ilett et al. (88) White 0.34 CRC 49 86 Fast 2.41 1.18–4.95 
 Ladero et al. (89) White 0.42 CRC 109 96 Fast 1.14 0.66–1.99 
 Roberts-Thomson et al. (90)a White  CRA 89 110 Fast 1.1e 0.6–2.1 
   CRC 110 110 Fast 1.8                  e 1.0–3.3 
Total                  NAT2                  phenotype Mixed 0.37 CRC 201 223 Fast 1.67 1.11–2.46 
NAT2 genotype  Fast freq.       
 Rodriguez et al. (91) Mixed 0.46 CRC 44 28 Fast 0.96 0.37–2.49 
 Shibuta et al. (92) Asian 0.91 CRC 234 329 Fast 0.83 0.48–1.44 
 Bell et al. (81) White 0.45 CRC 202 112 Fast 1.12 0.71–1.79 
 Spurr et al. (93) White 0.35 CRC 103 96 Fast 0.82 0.46–1.48 
 Probst-Hensch et al. (94)d Mixed 0.47 CRA 441 484 Fast 1.07 0.82–1.38 
 Hubbard et al. (95) White 0.41 CRC 275 343 Fast 0.83 0.60–1.15 
 Welfare et al. (97) White 0.43 CRC 174 174 Fast 0.95 0.62–1.46 
 Chen et al. (84) White 0.43 CRC 212 221 Fast 0.81 0.55–1.18 
 Gil and Lechner (97) White 0.40 CRC 114 201 Fast 2.04 1.28–3.25 
 Lee et al. (98) Asian 0.72 CRC 216 187 Fast 1.08 0.70–1.67 
 Slattery et al. (65) White 0.41 CRC 1624 1963 Fast 1.07 0.94–1.22 
 Oda et al. (99) Asian 0.92 CRC 36 36 Fast 1.00 0.19–5.32 
 Potter et al. (100)d Mixed? 0.41 CRA 527 633 Fast 1.09 0.87–1.38 
Table 1B

Continued

 Agundez et al. (101)White0.46CRC120258Fast1.170.76–1.80
 Katoh et al. (85) Asian 0.94 CRC 103 122 Fast 1.19 0.37–3.88 
 Butler et al. (40)a White 0.78 CRC 418 400 Fast allele 0.97 0.70–1.35 
Total                  NAT2                  genotype Mixed 0.44 CRA 968 1117 Fast 1.09 0.91–1.29 
 Mixed 0.49 CRC 3554 4070 Fast 1.01 0.93–1.11 
         
NQO1         
 C609T         
  Harth et al. (112) White 0.19 CRC 323 205 W/V 1.06 0.72–1.56 
      V/V 0.97 0.39–2.43 
  Lafuente et al. (113) White 0.20 CRC 247 296 W/V 1.10 0.77–1.58 
      V/V 2.44 1.06–5.64 
Total C609T White 0.20 CRC 570 501 W/V 1.05 0.81–1.36 
      V/V 1.55 0.84–2.88 
MTHFR         
 Ma et al. (124) White 0.35 CRC 202 326 W/V 1.10 0.76–1.60 
      V/V 0.58 0.32–1.06 
 Chen et al. (125) White 0.32 CRA 258 713 W/V 1.23 0.91–1.67 
      V/V 1.44 0.89–2.34 
 Park et al. (126) Asian 0.43 CRC 200 460 W/V 0.94 0.65–1.36 
      V/V 0.81 0.48–1.38 
 Slattery et al. (127) White 0.33 CRC 1467 1816 W/V 1.03 0.89–1.19 
      V/V 0.83 0.65–1.05 
 Ulrich et al. (128)d White 0.32 CRA 527 645 W/V 0.96 0.75–1.22 
      V/V 0.80 0.54–1.20 
 Wisotzkey et al. (129) White?  CRC 51     
 Levine et al. (130)d Mixed 0.29 CRA 471 510 W/V 0.85 0.65–1.11 
      V/V 1.09 0.71–1.67 
 Marugame et al. (131) Asian 0.36 CRA 205 220 W/V 0.94 0.62–1.42 
      V/V 1.24 0.68–2.26 
Total                  MTHFR Mixed 0.32 CRA 1461 2088 W/V 0.94 0.81–1.08 
      V/V 1.06 0.84–1.33 
 Mixed 0.35 CRC 2064 3229 W/V 1.01 0.90–1.14 
      V/V 0.74 0.61–0.89 
         
MTR         
 Chen et al. (134) White 0.19 CRA 257 713 W/V 0.99 0.73–1.34 
      V/V 0.78 0.31–1.98 
 Ma et al. (135) White 0.19 CRC 356 476 W/V 0.91 0.67–1.24 
      V/V 0.58 0.27–1.25 
         
APOE         
 Kervinen et al. (141) White 0.03 CRA 135 199 E2 allele 1.52 0.70–3.29 
  0.18    E4 allele 0.67 0.43–1.04 
   CRC 122 199 E2 allele 0.83 0.32–2.11 
      E4 allele 0.70 0.45–1.10 
 Butler et al. (40) White 0.08 CRC 167 200 E2 allele 0.77 0.43–1.38 
  0.17    E4 allele 0.81 0.54–1.22 
 Shinomiya et al. (142) Asian 0.06 CRA 179 220 E2 allele 0.87 0.47–1.63 
  0.08    E4 allele 0.93 0.55–1.58 
Total                  APOE Mixed 0.05 CRA 314 419 E2 allele 1.09 0.67–1.77 
  0.13    E4 allele 0.73 0.52–1.03 
 White 0.06 CRC 289 399 E2 allele 0.83 0.51–1.36 
  0.17    E4 allele 0.76 0.56–1.03 
         
PLA2G2A         
 C964G         
  Tomlinson et al. (144) White? 0.23 CRA 18 53 W/V 1.78 0.57–5.54 
      V/V 2.67 0.38–18.7 
   CRC 55 53 W/V 1.02 0.46–2.30 
      V/V 0.97 0.18–5.16 
 G1073C         
  Tomlinson et al. (144) White? 0.08 CRA 29 69 W/V 0.69 0.13–3.53 
      V/V 2.40 0.32–18.0 
   CRC 78 69 W/V 1.61 0.59–4.35 
      V/V 0.94 0.13–6.87 
 Agundez et al. (101)White0.46CRC120258Fast1.170.76–1.80
 Katoh et al. (85) Asian 0.94 CRC 103 122 Fast 1.19 0.37–3.88 
 Butler et al. (40)a White 0.78 CRC 418 400 Fast allele 0.97 0.70–1.35 
Total                  NAT2                  genotype Mixed 0.44 CRA 968 1117 Fast 1.09 0.91–1.29 
 Mixed 0.49 CRC 3554 4070 Fast 1.01 0.93–1.11 
         
NQO1         
 C609T         
  Harth et al. (112) White 0.19 CRC 323 205 W/V 1.06 0.72–1.56 
      V/V 0.97 0.39–2.43 
  Lafuente et al. (113) White 0.20 CRC 247 296 W/V 1.10 0.77–1.58 
      V/V 2.44 1.06–5.64 
Total C609T White 0.20 CRC 570 501 W/V 1.05 0.81–1.36 
      V/V 1.55 0.84–2.88 
MTHFR         
 Ma et al. (124) White 0.35 CRC 202 326 W/V 1.10 0.76–1.60 
      V/V 0.58 0.32–1.06 
 Chen et al. (125) White 0.32 CRA 258 713 W/V 1.23 0.91–1.67 
      V/V 1.44 0.89–2.34 
 Park et al. (126) Asian 0.43 CRC 200 460 W/V 0.94 0.65–1.36 
      V/V 0.81 0.48–1.38 
 Slattery et al. (127) White 0.33 CRC 1467 1816 W/V 1.03 0.89–1.19 
      V/V 0.83 0.65–1.05 
 Ulrich et al. (128)d White 0.32 CRA 527 645 W/V 0.96 0.75–1.22 
      V/V 0.80 0.54–1.20 
 Wisotzkey et al. (129) White?  CRC 51     
 Levine et al. (130)d Mixed 0.29 CRA 471 510 W/V 0.85 0.65–1.11 
      V/V 1.09 0.71–1.67 
 Marugame et al. (131) Asian 0.36 CRA 205 220 W/V 0.94 0.62–1.42 
      V/V 1.24 0.68–2.26 
Total                  MTHFR Mixed 0.32 CRA 1461 2088 W/V 0.94 0.81–1.08 
      V/V 1.06 0.84–1.33 
 Mixed 0.35 CRC 2064 3229 W/V 1.01 0.90–1.14 
      V/V 0.74 0.61–0.89 
         
MTR         
 Chen et al. (134) White 0.19 CRA 257 713 W/V 0.99 0.73–1.34 
      V/V 0.78 0.31–1.98 
 Ma et al. (135) White 0.19 CRC 356 476 W/V 0.91 0.67–1.24 
      V/V 0.58 0.27–1.25 
         
APOE         
 Kervinen et al. (141) White 0.03 CRA 135 199 E2 allele 1.52 0.70–3.29 
  0.18    E4 allele 0.67 0.43–1.04 
   CRC 122 199 E2 allele 0.83 0.32–2.11 
      E4 allele 0.70 0.45–1.10 
 Butler et al. (40) White 0.08 CRC 167 200 E2 allele 0.77 0.43–1.38 
  0.17    E4 allele 0.81 0.54–1.22 
 Shinomiya et al. (142) Asian 0.06 CRA 179 220 E2 allele 0.87 0.47–1.63 
  0.08    E4 allele 0.93 0.55–1.58 
Total                  APOE Mixed 0.05 CRA 314 419 E2 allele 1.09 0.67–1.77 
  0.13    E4 allele 0.73 0.52–1.03 
 White 0.06 CRC 289 399 E2 allele 0.83 0.51–1.36 
  0.17    E4 allele 0.76 0.56–1.03 
         
PLA2G2A         
 C964G         
  Tomlinson et al. (144) White? 0.23 CRA 18 53 W/V 1.78 0.57–5.54 
      V/V 2.67 0.38–18.7 
   CRC 55 53 W/V 1.02 0.46–2.30 
      V/V 0.97 0.18–5.16 
 G1073C         
  Tomlinson et al. (144) White? 0.08 CRA 29 69 W/V 0.69 0.13–3.53 
      V/V 2.40 0.32–18.0 
   CRC 78 69 W/V 1.61 0.59–4.35 
      V/V 0.94 0.13–6.87 
Table 1C

Continued

HRAS1
 Ceccherini-Nelli et al. (150) White 0.03 CRC 62 108 Rare alleles 1.04 0.30–3.63 
 Maestri et al. (151) White 0.04 CRC 33 51 Rare alleles 1.17 0.25–5.39 
 Wyllie et al. (152) White 0.02 CRC 46 49 Rare alleles 3.95 0.80–19.5 
 Klingel et al. (153) White  CRC 116    
 Gosse-Brun et al. (154) White 0.01 CRC 142 143 Rare alleles 7.29 1.64–32.4 
Total                  HRAS1 White 0.02 CRC 399 351 Rare alleles 2.67 1.47–4.85 
         
L-myc         
 Ikeda et al. (157) Asian  CRC 35    
 Chenevix-Trench et al. (57) White 0.49 CRC 118 148 W/V 0.87 0.48–1.58 
      V/V 1.28 0.64–2.55 
 Ko et al. (158) Asian  CRC 99    
 Togo et al. (159) White 0.54 CRC 63 122 W/V 0.69 0.32–1.50 
      V/V 0.98 0.43–2.22 
Total L-myc Mixed 0.51 CRC 324 270 W/V 0.82 0.55–1.23 
      V/V 1.09 0.69–1.72 
         
Tp53         
 Intron 3 (16-bp dupl)         
  Sjalander et al. (169) White 0.15 CRC 155 206f W/V 0.50 0.29–0.89 
      V/V 0.49 0.13–1.95 
 Exon 4 (codon 72)         
  Kawajiri et al. (170) Asian 0.35 CRC 84 347 W/V 0.78 0.46–1.31 
      V/V 1.68 0.85–3.35 
  Sjalander et al. (169) White 0.29 CRC 155 206f W/V 1.30 0.83–2.04 
      V/V 1.24 0.63–2.45 
Total exon 4 Mixed 0.33 CRC 239 553 W/V 0.93 0.67–1.29 
      V/V 1.34 0.83–2.14 
Intron 6 (MspI        
 Sjalander et al. (169) White 0.15 CRC 155 206f W/V 1.09 0.67–1.80 
      V/V 0.50 0.13–1.92 
         
TNF-α         
 TNFa         
  Honchel et al. (177) White 0.30 CRC 64 50 2 allele 1.35 0.77–2.37 
  0.05    5 allele 0.77 0.22–2.75 
  0.01    13 allele 2.38 0.24–23.1 
  Gallagher et al. (178) White 0.20 CRC 131 208 2 allele 2.25 1.59–3.18 
  0.08    5 allele 0.27 0.11–0.66 
  0.06    13 allele 0.28 0.11–0.74 
Total TNFa White 0.22 CRC 195 258 2 allele 2.02 1.51–2.71 
  0.07    5 allele 0.37 0.18–0.72 
  0.05    13 allele 0.36 0.16–0.81 
 −308         
  Park et al. (179) Asian 0.12 CRC 140 328 W/V 0.73 0.44–1.22 
      V/V 0.55 0.06–4.96 
  Jang et al. (180) Asian 0.04 CRC 27 92 W/V 1.52 0.36–6.32 
Total −308 Asian 0.10 CRC 167 420 W/V 0.83 0.51–1.34 
      V/V 0.61 0.07–5.47 
 −238         
  Jang et al. (180) Asian 0.07 CRC 27g 92    
HFE         
         
 C282Y         
  Altes et al. (188) White 0.04 CRC 116 108 W/V 0.68 0.23–2.03 
  Beckman et al. (189) White 0.07 CRC 173 294 W/V 1.02 0.57–1.82 
      V/V 0.85 0.15–4.70 
  MacDonald et al. (190) White 0.05 CRC 229 228 W/V 0.90 0.48–1.68 
Total C282Y White 0.06 CRC 517 630 W/V 0.85 0.57–1.26 
      V/V 0.60 0.11–3.28 
 H63D         
  Altes et al. (188) White 0.16 CRC 116 108 W/V 1.28 0.72–2.29 
      V/V 3.21 0.61–15.9 
         
ALDH2         
 Yokoyama et al. (195) Asian 0.19 CRC 46 487 W/V 2.80 1.30–6.02 
 Murata et al. (196) Asian 0.05 CRC 270 121 W/V 1.01 0.64–1.59 
      V/V 2.32 0.65–8.25 
HRAS1
 Ceccherini-Nelli et al. (150) White 0.03 CRC 62 108 Rare alleles 1.04 0.30–3.63 
 Maestri et al. (151) White 0.04 CRC 33 51 Rare alleles 1.17 0.25–5.39 
 Wyllie et al. (152) White 0.02 CRC 46 49 Rare alleles 3.95 0.80–19.5 
 Klingel et al. (153) White  CRC 116    
 Gosse-Brun et al. (154) White 0.01 CRC 142 143 Rare alleles 7.29 1.64–32.4 
Total                  HRAS1 White 0.02 CRC 399 351 Rare alleles 2.67 1.47–4.85 
         
L-myc         
 Ikeda et al. (157) Asian  CRC 35    
 Chenevix-Trench et al. (57) White 0.49 CRC 118 148 W/V 0.87 0.48–1.58 
      V/V 1.28 0.64–2.55 
 Ko et al. (158) Asian  CRC 99    
 Togo et al. (159) White 0.54 CRC 63 122 W/V 0.69 0.32–1.50 
      V/V 0.98 0.43–2.22 
Total L-myc Mixed 0.51 CRC 324 270 W/V 0.82 0.55–1.23 
      V/V 1.09 0.69–1.72 
         
Tp53         
 Intron 3 (16-bp dupl)         
  Sjalander et al. (169) White 0.15 CRC 155 206f W/V 0.50 0.29–0.89 
      V/V 0.49 0.13–1.95 
 Exon 4 (codon 72)         
  Kawajiri et al. (170) Asian 0.35 CRC 84 347 W/V 0.78 0.46–1.31 
      V/V 1.68 0.85–3.35 
  Sjalander et al. (169) White 0.29 CRC 155 206f W/V 1.30 0.83–2.04 
      V/V 1.24 0.63–2.45 
Total exon 4 Mixed 0.33 CRC 239 553 W/V 0.93 0.67–1.29 
      V/V 1.34 0.83–2.14 
Intron 6 (MspI        
 Sjalander et al. (169) White 0.15 CRC 155 206f W/V 1.09 0.67–1.80 
      V/V 0.50 0.13–1.92 
         
TNF-α         
 TNFa         
  Honchel et al. (177) White 0.30 CRC 64 50 2 allele 1.35 0.77–2.37 
  0.05    5 allele 0.77 0.22–2.75 
  0.01    13 allele 2.38 0.24–23.1 
  Gallagher et al. (178) White 0.20 CRC 131 208 2 allele 2.25 1.59–3.18 
  0.08    5 allele 0.27 0.11–0.66 
  0.06    13 allele 0.28 0.11–0.74 
Total TNFa White 0.22 CRC 195 258 2 allele 2.02 1.51–2.71 
  0.07    5 allele 0.37 0.18–0.72 
  0.05    13 allele 0.36 0.16–0.81 
 −308         
  Park et al. (179) Asian 0.12 CRC 140 328 W/V 0.73 0.44–1.22 
      V/V 0.55 0.06–4.96 
  Jang et al. (180) Asian 0.04 CRC 27 92 W/V 1.52 0.36–6.32 
Total −308 Asian 0.10 CRC 167 420 W/V 0.83 0.51–1.34 
      V/V 0.61 0.07–5.47 
 −238         
  Jang et al. (180) Asian 0.07 CRC 27g 92    
HFE         
         
 C282Y         
  Altes et al. (188) White 0.04 CRC 116 108 W/V 0.68 0.23–2.03 
  Beckman et al. (189) White 0.07 CRC 173 294 W/V 1.02 0.57–1.82 
      V/V 0.85 0.15–4.70 
  MacDonald et al. (190) White 0.05 CRC 229 228 W/V 0.90 0.48–1.68 
Total C282Y White 0.06 CRC 517 630 W/V 0.85 0.57–1.26 
      V/V 0.60 0.11–3.28 
 H63D         
  Altes et al. (188) White 0.16 CRC 116 108 W/V 1.28 0.72–2.29 
      V/V 3.21 0.61–15.9 
         
ALDH2         
 Yokoyama et al. (195) Asian 0.19 CRC 46 487 W/V 2.80 1.30–6.02 
 Murata et al. (196) Asian 0.05 CRC 270 121 W/V 1.01 0.64–1.59 
      V/V 2.32 0.65–8.25 
Table 1D

Continued

Total                  ALHD2Asian0.07CRC316608W/V3.002.15–4.18
      V/V 12.8 3.69–44.9 
         
VDR         
BsmI         
  Ingles et al. (203)d Mixed 0.37 CRA 373 394 W/V 1.10 0.80–1.50 
      V/V 1.04 0.69–1.56 
  Kim et al. (204)d 0.43 CRA 393 406 W/V 0.89 0.65–1.21 
      V/V 0.75 0.50–1.14 
  Speer et al. (205) White 0.43 CRC 59 112 W/V 0.72 0.35–1.47 
      V/V 1.12 0.48–2.64 
TotalBsmI Mixed 0.40 CRA 766 800 W/V 0.99 0.80–1.23 
      V/V 0.89 0.66–1.19 
FokI         
  Ingles et al. (203)d Mixed 0.40 CRA 373 394 W/V 0.97 0.71–1.32 
      V/V 0.90 0.59–1.37 
Total                  ALHD2Asian0.07CRC316608W/V3.002.15–4.18
      V/V 12.8 3.69–44.9 
         
VDR         
BsmI         
  Ingles et al. (203)d Mixed 0.37 CRA 373 394 W/V 1.10 0.80–1.50 
      V/V 1.04 0.69–1.56 
  Kim et al. (204)d 0.43 CRA 393 406 W/V 0.89 0.65–1.21 
      V/V 0.75 0.50–1.14 
  Speer et al. (205) White 0.43 CRC 59 112 W/V 0.72 0.35–1.47 
      V/V 1.12 0.48–2.64 
TotalBsmI Mixed 0.40 CRA 766 800 W/V 0.99 0.80–1.23 
      V/V 0.89 0.66–1.19 
FokI         
  Ingles et al. (203)d Mixed 0.40 CRA 373 394 W/V 0.97 0.71–1.32 
      V/V 0.90 0.59–1.37 
a

These studies were not included in the pooled analyses, owing to lack of data.

b

Pooled analysis for phenotype.

c

Pooled analysis for genotype.

d

Colonoscopy or sigmoidoscopy based studies.

e

Adjusted ORs from article.

f

Only female controls.

g

All cases were homozygous for the wild-type allele.

Table 2

Studies of genetic polymorphisms with separate analyses for gender. Significant results are typed in bold.

PolymorphismsEthnicityAllele freq.Type of tumorGenderCases (n)Controls (n)Risk groupOR95% CI
GSTM1          
 Gertig et al. (61) White 0.53 CRC Male 211 221 Null 1.04 0.72–1.52 
 Slattery et al. (65) Mixed 0.51 CRC Male 884 1017 Null 0.99 0.83–1.19 
  0.56  Female 683 872 Null 0.89 0.72–1.08 
 Abdel-Rahman et al. (66) White 0.71 CRC Male 40 28 Null 0.83 0.29–2.38 
  0.72  Female 23 25 Null 0.30 0.09–0.99 
 Inoue et al. (38) Asian 0.56 CRA Male 205 220 Null 0.88 0.60–1.29 
 Loktionov et al. (70) White 0.59 CRC Male 123 237 Null 1.41 0.89–2.22 
  0.58  Female 83 118 Null 1.13 0.64–2.01 
Total                  GSTM1 Mixed 0.53 CRC Male 1258 1503 Null 1.02 0.88–1.19 
 Mixed 0.56 CRC Female 789 1015 Null 0.88 0.73–1.06 
GSTP1          
 Codon 105          
  Loktionov et al. (70) White 0.34 CRC Male 123 237 W/V 0.93 0.58–1.47 
       V/V 1.05 0.50–2.18 
  0.38  Female 83 118 W/V 0.82 0.45–1.50 
       V/V 0.91 0.36–2.31 
GSTT1          
 Gertig et al. (61) White 0.23 CRC Male 209 220 Null 0.69 0.43–1.11 
 Abdel-Rahman et al. (66) White 0.58 CRC Male 36 36 Null 0.71 0.28–1.81 
  0.38  Female 23 24 Null 0.35 0.09–1.37 
 Loktionov et al. (70) White 0.16 CRC Male 123 237 Null 1.31 0.74–2.31 
  0.14  Female 83 118 Null 1.42 0.67–3.00 
Total                  GSTT1 White 0.22 CRC Male 368 493 Null 0.95 0.68–1.32 
  0.18  Female 106 142 Null 1.04 0.54–1.98 
          
NAT2 genotype          
 Hubbard et al. (95) White 0.31a CRC Male 140 343b Fast 0.62 0.42–0.98 
  0.41a  Female 135 343b Fast 1.03 0.69–1.54 
 Welfare et al. (97) White 0.40 CRC Male 102 102 Fast 1.00 0.57–1.75 
  0.46  Female 72 72 Fast 0.95 0.49–1.82 
 Chen et al. (84) White 0.43 CRC Male 212 221 Fast 0.81 0.55–1.18 
 Slattery et al. (65) White 0.42 CRC Male 912 1036 Fast 0.98 0.82–1.17 
  0.40  Female 712 927 Fast 1.19 0.98–1.45 
Total                  NAT2                  genotype White 0.42 CRC Male 1366 1359 Fast 0.91 0.78–1.06 
  0.41  Female 919 999 Fast 1.15 0.96–1.38 
         
NQO1          
 C609T          
  Lafuente et al. (113) White 0.20b CRC Male 131 111 V/V 1.73 0.42–7.08 
  0.20b  Female 116 185 V/V 3.13 1.12–8.70 
MTHFR          
 Ma et al. (124) White 0.35 CRC Male 202 326 W/V 1.10 0.76–1.60 
       V/V 0.58 0.32–1.06 
 Chen et al. (125) White 0.32 CRA Female 258 713 W/V 1.23 0.91–1.67 
       V/V 1.44 0.89–2.34 
 Slattery et al. (127) White 0.33 CRC Male 824 967 W/V 1.04 0.86–1.27 
       V/V 0.79 0.57–1.10 
  0.33  Female 643 849 W/V 1.00 0.81–1.25 
       V/V 0.86 0.61–1.22 
 Marugame et al. (131) Asian 0.36 CRA Male 205 220 W/V 0.94 0.62–1.42 
       V/V 1.24 0.68–2.26 
Total                  MTHFR White 0.34 CRC Male 1026 1294 W/V 1.06 0.89–1.26 
       V/V 0.73 0.55–0.97 
MTR          
 Chen et al. (134) White 0.19 CRA Female 257 713 W/V 0.99 0.73–1.34 
       V/V 0.78 0.31–1.98 
 Ma et al. (135) White 0.19 CRC Male 356 476 W/V 0.91 0.67–1.24 
       V/V 0.58 0.27–1.25 
ALDH2          
 Murata et al. (196) Asian 0.20 CRC Male 163 60 W/V 0.94 0.50–1.78 
       V/V 2.26 0.48–10.5 
  0.19  Female 107 61 W/V 1.11 0.57–2.16 
       V/V 1.80 0.18–17.9 
PolymorphismsEthnicityAllele freq.Type of tumorGenderCases (n)Controls (n)Risk groupOR95% CI
GSTM1          
 Gertig et al. (61) White 0.53 CRC Male 211 221 Null 1.04 0.72–1.52 
 Slattery et al. (65) Mixed 0.51 CRC Male 884 1017 Null 0.99 0.83–1.19 
  0.56  Female 683 872 Null 0.89 0.72–1.08 
 Abdel-Rahman et al. (66) White 0.71 CRC Male 40 28 Null 0.83 0.29–2.38 
  0.72  Female 23 25 Null 0.30 0.09–0.99 
 Inoue et al. (38) Asian 0.56 CRA Male 205 220 Null 0.88 0.60–1.29 
 Loktionov et al. (70) White 0.59 CRC Male 123 237 Null 1.41 0.89–2.22 
  0.58  Female 83 118 Null 1.13 0.64–2.01 
Total                  GSTM1 Mixed 0.53 CRC Male 1258 1503 Null 1.02 0.88–1.19 
 Mixed 0.56 CRC Female 789 1015 Null 0.88 0.73–1.06 
GSTP1          
 Codon 105          
  Loktionov et al. (70) White 0.34 CRC Male 123 237 W/V 0.93 0.58–1.47 
       V/V 1.05 0.50–2.18 
  0.38  Female 83 118 W/V 0.82 0.45–1.50 
       V/V 0.91 0.36–2.31 
GSTT1          
 Gertig et al. (61) White 0.23 CRC Male 209 220 Null 0.69 0.43–1.11 
 Abdel-Rahman et al. (66) White 0.58 CRC Male 36 36 Null 0.71 0.28–1.81 
  0.38  Female 23 24 Null 0.35 0.09–1.37 
 Loktionov et al. (70) White 0.16 CRC Male 123 237 Null 1.31 0.74–2.31 
  0.14  Female 83 118 Null 1.42 0.67–3.00 
Total                  GSTT1 White 0.22 CRC Male 368 493 Null 0.95 0.68–1.32 
  0.18  Female 106 142 Null 1.04 0.54–1.98 
          
NAT2 genotype          
 Hubbard et al. (95) White 0.31a CRC Male 140 343b Fast 0.62 0.42–0.98 
  0.41a  Female 135 343b Fast 1.03 0.69–1.54 
 Welfare et al. (97) White 0.40 CRC Male 102 102 Fast 1.00 0.57–1.75 
  0.46  Female 72 72 Fast 0.95 0.49–1.82 
 Chen et al. (84) White 0.43 CRC Male 212 221 Fast 0.81 0.55–1.18 
 Slattery et al. (65) White 0.42 CRC Male 912 1036 Fast 0.98 0.82–1.17 
  0.40  Female 712 927 Fast 1.19 0.98–1.45 
Total                  NAT2                  genotype White 0.42 CRC Male 1366 1359 Fast 0.91 0.78–1.06 
  0.41  Female 919 999 Fast 1.15 0.96–1.38 
         
NQO1          
 C609T          
  Lafuente et al. (113) White 0.20b CRC Male 131 111 V/V 1.73 0.42–7.08 
  0.20b  Female 116 185 V/V 3.13 1.12–8.70 
MTHFR          
 Ma et al. (124) White 0.35 CRC Male 202 326 W/V 1.10 0.76–1.60 
       V/V 0.58 0.32–1.06 
 Chen et al. (125) White 0.32 CRA Female 258 713 W/V 1.23 0.91–1.67 
       V/V 1.44 0.89–2.34 
 Slattery et al. (127) White 0.33 CRC Male 824 967 W/V 1.04 0.86–1.27 
       V/V 0.79 0.57–1.10 
  0.33  Female 643 849 W/V 1.00 0.81–1.25 
       V/V 0.86 0.61–1.22 
 Marugame et al. (131) Asian 0.36 CRA Male 205 220 W/V 0.94 0.62–1.42 
       V/V 1.24 0.68–2.26 
Total                  MTHFR White 0.34 CRC Male 1026 1294 W/V 1.06 0.89–1.26 
       V/V 0.73 0.55–0.97 
MTR          
 Chen et al. (134) White 0.19 CRA Female 257 713 W/V 0.99 0.73–1.34 
       V/V 0.78 0.31–1.98 
 Ma et al. (135) White 0.19 CRC Male 356 476 W/V 0.91 0.67–1.24 
       V/V 0.58 0.27–1.25 
ALDH2          
 Murata et al. (196) Asian 0.20 CRC Male 163 60 W/V 0.94 0.50–1.78 
       V/V 2.26 0.48–10.5 
  0.19  Female 107 61 W/V 1.11 0.57–2.16 
       V/V 1.80 0.18–17.9 
Table 2A

Continued

VDR
BsmI          
  Kim et al. (204)c 0.43b CRA Male 215 208 W/V 0.92d 0.58–1.45 
       V/V 0.70d 0.38–1.29 
    Female 178 198 W/V 0.71d 0.43–1.18 
       V/V 0.71d 0.37–1.36 
VDR
BsmI          
  Kim et al. (204)c 0.43b CRA Male 215 208 W/V 0.92d 0.58–1.45 
       V/V 0.70d 0.38–1.29 
    Female 178 198 W/V 0.71d 0.43–1.18 
       V/V 0.71d 0.37–1.36 
a

Based on patients.

b

No discrimination possible for gender.

c

Colonoscopy for sigmoidoscopy based studies.

d

Adjusted ORs from article.

Table 3

Studies of genetic polymorphisms with separate analyses for tumor localization. Significant results are typed in bold.

PolymorphismsEthnicityAllele freq.Type of tumorLoc. of tumorCases (n)Controls (n)Risk groupOR95% CI
CYP1A1 (MspI RFLP)          
  Inou et al. (38) Asian 0.39 CRA Prox. 95 220 W/V 0.71 0.42–1.20 
       V/V 0.57 0.27–1.19 
    Dist. 110 220 W/V 1.28 0.77–2.12 
          
GSTM1          
 Zhong et al. (56) White 0.42 CRC Prox. 72 225 Null 3.38 1.91–6.00 
    Dist. 103 225 Null 1.66 1.04–2.66 
 Chenevix-Trench et al. (57) White 0.51 CRC Prox. 34 200 Null 0.87 0.42–1.80 
    Dist. 98 200 Null 0.94 0.58–1.53 
 Deakin et al. (58) White 0.55 CRC Prox. 82 577 Null 0.79 0.50–1.25 
    Dist. 64 577 Null 1.06 0.63–1.79 
    Rect. 94 577 Null 1.16 0.75–1.81 
 Katoh et al. (60) Asian 0.44 CRC Prox. 48 126 Null 1.19 0.61–2.31 
    Dist. 54 126 Null 2.24 1.15–4.36 
 Gertig et al. (61) White 0.53 CRC Prox. 79 221 Null 0.74 0.44–1.25 
    Dist. 92 221 Null 1.26 0.77–2.07 
 Slattery et al. (65) Mixed 0.53 CRC Prox. 763 1889 Null 0.97 0.82–1.15 
    Dist. 765 1889 Null 0.89 0.75–1.05 
 Abdel-Rahman et al. (66) White 0.67 CRC Dist. 18 45 Null 1.30 0.39–4.33 
 Loktionov et al. (70) White 0.59 CRC Prox. 59 355 Null 1.11 0.63–1.94 
    Dist. 147 355 Null 1.37 0.92–2.05 
Total                  GSTM1 Mixed 0.53 CRC Prox. 1137 3593 Null 1.01 0.88–1.15 
  0.53  Dist. 1341 3638 Null 1.03 0.91–1.17 
          
GSTP1          
 Codon 105          
  Loktionov et al. (70) White 0.35 CRC Prox. 59 355 W/V 0.77 0.44–1.36 
       V/V 0.38 0.11–1.31 
    Dist. 147 355 W/V 0.97 0.64–1.47 
       V/V 1.33 0.72–2.45 
          
GSTT1          
 Chenevix-Trench et al. (57) White 0.16 CRC Prox. 31 148 Null 0.37 0.08–1.68 
    Dist. 94 148 Null 1.03 0.51–2.10 
 Deakin et al. (58) White 0.18 CRC Prox. 71 509 Null 1.50 0.84–2.68 
    Dist. 55 509 Null 2.33 1.28–4.24 
    Rect. 74 509 Null 1.87 1.08–3.23 
 Gertig et al. (61) White 0.23 CRC Prox. 80 220 Null 0.89 0.48–1.66 
    Dist. 89 220 Null 0.57 0.29–1.10 
 Loktionov et al. (70) White 0.15 CRC Prox. 59 355 Null 1.42 0.71–2.86 
    Dist. 147 355 Null 1.31 0.79–2.17 
Total                  GSTT1 White 0.18 CRC Prox. 241 1232 Null 1.16 0.82–1.64 
    Dist. 385 1232 Null 1.10 0.82–1.47 
          
NAT1          
 Bell et al. (81) White 0.29 CRC Prox. 67 112 Fast 1.52 0.80–2.87 
    Dist. 120 112 Fast 2.17 1.26–3.72 
NAT2 genotype          
 Shibuta et al. (92) Asian 0.91 CRC Col. 116 329 Fast 1.10 0.52–2.33 
    Rect. 110 329 Fast 0.66 0.34–1.27 
 Hubbard et al. (95) White 0.41 CRC Prox. 97 343 Fast 1.02 0.64–1.61 
    Dist. 178 343 Fast 0.72 0.49–1.05 
 Welfare et al. (97) White 0.43 CRC Prox. 51 174 Fast 0.92 0.49–1.74 
    Dist. 62 174 Fast 0.89 0.49–1.61 
    Rect. 48 174 Fast 0.94 0.49–1.80 
 Lee et al. (98) Asian 0.72 CRC Prox. 29 187 Fast 1.90 0.69–5.24 
    Dist. 21 187 Fast 1.27 0.44–3.63 
    Sigm/Rect. 166 187 Fast 0.97 0.61–1.54 
 Slattery et al. (65) White 0.41 CRC Prox. 773 1963 Fast 1.11 0.94–1.31 
    Dist. 789 1963 Fast 1.02 0.87–1.21 
 Agundez et al. (101) White 0.46 CRC Nonsigm. 40 258 Fast 0.70 0.35–1.39 
    Sigm. 41 258 Fast 2.02 1.02–4.00 
    Rect. 39 258 Fast 1.11 0.57–2.18 
PolymorphismsEthnicityAllele freq.Type of tumorLoc. of tumorCases (n)Controls (n)Risk groupOR95% CI
CYP1A1 (MspI RFLP)          
  Inou et al. (38) Asian 0.39 CRA Prox. 95 220 W/V 0.71 0.42–1.20 
       V/V 0.57 0.27–1.19 
    Dist. 110 220 W/V 1.28 0.77–2.12 
          
GSTM1          
 Zhong et al. (56) White 0.42 CRC Prox. 72 225 Null 3.38 1.91–6.00 
    Dist. 103 225 Null 1.66 1.04–2.66 
 Chenevix-Trench et al. (57) White 0.51 CRC Prox. 34 200 Null 0.87 0.42–1.80 
    Dist. 98 200 Null 0.94 0.58–1.53 
 Deakin et al. (58) White 0.55 CRC Prox. 82 577 Null 0.79 0.50–1.25 
    Dist. 64 577 Null 1.06 0.63–1.79 
    Rect. 94 577 Null 1.16 0.75–1.81 
 Katoh et al. (60) Asian 0.44 CRC Prox. 48 126 Null 1.19 0.61–2.31 
    Dist. 54 126 Null 2.24 1.15–4.36 
 Gertig et al. (61) White 0.53 CRC Prox. 79 221 Null 0.74 0.44–1.25 
    Dist. 92 221 Null 1.26 0.77–2.07 
 Slattery et al. (65) Mixed 0.53 CRC Prox. 763 1889 Null 0.97 0.82–1.15 
    Dist. 765 1889 Null 0.89 0.75–1.05 
 Abdel-Rahman et al. (66) White 0.67 CRC Dist. 18 45 Null 1.30 0.39–4.33 
 Loktionov et al. (70) White 0.59 CRC Prox. 59 355 Null 1.11 0.63–1.94 
    Dist. 147 355 Null 1.37 0.92–2.05 
Total                  GSTM1 Mixed 0.53 CRC Prox. 1137 3593 Null 1.01 0.88–1.15 
  0.53  Dist. 1341 3638 Null 1.03 0.91–1.17 
          
GSTP1          
 Codon 105          
  Loktionov et al. (70) White 0.35 CRC Prox. 59 355 W/V 0.77 0.44–1.36 
       V/V 0.38 0.11–1.31 
    Dist. 147 355 W/V 0.97 0.64–1.47 
       V/V 1.33 0.72–2.45 
          
GSTT1          
 Chenevix-Trench et al. (57) White 0.16 CRC Prox. 31 148 Null 0.37 0.08–1.68 
    Dist. 94 148 Null 1.03 0.51–2.10 
 Deakin et al. (58) White 0.18 CRC Prox. 71 509 Null 1.50 0.84–2.68 
    Dist. 55 509 Null 2.33 1.28–4.24 
    Rect. 74 509 Null 1.87 1.08–3.23 
 Gertig et al. (61) White 0.23 CRC Prox. 80 220 Null 0.89 0.48–1.66 
    Dist. 89 220 Null 0.57 0.29–1.10 
 Loktionov et al. (70) White 0.15 CRC Prox. 59 355 Null 1.42 0.71–2.86 
    Dist. 147 355 Null 1.31 0.79–2.17 
Total                  GSTT1 White 0.18 CRC Prox. 241 1232 Null 1.16 0.82–1.64 
    Dist. 385 1232 Null 1.10 0.82–1.47 
          
NAT1          
 Bell et al. (81) White 0.29 CRC Prox. 67 112 Fast 1.52 0.80–2.87 
    Dist. 120 112 Fast 2.17 1.26–3.72 
NAT2 genotype          
 Shibuta et al. (92) Asian 0.91 CRC Col. 116 329 Fast 1.10 0.52–2.33 
    Rect. 110 329 Fast 0.66 0.34–1.27 
 Hubbard et al. (95) White 0.41 CRC Prox. 97 343 Fast 1.02 0.64–1.61 
    Dist. 178 343 Fast 0.72 0.49–1.05 
 Welfare et al. (97) White 0.43 CRC Prox. 51 174 Fast 0.92 0.49–1.74 
    Dist. 62 174 Fast 0.89 0.49–1.61 
    Rect. 48 174 Fast 0.94 0.49–1.80 
 Lee et al. (98) Asian 0.72 CRC Prox. 29 187 Fast 1.90 0.69–5.24 
    Dist. 21 187 Fast 1.27 0.44–3.63 
    Sigm/Rect. 166 187 Fast 0.97 0.61–1.54 
 Slattery et al. (65) White 0.41 CRC Prox. 773 1963 Fast 1.11 0.94–1.31 
    Dist. 789 1963 Fast 1.02 0.87–1.21 
 Agundez et al. (101) White 0.46 CRC Nonsigm. 40 258 Fast 0.70 0.35–1.39 
    Sigm. 41 258 Fast 2.02 1.02–4.00 
    Rect. 39 258 Fast 1.11 0.57–2.18 
Table 3A

Continued

Total                  NAT2                  genotypeMixed0.42CRCProx.9612738Fast1.060.91–1.23
    Dist. 1070 2738 Fast 0.98 0.84–1.13 
    Rect. 87 2738 Fast 1.14 0.74–1.75 
          
MTHFR          
 Slattery et al. (127) White 0.33 CRC Prox. 722 1816 W/V 1.00 0.83–1.19 
       V/V 0.75 0.55–1.03 
    Dist. 718 1816 W/V 1.10 0.92–1.32 
       V/V 0.92 0.69–1.24 
 Marugame et al. (131) Asian 0.36 CRA Prox. 114 220 V/V 1.04 0.52–2.09 
    Dist. 95 220 V/V 1.63 0.84–3.16 
          
APOE          
 Kervinen et al. (141) White 0.03 CRA Prox. 40 199 E2 allele 2.52 0.97–6.54 
  0.18     E4 allele 0.39 0.16–0.93 
   CRA Dist. 95 199 E2 allele 1.09 0.43–2.78 
       E4 allele 0.79 0.49–1.27 
   CRC Prox. 41 199 E2 allele 0.32 0.04–2.49 
       E4 allele 0.35 0.15–0.83 
   CRC Dist. 91 199 E2 allele 1.12 0.42–3.01 
       E4 allele 0.91 0.56–1.48 
 Shinomiya et al. (142) Asian 0.06 CRA Prox. 69 220 E2 allele 1.12 0.51–2.47 
  0.08     E4 allele 0.64 0.28–1.49 
    Dist. 110 220 E2 allele 0.71 0.33–1.56 
       E4 allele 1.11 0.62–2.00 
Total                  APOE Mixed 0.05 CRA Prox. 109 419 E2 allele 1.55 0.84–2.83 
  0.13     E4 allele 0.45 0.25–0.82 
    Dist. 205 419 E2 allele 0.84 0.46–1.53 
       E4 allele 0.89 0.61–1.28 
          
HRAS1          
 Gosse-Brun et al. (154) White 0.01 CRC Prox. 42 143 Rare alleles 7.10 1.28–39.4 
    Dist. 98 143 Rare alleles 6.83 1.46–31.9 
          
HFE          
 C282Y          
  MacDonald et al. (190) White 0.05 CRC Prox. 67 228 W/V 1.04 0.43–2.54 
    Dist. 146 228 W/V 0.95 0.47–1.90 
          
ALDH2          
 Murata et al. (196) Asian 0.19 CRC Col. 160 121 W/V 1.27 0.77–2.09 
       V/V 3.17 0.85–11.7 
    Rect. 110 121 W/V 0.71 0.40–1.25 
       V/V 1.33 0.29–6.16 
VDR          
BsmI          
  Ingles et al. (203)a Mixed 0.37 CRA Nonrect. 258 394 W/V 1.07 0.76–1.51 
       V/V 1.00 0.63–1.57 
    Rect. 115 394 W/V 1.16 0.73–1.83 
       V/V 1.13 0.62–2.05 
  Kim et al. (204)a 0.43 CRA Prox. 83 406 W/V 0.60b 0.35–1.04 
       V/V 0.52b 0.24–1.10 
    Dist. 245 406 W/V 0.97b 0.66–1.43 
       V/V 0.88b 0.53–1.46 
    Rect. 61 406 W/V 0.94b 0.51–1.75 
       V/V 0.53b 0.20–1.41 
  Speer et al. (205) White 0.43 CRC Rect. 59 112 W/V 0.72 0.35–1.47 
       V/V 1.12 0.48–2.64 
FokI          
  Ingles et al. (203)a Mixed 0.40 CRA Nonrect. 258 394 W/V 1.03 0.73–1.45 
       V/V 0.74 0.45–1.21 
    Rect. 115 394 W/V 0.83 0.52–1.32 
       V/V 1.25 0.71–2.21 
Total                  NAT2                  genotypeMixed0.42CRCProx.9612738Fast1.060.91–1.23
    Dist. 1070 2738 Fast 0.98 0.84–1.13 
    Rect. 87 2738 Fast 1.14 0.74–1.75 
          
MTHFR          
 Slattery et al. (127) White 0.33 CRC Prox. 722 1816 W/V 1.00 0.83–1.19 
       V/V 0.75 0.55–1.03 
    Dist. 718 1816 W/V 1.10 0.92–1.32 
       V/V 0.92 0.69–1.24 
 Marugame et al. (131) Asian 0.36 CRA Prox. 114 220 V/V 1.04 0.52–2.09 
    Dist. 95 220 V/V 1.63 0.84–3.16 
          
APOE          
 Kervinen et al. (141) White 0.03 CRA Prox. 40 199 E2 allele 2.52 0.97–6.54 
  0.18     E4 allele 0.39 0.16–0.93 
   CRA Dist. 95 199 E2 allele 1.09 0.43–2.78 
       E4 allele 0.79 0.49–1.27 
   CRC Prox. 41 199 E2 allele 0.32 0.04–2.49 
       E4 allele 0.35 0.15–0.83 
   CRC Dist. 91 199 E2 allele 1.12 0.42–3.01 
       E4 allele 0.91 0.56–1.48 
 Shinomiya et al. (142) Asian 0.06 CRA Prox. 69 220 E2 allele 1.12 0.51–2.47 
  0.08     E4 allele 0.64 0.28–1.49 
    Dist. 110 220 E2 allele 0.71 0.33–1.56 
       E4 allele 1.11 0.62–2.00 
Total                  APOE Mixed 0.05 CRA Prox. 109 419 E2 allele 1.55 0.84–2.83 
  0.13     E4 allele 0.45 0.25–0.82 
    Dist. 205 419 E2 allele 0.84 0.46–1.53 
       E4 allele 0.89 0.61–1.28 
          
HRAS1          
 Gosse-Brun et al. (154) White 0.01 CRC Prox. 42 143 Rare alleles 7.10 1.28–39.4 
    Dist. 98 143 Rare alleles 6.83 1.46–31.9 
          
HFE          
 C282Y          
  MacDonald et al. (190) White 0.05 CRC Prox. 67 228 W/V 1.04 0.43–2.54 
    Dist. 146 228 W/V 0.95 0.47–1.90 
          
ALDH2          
 Murata et al. (196) Asian 0.19 CRC Col. 160 121 W/V 1.27 0.77–2.09 
       V/V 3.17 0.85–11.7 
    Rect. 110 121 W/V 0.71 0.40–1.25 
       V/V 1.33 0.29–6.16 
VDR          
BsmI          
  Ingles et al. (203)a Mixed 0.37 CRA Nonrect. 258 394 W/V 1.07 0.76–1.51 
       V/V 1.00 0.63–1.57 
    Rect. 115 394 W/V 1.16 0.73–1.83 
       V/V 1.13 0.62–2.05 
  Kim et al. (204)a 0.43 CRA Prox. 83 406 W/V 0.60b 0.35–1.04 
       V/V 0.52b 0.24–1.10 
    Dist. 245 406 W/V 0.97b 0.66–1.43 
       V/V 0.88b 0.53–1.46 
    Rect. 61 406 W/V 0.94b 0.51–1.75 
       V/V 0.53b 0.20–1.41 
  Speer et al. (205) White 0.43 CRC Rect. 59 112 W/V 0.72 0.35–1.47 
       V/V 1.12 0.48–2.64 
FokI          
  Ingles et al. (203)a Mixed 0.40 CRA Nonrect. 258 394 W/V 1.03 0.73–1.45 
       V/V 0.74 0.45–1.21 
    Rect. 115 394 W/V 0.83 0.52–1.32 
       V/V 1.25 0.71–2.21 
a

Colonoscopy or sigmoidoscopy based study.

b

Adjusted ORs from article.

Table 4

Genetic polymorphisms (reported in one study) and their allele frequencies, total number of colorectal adenoma and cancer cases and controls published, risk genotypes with their ORs and 95% CIs. Significant results are typed in bold.

PolymorphismsEthnicityAllele freq.Type of tumorLoc. of tumorGenderCasesControlsRisk groupOR95% CI
CCND1           
 McKay et al. (215) White 0.44 CRC   100 101 W/V 1.58 0.83–2.99 
        V/V 1.36 0.58–3.17 
CYP1A2  Rapid freq.         
 Lang et al. (30) Mixed 0.41 CRA   41 205 Rapid 2.46 1.23–4.92 
   CRC   34 205 Rapid 1.42 0.68–2.93 
CYP1B1           
 Fritsche et al. (37) White 0.40 CRA   31 101 W/V 2.20 0.83–5.88 
        V/V 2.05 0.63–6.70 
   CRC   187 101 W/V 1.83 1.05–3.21 
        V/V 2.14 1.08–4.23 
CYP2C9           
 Martinez et al. (216) White 0.14 CRC   129 150 2 allele carriers 0.83 0.51–1.36 
  0.16      3 allele carriers 0.57 0.34–0.96 
DCC           
 Minami et al. (217) Asian 0.52 CRA   117 30 W/V 0.85 0.24–2.97 
        V/V 4.15 0.96–17.9 
   CRC   74 30 W/V 1.62 0.37–7.18 
        V/V 7.20 1.35–38.3 
EphB2           
 Oba et al. (218) Asian 0.34 CRC   50 50 W/V 1.53 0.65–3.61 
        V/V 1.46 0.45–4.79 
ER           
PvuII           
  Speer et al. (205) White 0.50 CRC Rect.  56 112 W/V 1.4 0.50–3.87 
        V/V 4.48 1.58–12.7 
XbaI           
  Speer et al. (205) White 0.54 CRC Rect.  56 112 W/V 0.31 0.13–0.71 
        V/V 0.75 0.30–1.89 
GSTM3           
  Loktionov et al. (70) White 0.14 CRC   206 355 W/V 1.54 1.03–2.29 
        V/V 0.79 0.27–2.29 
    Prox.  59 355 W/V 0.87 0.43–1.75 
        V/V 0.48 0.06–3.77 
    Dist.  147 355 W/V 1.87 1.21–2.88 
        V/V 0.95 0.30–3.01 
  0.13   Male 123 237 W/V 0.93 0.58–1.47 
        V/V 1.05 0.50–2.18 
  0.15   Female 83 118 W/V 0.82 0.45–1.50 
        V/V 1.01 0.57–1.80 
mEPHX           
 Exon 3           
  Harrison et al. (219) White 0.31 CRC   101 203 W/V 0.83 0.49–1.40 
        V/V 3.50 1.60–7.65 
 Exon 4           
  Harrison et al. (219) White 0.15 CRC   101 203 W/V 0.77 0.43–1.36 
        V/V 2.58 0.56–11.8 
TFR           
 Beckman et al. (189) White 0.39 CRC   173 294 W/V 1.02 0.68–1.53 
        V/V 0.74 0.42–1.31 
TGFB1           
 Pasche et al. (220) Mixed 0.05 CRC   112 735 W/V (6a) 1.61 0.93–2.82 
TNFβ           
 Park et al. (175) Asian 0.32 CRC   136 331 W/V 1.74 1.11–2.73 
        V/V 2.89 1.54–5.42 
    Prox.  23 331 W/V 0.87 0.33–2.32 
        V/V 3.08 1.02–9.28 
    Dist.  27 331 W/V 1.82 0.71–4.69 
        V/V 4.63 1.52–14.1 
    Rect.  86 331 W/V 2.04 1.19–3.49 
        V/V 2.31 1.05–5.10 
  0.32a   Male 69 331a W/V 1.67 0.92–3.03 
        V/V 3.47 1.60–7.50 
  0.32a   Female 67 331a W/V 1.81 1.01–3.27 
        V/V 2.31 0.99–5.41 
TSER           
 Marsch et al. (221) White 0.45 CRC   121 97 W/V 0.99 0.54–1.85 
        V/V 0.81 0.36–1.84 
PolymorphismsEthnicityAllele freq.Type of tumorLoc. of tumorGenderCasesControlsRisk groupOR95% CI
CCND1           
 McKay et al. (215) White 0.44 CRC   100 101 W/V 1.58 0.83–2.99 
        V/V 1.36 0.58–3.17 
CYP1A2  Rapid freq.         
 Lang et al. (30) Mixed 0.41 CRA   41 205 Rapid 2.46 1.23–4.92 
   CRC   34 205 Rapid 1.42 0.68–2.93 
CYP1B1           
 Fritsche et al. (37) White 0.40 CRA   31 101 W/V 2.20 0.83–5.88 
        V/V 2.05 0.63–6.70 
   CRC   187 101 W/V 1.83 1.05–3.21 
        V/V 2.14 1.08–4.23 
CYP2C9           
 Martinez et al. (216) White 0.14 CRC   129 150 2 allele carriers 0.83 0.51–1.36 
  0.16      3 allele carriers 0.57 0.34–0.96 
DCC           
 Minami et al. (217) Asian 0.52 CRA   117 30 W/V 0.85 0.24–2.97 
        V/V 4.15 0.96–17.9 
   CRC   74 30 W/V 1.62 0.37–7.18 
        V/V 7.20 1.35–38.3 
EphB2           
 Oba et al. (218) Asian 0.34 CRC   50 50 W/V 1.53 0.65–3.61 
        V/V 1.46 0.45–4.79 
ER           
PvuII           
  Speer et al. (205) White 0.50 CRC Rect.  56 112 W/V 1.4 0.50–3.87 
        V/V 4.48 1.58–12.7 
XbaI           
  Speer et al. (205) White 0.54 CRC Rect.  56 112 W/V 0.31 0.13–0.71 
        V/V 0.75 0.30–1.89 
GSTM3           
  Loktionov et al. (70) White 0.14 CRC   206 355 W/V 1.54 1.03–2.29 
        V/V 0.79 0.27–2.29 
    Prox.  59 355 W/V 0.87 0.43–1.75 
        V/V 0.48 0.06–3.77 
    Dist.  147 355 W/V 1.87 1.21–2.88 
        V/V 0.95 0.30–3.01 
  0.13   Male 123 237 W/V 0.93 0.58–1.47 
        V/V 1.05 0.50–2.18 
  0.15   Female 83 118 W/V 0.82 0.45–1.50 
        V/V 1.01 0.57–1.80 
mEPHX           
 Exon 3           
  Harrison et al. (219) White 0.31 CRC   101 203 W/V 0.83 0.49–1.40 
        V/V 3.50 1.60–7.65 
 Exon 4           
  Harrison et al. (219) White 0.15 CRC   101 203 W/V 0.77 0.43–1.36 
        V/V 2.58 0.56–11.8 
TFR           
 Beckman et al. (189) White 0.39 CRC   173 294 W/V 1.02 0.68–1.53 
        V/V 0.74 0.42–1.31 
TGFB1           
 Pasche et al. (220) Mixed 0.05 CRC   112 735 W/V (6a) 1.61 0.93–2.82 
TNFβ           
 Park et al. (175) Asian 0.32 CRC   136 331 W/V 1.74 1.11–2.73 
        V/V 2.89 1.54–5.42 
    Prox.  23 331 W/V 0.87 0.33–2.32 
        V/V 3.08 1.02–9.28 
    Dist.  27 331 W/V 1.82 0.71–4.69 
        V/V 4.63 1.52–14.1 
    Rect.  86 331 W/V 2.04 1.19–3.49 
        V/V 2.31 1.05–5.10 
  0.32a   Male 69 331a W/V 1.67 0.92–3.03 
        V/V 3.47 1.60–7.50 
  0.32a   Female 67 331a W/V 1.81 1.01–3.27 
        V/V 2.31 0.99–5.41 
TSER           
 Marsch et al. (221) White 0.45 CRC   121 97 W/V 0.99 0.54–1.85 
        V/V 0.81 0.36–1.84 
Table 4A

Continued

uPAR
 Kohonen-Corish et al. (222) White 0.40 CRC   92 105 147 allele 0.62 0.41–0.95 
  0.07      149 allele 2.10 1.05–4.19 
XRCC1           
 Codon 194           
           
 Abdel-Rahman et al. (223) White 0.05 CRC   48 48 W/V 2.56 0.81–8.03 
 Codon 399           
         
 Abdel-Rahman et al. (223) White 0.14 CRC   48 48 W/V 3.92 1.53–10.0 
        V/V 4.20 0.75–23.5 
uPAR
 Kohonen-Corish et al. (222) White 0.40 CRC   92 105 147 allele 0.62 0.41–0.95 
  0.07      149 allele 2.10 1.05–4.19 
XRCC1           
 Codon 194           
           
 Abdel-Rahman et al. (223) White 0.05 CRC   48 48 W/V 2.56 0.81–8.03 
 Codon 399           
         
 Abdel-Rahman et al. (223) White 0.14 CRC   48 48 W/V 3.92 1.53–10.0 
        V/V 4.20 0.75–23.5 
a

For the controls, no discrimination was possible for gender.

1
Visser O. Coebergh J. W. W. Schouten L. J. Dijck J. A. A. M. van eds. .
Incidence of Cancer in the Netherlands 1997
, Vereniging van Integrale Kankercentra Utrecht  
2001
.
2
Bos J. L., Fearon E. R., Hamilton S. R., Verlaan-de Vries M., van Boom J. H., van der Eb A. J., Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers.
Nature (Lond.)
,
327
:
293
-297,  
1987
.
3
Baker S. J., Fearon E. R., Nigro J. M., Hamilton S. R., Preisinger A. C., Jessup J. M., vanTuinen P., Ledbetter D. H., Barker D. F., Nakamura Y., White R., Vogelstein B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas.
Science (Wash. DC)
,
244
:
217
-221,  
1989
.
4
Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M., Hamilton S. R., Preisinger A. C., Thomas G., Kinzler K. W., Vogelstein B. Identification of a chromosome 18q gene that is altered in colorectal cancers.
Science (Wash. DC)
,
247
:
49
-56,  
1990
.
5
Kinzler K. W., Nilbert M. C., Vogelstein B., Bryan T. M., Levy D. B., Smith K. J., Preisinger A. C., Hamilton S. R., Hedge P., Markham A., Carlson M., Joslyn G., Groden J., White R., Miki Y., Miyoshi Y., Nishisho I., Nakamura Y. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers.
Science (Wash. DC)
,
251
:
1366
-1370,  
1991
.
6
Russo A., Franceschi S., La Vecchia C., Dal Maso L., Montella M., Conti E., Giacosa A., Falcini F., Negri E. Body size and colorectal-cancer risk.
Int. J. Cancer
,
78
:
161
-165,  
1998
.
7
Bedine M. S. Colorectal carcinoma: etiology, diagnosis, and screening.
Compr. Ther.
,
25
:
163
-168,  
1999
.
8
Giacosa A., Franceschi S., La Vecchia C., Favero A., Andreatta R. Energy intake, overweight, physical exercise and colorectal cancer risk.
Eur. J. Cancer Prev.
,
8 (Suppl.1)
:
S53
-S60,  
1999
.
9
Slattery M. L. Diet, lifestyle, and colon cancer.
Semin. Gastrointest. Dis.
,
11
:
142
-146,  
2000
.
10
Boutron-Ruault M. C., Senesse P., Meance S., Belghiti C., Faivre J. Energy intake, body mass index, physical activity, and the colorectal adenoma-carcinoma sequence.
Nutr. Cancer
,
39
:
50
-57,  
2001
.
11
Giovannucci E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer.
Cancer Epidemiol. Biomark. Prev.
,
10
:
725
-731,  
2001
.
12
Thune I., Furberg A. S. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific.
Med. Sci. Sports Exerc.
,
33
:
S530
-S550,  
2001
.
13
Aaltonen L. A., Salovaara R., Kristo P., Canzian F., Hemminki A., Peltomaki P., Chadwick R. B., Kaariainen H., Eskelinen M., Jarvinen H., Mecklin J. P., de la Chapelle A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease.
N. Engl. J. Med.
,
338
:
1481
-1487,  
1998
.
14
Salovaara R., Loukola A., Kristo P., Kaariainen H., Ahtola H., Eskelinen M., Harkonen N., Julkunen R., Kangas E., Ojala S., Tulikoura J., Valkamo E., Jarvinen H., Mecklin J. P., Aaltonen L. A., de la Chapelle A. Population-based molecular detection of hereditary nonpolyposis colorectal cancer.
J. Clin. Oncol.
,
18
:
2193
-2200,  
2000
.
15
Percesepe A., Borghi F., Menigatti M., Losi L., Foroni M., Di Gregorio C., Rossi G., Pedroni M., Sala E., Vaccina F., Roncucci L., Benatti P., Viel A., Genuardi M., Marra G., Kristo P., Peltomaki P., Ponz de Leon M. Molecular screening for hereditary nonpolyposis colorectal cancer: a prospective, population-based study.
J. Clin. Oncol.
,
19
:
3944
-3950,  
2001
.
16
Samowitz W. S., Curtin K., Lin H. H., Robinson M. A., Schaffer D., Nichols M., Gruenthal K., Leppert M. F., Slattery M. L. The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer.
Gastroenterology
,
121
:
830
-838,  
2001
.
17
Gertig D. M., Hunter D. J. Genes and environment in the etiology of colorectal cancer.
Semin. Cancer Biol.
,
8
:
285
-298,  
1998
.
18
Smith G., Stanley L. A., Sim E., Strange R. C., Wolf C. R. Metabolic polymorphisms and cancer susceptibility.
Cancer Surv.
,
25
:
27
-65,  
1995
.
19
Houlston R., Crabtree M., Phillips R., Crabtree M., Tomlinson I. Explaining differences in the severity of familial adenomatous polyposis and the search for modifier genes.
Gut
,
48
:
1
-5,  
2001
.
20
Lynch H. T., Watson P., Lanspa S. J., Marcus J., Smyrk T., Fitzgibbons R. J., Jr., Kriegler M., Lynch J. F. Natural history of colorectal cancer in hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II).
Dis. Colon Rectum
,
31
:
439
-444,  
1988
.
21
Liu B., Parsons R., Papadopoulos N., Nicolaides N. C., Lynch H. T., Watson P., Jass J. R., Dunlop M., Wyllie A., Peltomaki P., de la Chapelle A., Hamilton S. R., Vogelstein B., Kinzler K. W. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients.
Nat. Med.
,
2
:
169
-174,  
1996
.
22
Caporaso N., Landi M. T., Vineis P. Relevance of metabolic polymorphisms to human carcinogenesis: evaluation of epidemiologic evidence.
Pharmacogenetics
,
1
:
4
-19,  
1991
.
23
te Meerman G. J., de Vries E. G. E. Relevance of high and low penetrance.
Lancet
,
358
:
331
2001
.
24
de Jong M. M., Nolte I. M., te Meerman G. J., van der Graaf W. T., Oosterwijk J. C., Kleibeuker J. H., Schaapveld M., de Vries E. G. Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility.
J. Med. Genet.
,
39
:
225
-242,  
2002
.
25
Willett W. C., Stampfer M. J., Colditz G. A., Rosner B. A., Speizer F. E. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women.
N. Engl. J. Med.
,
323
:
1664
-1672,  
1990
.
26
Giovannucci E., Rimm E. B., Stampfer M. J., Colditz G. A., Ascherio A., Willett W. C. Intake of fat, meat, and fiber in relation to risk of colon cancer in men.
Cancer Res.
,
54
:
2390
-2397,  
1994
.
27
Sugimura T., Nagao M., Wakabayashi K. Heterocyclic amines in cooked foods: candidates for causation of common cancers.
J. Natl. Cancer Inst. (Bethesda)
,
86
:
2
-4,  
1994
.
28
Boobis A. R., Lynch A. M., Murray S., de la Torre R., Solans A., Farre M., Segura J., Gooderham N. J., Davies D. S. CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans.
Cancer Res.
,
54
:
89
-94,  
1994
.
29
Kaderlik K. R., Minchin R. F., Mulder G. J., Ilett K. F., Daugaard-Jenson M., Teitel C. H., Kadlubar F. F. Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) in rat extrahepatic tissues.
Carcinogenesis (Lond.)
,
15
:
1703
-1709,  
1994
.
30
Lang N. P., Butler M. A., Massengill J., Lawson M., Stotts R. C., Hauer J. M., Kadlubar F. F. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps.
Cancer Epidemiol. Biomark. Prev.
,
3
:
675
-682,  
1994
.
31
Lin D., Meyer D. J., Ketterer B., Lang N. P., Kadlubar F. F. Effects of human and rat glutathione S-transferases on the covalent DNA binding of the N-acetoxy derivatives of heterocyclic amine carcinogens in vitro: a possible mechanism of organ specificity in their carcinogenesis.
Cancer Res.
,
54
:
4920
-4926,  
1994
.
32
Tsuchida S., Sato K. Glutathione transferases and cancer.
Crit. Rev. Biochem. Mol. Biol.
,
27
:
337
-384,  
1992
.
33
Shimada T., Yun C. H., Yamazaki H., Gautier J. C., Beaune P. H., Guengerich F. P. Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens.
Mol. Pharmacol.
,
41
:
856
-864,  
1992
.
34
Nebert D. W. Role of genetics and drug metabolism in human cancer risk.
Mutat. Res.
,
247
:
267
-281,  
1991
.
35
Hayashi S., Watanabe J., Nakachi K., Kawajiri K. Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene.
J. Biochem. (Tokyo)
,
110
:
407
-411,  
1991
.
36
Sivaraman L., Leatham M. P., Yee J., Wilkens L. R., Lau A. F., Le-Marchand L. CYP1A1 genetic polymorphisms and in situ colorectal cancer.
Cancer Res.
,
54
:
3692
-3695,  
1994
.
37
Fritsche E., Bruning T., Jonkmanns C., Ko Y., Bolt H. M., Abel J. Detection of cytochrome P450 1B1 Bfr I polymorphism: genotype distribution in healthy German individuals and in patients with colorectal carcinoma.
Pharmacogenetics
,
9
:
405
-408,  
1999
.
38
Inoue H., Kiyohara C., Marugame T., Shinomiya S., Tsuji E., Handa K., Hayabuchi H., Onuma K., Hamada H., Koga H., Kono S. Cigarette smoking, CYP1A1 MspI and GSTM1 genotypes, and colorectal adenomas.
Cancer Res.
,
60
:
3749
-3752,  
2000
.
39
Ishibe N., Stampfer M., Hunter D. J., Hennekens C., Kelsey K. T. A prospective study of cytochrome P450 1A1 polymorphisms and colorectal cancer risk in men.
Cancer Epidemiol. Biomark. Prev.
,
9
:
855
-856,  
2000
.
40
Butler W. J., Ryan P., Roberts-Thomson I. C. Metabolic genotypes and risk for colorectal cancer.
J. Gastroenterol. Hepatol.
,
16
:
631
-635,  
2001
.
41
Kawajiri K., Nakachi K., Imai K., Watanabe J., Hayashi S. The CYP1A1 gene and cancer susceptibility.
Crit. Rev. Oncol. Hematol.
,
14
:
77
-87,  
1993
.
42
Kiss I., Sandor J., Pajkos G., Bogner B., Hegedus G., Ember I. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes.
Anticancer Res.
,
20
:
519
-522,  
2000
.
43
Buchert E. T., Woosley R. L., Swain S. M., Oliver S. J., Coughlin S. S., Pickle L., Trock B., Riegel A. T. Relationship of CYP2D6 (debrisoquine hydroxylase) genotype to breast cancer susceptibility.
Pharmacogenetics
,
3
:
322
-327,  
1993
.
44
Wundrack I., Sasiadek M., Blin N. Debrisoquine hydroxylase gene polymorphism in neurofibromatosis type 1.
Anticancer Res.
,
17
:
4515
-4517,  
1997
.
45
Ladero J. M., Benitez J., Gonzalez J. F., Vargas E., Diaz-Rubio M. Oxidative polymorphism of debrisoquine is not related to human colorectal cancer.
Eur. J. Clin. Pharmacol.
,
40
:
525
-527,  
1991
.
46
Smith C. A., Moss J. E., Gough A. C., Spurr N. K., Wolf C. R. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.
Environ. Health Perspect.
,
98
:
107
-112,  
1992
.
47
Koop D. R. Oxidative and reductive metabolism by cytochrome P450 2E1.
FASEB J.
,
6
:
724
-730,  
1992
.
48
Hayashi S., Watanabe J., Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene.
J. Biochem. (Tokyo)
,
110
:
559
-565,  
1991
.
49
Mannervik B., Danielson U. H. Glutathione transferases-structure and catalytic activity.
CRC Crit. Rev. Biochem.
,
23
:
283
-337,  
1988
.
50
Board P., Coggan M., Johnston P., Ross V., Suzuki T., Webb G. Genetic heterogeneity of the human glutathione transferases: a complex of gene families.
Pharmacol. Ther.
,
48
:
357
-369,  
1990
.
51
Gelboin H. V. Benzo[α]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes.
Physiol. Rev.
,
60
:
1107
-1166,  
1980
.
52
Boone C. W., Kelloff G. J., Malone W. E. Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: a review.
Cancer Res.
,
50
:
2
-9,  
1990
.
53
Rebbeck T. R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility.
Cancer Epidemiol. Biomark. Prev.
,
6
:
733
-743,  
1997
.
54
Nijhoff W. A., Grubben M. J., Nagengast F. M., Jansen J. B., Verhagen H., van Poppel G., Peters W. H. Effects of consumption of Brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans.
Carcinogenesis (Lond.)
,
16
:
2125
-2128,  
1995
.
55
Strange R. C., Matharoo B., Faulder G. C., Jones P., Cotton W., Elder J. B., Deakin M. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma.
Carcinogenesis (Lond.)
,
12
:
25
-28,  
1991
.
56
Zhong S., Wyllie A. H., Barnes D., Wolf C. R., Spurr N. K. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast, and colon cancer.
Carcinogenesis (Lond.)
,
14
:
1821
-1824,  
1993
.
57
Chenevix-Trench G., Young J., Coggan M., Board P. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset.
Carcinogenesis (Lond.)
,
16
:
1655
-1657,  
1995
.
58
Deakin M., Elder J., Hendrickse C., Peckham D., Baldwin D., Pantin C., Wild N., Leopard P., Bell D. A., Jones P., Duncan H., Brannigan K., Alldersea J., Fryer A. A., Strange R. C. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers.
Carcinogenesis (Lond.)
,
17
:
881
-884,  
1996
.
59
Guo J. Y., Wan D. S., Zeng R. P., Zhang Q. The polymorphism of GSTM1, mutagen sensitivity in colon cancer and healthy control.
Mutat. Res.
,
372
:
17
-22,  
1996
.
60
Katoh T., Nagata N., Kuroda Y., Itoh H., Kawahara A., Kuroki N., Ookuma R., Bell D. A. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma.
Carcinogenesis (Lond.)
,
17
:
1855
-1859,  
1996
.
61
Gertig D. M., Stampfer M., Haiman C., Hennekens C. H., Kelsey K., Hunter D. J. Glutathione S-transferase GSTM1 and GSTT1 polymorphisms and colorectal cancer risk: a prospective study.
Cancer Epidemiol. Biomark. Prev.
,
7
:
1001
-1005,  
1998
.
62
Harris M. J., Coggan M., Langton L., Wilson S. R., Board P. G. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients.
Pharmacogenetics
,
8
:
27
-31,  
1998
.
63
Lee E., Huang Y., Zhao B., Seow-Choen F., Balakrishnan A., Chan S. H. Genetic polymorphism of conjugating enzymes and cancer risk: GSTM1, GSTT1, NAT1, and NAT2.
J. Toxicol. Sci.
,
23 (Suppl.2)
:
140
-142,  
1998
.
64
Moisio A. L., Sistonen P., Mecklin J. P., Jarvinen H., Peltomaki P. Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colon cancer.
Gastroenterology
,
115
:
1387
-1394,  
1998
.
65
Slattery M. L., Potter J. D., Samowitz W., Bigler J., Caan B., Leppert M. NAT2, GSTM-1, cigarette smoking, and risk of colon cancer.
Cancer Epidemiol. Biomark. Prev.
,
7
:
1079
-1084,  
1998
.
66
Abdel-Rahman S. Z., Soliman A. S., Bondy M. L., Wu X., El-Badawy S. A., Mahgoub K. G., Ismail S., Seifeldin I. A., Levin B. Polymorphism of glutathione S-transferase loci GSTM1 and GSTT1 and susceptibility to colorectal cancer in Egypt.
Cancer Lett.
,
142
:
97
-104,  
1999
.
67
Gawronska-Szklarz B., Lubinski J., Kladny J., Kurzawski G., Bielicki D., Wojcicki M., Sych Z., Musial H. D. Polymorphism of GSTM1 gene in patients with colorectal cancer and colonic polyps.
Exp. Toxicol. Pathol.
,
51
:
321
-325,  
1999
.
68
Welfare M., Monesola A. A., Bassendine M. F., Daly A. K. Polymorphisms in GSTP1, GSTM1, and GSTT1 and susceptibility to colorectal cancer.
Cancer Epidemiol. Biomark. Prev.
,
8
:
289
-292,  
1999
.
69
Zhang H., Ahmadi A., Arbman G., Zdolsek J., Carstensen J., Nordenskjold B., Soderkvist P., Sun X. F. Glutathione S-transferase T1 and M1 genotypes in normal mucosa, transitional mucosa, and colorectal adenocarcinoma.
Int. J. Cancer
,
84
:
135
-138,  
1999
.
70
Loktionov A., Watson M. A., Gunter M., Stebbings W. S., Speakman C. T., Bingham S. A. Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a risk-modulating factor.
Carcinogenesis (Lond.)
,
22
:
1053
-1060,  
2001
.
71
Saadat I., Saadat M. Glutathione S-transferase M1 and T1 null genotypes and the risk of gastric and colorectal cancers.
Cancer Lett.
,
169
:
21
-26,  
2001
.
72
Watson M. A., Stewart R. K., Smith G. B., Massey T. E., Bell D. A. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution.
Carcinogenesis (Lond.)
,
19
:
275
-280,  
1998
.
73
Harries L. W., Stubbins M. J., Forman D., Howard G. C., Wolf C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular, and prostate cancer.
Carcinogenesis (Lond.)
,
18
:
641
-644,  
1997
.
74
Katoh T., Kaneko S., Takasawa S., Nagata N., Inatomi H., Ikemura K., Itoh H., Matsumoto T., Kawamoto T., Bell D. A. Human glutathione S-transferase P1 polymorphism and susceptibility to smoking-related epithelial cancer; oral, lung, gastric, colorectal, and urothelial cancer.
Pharmacogenetics
,
9
:
165
-169,  
1999
.
75
Yoshioka M., Katoh T., Nakano M., Takasawa S., Nagata N., Itoh H. Glutathione S-transferase (GST) M1, T1, P1, N-acetyltransferase (NAT) 1 and 2 genetic polymorphisms and susceptibility to colorectal cancer.
Sangyo Ika Daigaku Zasshi
,
21
:
133
-147,  
1999
.
76
Ilett K. F., Ingram D. M., Carpenter D. S., Teitel C. H., Lang N. P., Kadlubar F. F., Minchin R. F. Expression of monomorphic and polymorphic N-acetyltransferases in human colon.
Biochem. Pharmacol.
,
47
:
914
-917,  
1994
.
77
Hickman D., Pope J., Patil S. D., Fakis G., Smelt V., Stanley L. A., Payton M., Unadkat J. D., Sim E. Expression of arylamine N-acetyltransferase in human intestine.
Gut
,
42
:
402
-409,  
1998
.
78
Turesky R. J., Lang N. P., Butler M. A., Teitel C. H., Kadlubar F. F. Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon.
Carcinogenesis (Lond.)
,
12
:
1839
-1845,  
1991
.
79
Minchin R. F., Reeves P. T., Teitel C. H., McManus M. E., Mojarrabi B., Ilett K. F., Kadlubar F. F. N- and O-acetylation of aromatic and heterocyclic amine carcinogens by human monomorphic and polymorphic acetyltransferases expressed in COS-1 cells.
Biochem. Biophys. Res. Commun.
,
185
:
839
-844,  
1992
.
80
Smelt V. A., Mardon H. J., Sim E. Placental expression of arylamine N-acetyltransferases: evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2.
Pharmacol. Toxicol.
,
83
:
149
-157,  
1998
.
81
Bell D. A., Stephens E. A., Castranio T., Umbach D. M., Watson M., Deakin M., Elder J., Hendrickse C., Duncan H., Strange R. C. Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer.
Cancer Res.
,
55
:
3537
-3542,  
1995
.
82
Hein D. W., Doll M. A., Fretland A. J., Leff M. A., Webb S. J., Xiao G. H., Devanaboyina U. S., Nangju N. A., Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms.
Cancer Epidemiol. Biomark. Prev.
,
9
:
29
-42,  
2000
.
83
Probst-Hensch N. M., Haile R. W., Li D. S., Sakamoto G. T., Louie A. D., Lin B. K., Frankl H. D., Lee E. R., Lin H. J. Lack of association between the polyadenylation polymorphism in the NAT1 (acetyltransferase 1) gene and colorectal adenomas.
Carcinogenesis (Lond.)
,
17
:
2125
-2129,  
1996
.
84
Chen J., Stampfer M. J., Hough H. L., Garcia C. M., Willett W. C., Hennekens C. H., Kelsey K. T., Hunter D. J. A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.
Cancer Res.
,
58
:
3307
-3311,  
1998
.
85
Katoh T., Boissy R., Nagata N., Kitagawa K., Kuroda Y., Itoh H., Kawamoto T., Bell D. A. Inherited polymorphism in the N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and susceptibility to gastric and colorectal adenocarcinoma.
Int. J. Cancer
,
85
:
46
-49,  
2000
.
86
Hubbard A. L., Moyes C., Wyllie A. H., Smith C. A., Harrison D. J. N-acetyl transferase 1: two polymorphisms in coding sequence identified in colorectal cancer patients.
Br. J. Cancer
,
77
:
913
-916,  
1998
.
87
Lang N. P., Chu D. Z., Hunter C. F., Kendall D. C., Flammang T. J., Kadlubar F. F. Role of aromatic amine acetyltransferase in human colorectal cancer.
Arch. Surg.
,
121
:
1259
-1261,  
1986
.
88
Ilett K. F., David B. M., Detchon P., Castleden W. M., Kwa R. Acetylation phenotype in colorectal carcinoma.
Cancer Res.
,
47
:
1466
-1469,  
1987
.
89
Ladero J. M., Gonzalez J. F., Benitez J., Vargas E., Fernandez M. J., Baki W., Diaz R. M. Acetylator polymorphism in human colorectal carcinoma.
Cancer Res.
,
51
:
2098
-2100,  
1991
.
90
Roberts-Thomson I. C., Ryan P., Khoo K. K., Hart W. J., McMichael A. J., Butler R. N. Diet, acetylator phenotype, and risk of colorectal neoplasia.
Lancet
,
347
:
1372
-1374,  
1996
.
91
Rodriguez J. W., Kirlin W. G., Ferguson R. J., Doll M. A., Gray K., Rustan T. D., Lee M. E., Kemp K., Urso P., Hein D. W. Human acetylator genotype: relationship to colorectal cancer incidence and arylamine N-acetyltransferase expression in colon cytosol.
Arch. Toxicol.
,
67
:
445
-452,  
1993
.
92
Shibuta K., Nakashima T., Abe M., Mashimo M., Mori M., Ueo H., Akiyoshi T., Sugimachi K., Suzuki T. Molecular genotyping for N-acetylation polymorphism in Japanese patients with colorectal cancer.
Cancer (Phila.)
,
74
:
3108
-3112,  
1994
.
93
Spurr N. K., Gough A. C., Chinegwundoh F. I., Smith C. A. Polymorphisms in drug-metabolizing enzymes as modifiers of cancer risk.
Clin. Chem.
,
41
:
1864
-1869,  
1995
.
94
Probst-Hensch N. M., Haile R. W., Ingles S. A., Longnecker M. P., Han C. Y., Lin B. K., Lee D. B., Sakamoto G. T., Frankl H. D., Lee E. R., Lin H. J. Acetylation polymorphism and prevalence of colorectal adenomas.
Cancer Res.
,
55
:
2017
-2020,  
1995
.
95
Hubbard A. L., Harrison D. J., Moyes C., Wyllie A. H., Cunningham C., Mannion E., Smith C. A. N-acetyltransferase 2 genotype in colorectal cancer and selective gene retention in cancers with chromosome 8p deletions.
Gut
,
41
:
229
-234,  
1997
.
96
Welfare M. R., Cooper J., Bassendine M. F., Daly A. K. Relationship between acetylator status, smoking, and, diet and colorectal cancer risk in the north-east of England.
Carcinogenesis (Lond.)
,
18
:
1351
-1354,  
1997
.
97
Gil J. P., Lechner M. C. Increased frequency of wild-type arylamine-N-acetyltransferase allele NAT2*4 homozygotes in Portuguese patients with colorectal cancer.
Carcinogenesis (Lond.)
,
19
:
37
-41,  
1998
.
98
Lee E. J., Zhao B., Seow C. F. Relationship between polymorphism of N-acetyltransferase gene and susceptibility to colorectal carcinoma in a Chinese population.
Pharmacogenetics
,
8
:
513
-517,  
1998
.
99
Oda Y., Yamazaki H., Shimada T. Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002.
Carcinogenesis (Lond.)
,
20
:
1079
-1083,  
1999
.
100
Potter J. D., Bigler J., Fosdick L., Bostick R. M., Kampman E., Chen C., Louis T. A., Grambsch P. Colorectal adenomatous and hyperplastic polyps: smoking and N-acetyltransferase 2 polymorphisms.
Cancer Epidemiol. Biomark. Prev.
,
8
:
69
-75,  
1999
.
101
Agundez J. A. G., Lozano L., Ladero J. M., Sastre J., Cerdan F. J., Diaz-Rubio M., Benitez J. N-acetyltransferase 2 (NAT2) genotype and colorectal carcinoma: risk variability according to tumour site?.
Scand. J. Gastroenterol.
,
35
:
1087
-1091,  
2000
.
102
Bulovskaya L. N., Krupkin R. G., Bochina T. A., Shipkova A. A., Pavlova M. V. Acetylator phenotype in patients with breast cancer.
Oncology
,
35
:
185
-188,  
1978
.
103
Welfare M. R., Bassendine M. F., Welfare M. R., Daly A. K. Caffeine phenotyping in patients with familial adenomatous polyposis may shed light on sporadic colon cancer and acetylator status.
Gut
,
38
:
153
1996
.
104
Evans D. A. N-acetyltransferase.
Pharmacol. Ther.
,
42
:
157
-234,  
1989
.
105
Joseph P., Jaiswal A. K. NAD(P)H: quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase.
Proc. Natl. Acad. Sci. USA
,
91
:
8413
-8417,  
1994
.
106
Edenharder R., Worf-Wandelburg A., Decker M., Platt K. L. Antimutagenic effects and possible mechanisms of action of vitamins and related compounds against genotoxic heterocyclic amines from cooked food.
Mutat. Res.
,
444
:
235
-248,  
1999
.
107
Vervoort L. M., Ronden J. E., Thijssen H. H. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation.
Biochem. Pharmacol.
,
54
:
871
-876,  
1997
.
108
Traver R. D., Horikoshi T., Danenberg K. D., Stadlbauer T. H., Danenberg P. V., Ross D., Gibson N. W. NAD(P)H: quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity.
Cancer Res.
,
52
:
797
-802,  
1992
.
109
Rosvold E. A., McGlynn K. A., Lustbader E. D., Buetow K. H. Re: Detection of a point mutation in NQO1 (DT-diaphorase) in a patient with colon cancer.
J. Natl. Cancer Inst. (Bethesda)
,
87
:
1802
-1803,  
1995
.
110
Kelsey K. T., Ross D., Traver R. D., Christiani D. C., Zuo Z. F., Spitz M. R., Wang M., Xu X., Lee B. K., Schwartz B. S., Wiencke J. K. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy.
Br. J. Cancer
,
76
:
852
-854,  
1997
.
111
Kuehl B. L., Paterson J. W., Peacock J. W., Paterson M. C., Rauth A. M. Presence of a heterozygous substitution and its relationship to DT-diaphorase activity.
Br. J. Cancer
,
72
:
555
-561,  
1995
.
112
Harth V., Donat S., Ko Y., Abel J., Vetter H., Bruning T. NAD(P)H quinone oxidoreductase 1 codon 609 polymorphism and its association to colorectal cancer.
Arch. Toxicol.
,
73
:
528
-531,  
2000
.
113
Lafuente M. J., Casterad X., Trias M., Ascaso C., Molina R., Ballesta A., Zheng S., Wiencke J. K., Lafuente A. NAD(P)H: quinone oxidoreductase-dependent risk for colorectal cancer and its association with the presence of K-ras mutations in tumors.
Carcinogenesis (Lond.)
,
21
:
1813
-1819,  
2000
.
114
Kolesar J. M., Kuhn J. G., Burris H. A., III. Detection of a point mutation in NQO1 (DT-diaphorase) in a patient with colon cancer.
J. Natl. Cancer Inst. (Bethesda)
,
87
:
1022
-1024,  
1995
.
115
Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts.
Nature (Lond.)
,
301
:
89
-92,  
1983
.
116
Goelz S. E., Vogelstein B., Hamilton S. R., Feinberg A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms.
Science (Wash. DC)
,
228
:
187
-190,  
1985
.
117
Makos M., Nelkin B. D., Lerman M. I., Latif F., Zbar B., Baylin S. B. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer.
Proc. Natl. Acad. Sci. USA
,
89
:
1929
-1933,  
1992
.
118
Issa J. P., Ottaviano Y. L., Celano P., Hamilton S. R., Davidson N. E., Baylin S. B. Methylation of the oestrogen receptor CpG island links aging and neoplasia in human colon.
Nat. Genet.
,
7
:
536
-540,  
1994
.
119
Laird P. W., Jaenisch R. DNA methylation and cancer.
Hum. Mol. Genet.
,
3 Spec.No.
:
1487
-1495,  
1994
.
120
Banerjee R. V., Matthews R. G. Cobalamin-dependent methionine synthase.
FASEB J.
,
4
:
1450
-1459,  
1990
.
121
Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., Boers G. J., den Heijer M., Kluijtmans L. A., van den Heuvel L. P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase.
Nat. Genet.
,
10
:
111
-113,  
1995
.
122
Jacques P. F., Bostom A. G., Williams R. R., Ellison R. C., Eckfeldt J. H., Rosenberg I. H., Selhub J., Rozen R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations.
Circulation
,
93
:
7
-9,  
1996
.
123
Ma J., Stampfer M. J., Hennekens C. H., Frosst P., Selhub J., Horsford J., Malinow M. R., Willett W. C., Rozen R. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians.
Circulation
,
94
:
2410
-2416,  
1996
.
124
Ma J., Stampfer M. J., Giovannucci E., Artigas C., Hunter D. J., Fuchs C., Willett W. C., Selhub J., Hennekens C. H., Rozen R. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer.
Cancer Res.
,
57
:
1098
-1102,  
1997
.
125
Chen J., Giovannucci E., Hankinson S. E., Ma J., Willett W. C., Spiegelman D., Kelsey K. T., Hunter D. J. A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma.
Carcinogenesis (Lond.)
,
19
:
2129
-2132,  
1998
.
126
Park K. S., Mok J. W., Kim J. C. The 677C > T mutation in 5,10-methylenetetrahydrofolate reductase and colorectal cancer risk.
Genet. Test.
,
3
:
233
-236,  
1999
.
127
Slattery M. L., Potter J. D., Samowitz W., Schaffer D., Leppert M. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer.
Cancer Epidemiol. Biomark. Prev.
,
8
:
513
-518,  
1999
.
128
Ulrich C. M., Kampman E., Bigler J., Schwartz S. M., Chen C., Bostick R., Fosdick L., Beresford S. A., Yasui Y., Potter J. D. Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction?.
Cancer Epidemiol. Biomark. Prev.
,
8
:
659
-668,  
1999
.
129
Wisotzkey J. D., Toman J., Bell T., Monk J. S., Jones D. MTHFR (C677T) polymorphisms and stage III colon cancer: response to therapy.
Mol. Diagn.
,
4
:
95
-99,  
1999
.
130
Levine A. J., Siegmund K. D., Ervin C. M., Diep A., Lee E. R., Frankl H. D., Haile R. W. The methylenetetrahydrofolate reductase 677C→T polymorphism and distal colorectal adenoma risk.
Cancer Epidemiol. Biomark. Prev.
,
9
:
657
-663,  
2000
.
131
Marugame T., Tsuji E., Inoue H., Shinomiya S., Kiyohara C., Onuma K., Hamada H., Koga H., Handa K., Hayabuchi H., Kono S. Methylenetetrahydrofolate reductase polymorphism and risk of colorectal adenomas.
Cancer Lett.
,
151
:
181
-186,  
2000
.
132
Giovannucci E., Rimm E. B., Ascherio A., Stampfer M. J., Colditz G. A., Willett W. C. Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men.
J. Natl. Cancer Inst. (Bethesda)
,
87
:
265
-273,  
1995
.
133
Chen L. H., Liu M. L., Hwang H. Y., Chen L. S., Korenberg J., Shane B. Human methionine synthase. cDNA cloning, gene localization, and expression.
J. Biol. Chem.
,
272
:
3628
-3634,  
1997
.
134
Chen J., Giovannucci E. L., Hunter D. J. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U. S. men and women: an example of gene-environment interactions in colorectal tumorigenesis.
J. Nutr.
,
129
:
560S
-564S,  
1999
.
135
Ma J., Stampfer M. J., Christensen B., Giovannucci E., Hunter D. J., Chen J., Willett W. C., Selhub J., Hennekens C. H., Gravel R., Rozen R. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk.
Cancer Epidemiol. Biomark. Prev.
,
8
:
825
-829,  
1999
.
136
Davidson N. O. Apolipoprotein E polymorphism: another player in the genetics of colon cancer susceptibility?.
Gastroenterology
,
110
:
2006
-2009,  
1996
.
137
Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology.
Science (Wash. DC)
,
240
:
622
-630,  
1988
.
138
Vogel T., Guo N. H., Guy R., Drezlich N., Krutzsch H. C., Blake D. A., Panet A., Roberts D. D. Apolipoprotein E: a potent inhibitor of endothelial and tumor cell proliferation.
J. Cell. Biochem.
,
54
:
299
-308,  
1994
.
139
Miettinen T. A. Impact of apo E phenotype on the regulation of cholesterol metabolism.
Ann. Med.
,
23
:
181
-186,  
1991
.
140
Brouwer D. A., van Doormaal J. J., Muskiet F. A. Clinical chemistry of common apolipoprotein E isoforms.
J. Chromatogr. B Biomed. Appl.
,
678
:
23
-41,  
1996
.
141
Kervinen K., Sodervik H., Makela J., Lehtola J., Niemi M., Kairaluoma M. I., Kesaniemi Y. A. Is the development of adenoma and carcinoma in proximal colon related to apolipoprotein E phenotype?.
Gastroenterology
,
110
:
1785
-1790,  
1996
.
142
Shinomiya S., Sasaki J., Kiyohara C., Tsuji E., Inoue H., Marugame T., Handa K., Hayabuchi H., Hamada H., Eguchi H., Fukushima Y., Kono S. Apolipoprotein E genotype, serum lipids, and colorectal adenomas in Japanese men.
Cancer Lett.
,
164
:
33
-40,  
2001
.
143
Nimmrich I., Friedl W., Kruse R., Pietsch S., Hentsch S., Deuter R., Winde G., Muller O. Loss of the PLA2G2A gene in a sporadic colorectal tumor of a patient with a PLA2G2A germline mutation and absence of PLA2G2A germline alterations in patients with FAP.
Hum. Genet.
,
100
:
345
-349,  
1997
.
144
Tomlinson I. P., Beck N. E., Neale K., Bodmer W. F. Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours.
Ann. Hum. Genet.
,
60 (Pt.5)
:
369
-376,  
1996
.
145
Heim S., Mitelman F. Nineteen of 26 cellular oncogenes precisely localized in the human genome map to one of the 83 bands involved in primary cancer-specific rearrangements.
Hum. Genet.
,
75
:
70
-72,  
1987
.
146
Goldfarb M., Shimizu K., Perucho M., Wigler M. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells.
Nature (Lond.)
,
296
:
404
-409,  
1982
.
147
Capon D. J., Chen E. Y., Levinson A. D., Seeburg P. H., Goeddel D. V. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue.
Nature (Lond.)
,
302
:
33
-37,  
1983
.
148
Kasperczyk A., DiMartino N. A., Krontiris T. G. Minisatellite allele diversification: the origin of rare alleles at the HRAS1 locus.
Am. J. Hum. Genet.
,
47
:
854
-859,  
1990
.
149
Green M., Krontiris T. G. Allelic variation of reporter gene activation by the HRAS1 minisatellite.
Genomics
,
17
:
429
-434,  
1993
.
150
Ceccherini-Nelli L., De Re V., Viel A., Molaro G., Zilli L., Clemente C., Boiocchi M. Ha-ras-1 restriction fragment length polymorphism and susceptibility to colon adenocarcinoma.
Br. J. Cancer
,
56
:
1
-5,  
1987
.
151
Maestri I., Castagnoli A., Bertusi M., Zandi G., Vettorello G., del Senno L. RFLPs of the Ha-ras1 proto-oncogene in subjects with colon-rectal carcinomas.
Boll. Soc. Ital. Biol. Sper.
,
63
:
305
-310,  
1987
.
152
Wyllie F. S., Wynford T. V, Lemoine N. R., Williams G. T., Williams E. D., Wynford T. D. Ha-ras restriction fragment length polymorphisms in colorectal cancer.
Br. J. Cancer
,
57
:
135
-138,  
1988
.
153
Klingel R., Mittelstaedt P., Dippold W. G., Meyer zum Buschenfelde K. H. Distribution of Ha-ras alleles in patients with colorectal cancer and Crohn’s disease.
Gut
,
32
:
1508
-1513,  
1991
.
154
Gosse-Brun S., Sauvaigo S., Daver A., Larra F., Kwiatkowski F., Bignon Y. J., Bernard-Gallon D. Association between H-ras minisatellite and colorectal cancer risk.
Anticancer Res.
,
18
:
2611
-2616,  
1998
.
155
Weinberg R. A. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis.
Cancer Res.
,
49
:
3713
-3721,  
1989
.
156
Kaye F., Battey J., Nau M., Brooks B., Seifter E., De Greve J., Birrer M., Sausville E., Minna J. Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing.
Mol. Cell Biol.
,
8
:
186
-195,  
1988
.
157
Ikeda I., Ishizaka Y., Ochiai M., Sakai R., Itabashi M., Onda M., Sugimura T., Nagao M. No correlation between L-myc restriction fragment length polymorphism and malignancy of human colorectal cancers.
Jpn. J. Cancer Res.
,
79
:
674
-676,  
1988
.
158
Ko J. M., Cheung M. H., Wong C., Lau K., Tang C. M., Kwan M. W., Lung M. L. L-myc genotypes in Hong Kong Chinese colorectal carcinoma patients.
Oncol. Rep.
,
6
:
441
-444,  
1999
.
159
Togo A. V., Suspitsin E. N., Grigoriev M. Y., Ilyushik E. S., Karpova M. B., Hanson K. P., Imyanitov E. N. L-myc polymorphism in cancer patients, healthy blood donors and elderly, tumor-free individuals in Russia.
Int. J. Cancer
,
85
:
747
-750,  
2000
.
160
Yonish R. E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6.
Nature (Lond.)
,
352
:
345
-347,  
1991
.
161
Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., Wyllie A. H. Thymocyte apoptosis induced by p53-dependent and independent pathways.
Nature (Lond.)
,
362
:
849
-852,  
1993
.
162
Malkin D. Germline p53 mutations and heritable cancer.
Annu. Rev. Genet.
,
28
:
443
-465,  
1994
.
163
Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene.
Nature (Lond.)
,
351
:
453
-456,  
1991
.
164
Ilyas M., Tomlinson I. P. Genetic pathways in colorectal cancer.
Histopathology
,
28
:
389
-399,  
1996
.
165
Sjalander A., Birgander R., Kivela A., Beckman G. P53 polymorphisms and haplotypes in different ethnic groups.
Hum. Hered.
,
45
:
144
-149,  
1995
.
166
Thomas M., Kalita A., Labrecque S., Pim D., Banks L., Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically.
Mol. Cell. Biol.
,
19
:
1092
-1100,  
1999
.
167
Avigad S., Barel D., Blau O., Malka A., Zoldan M., Mor C., Fogel M., Cohen I. J., Stark B., Goshen Y., Stein J., Zaizov R. A novel germ line p53 mutation in intron 6 in diverse childhood malignancies.
Oncogene
,
14
:
1541
-1545,  
1997
.
168
Shamsher M., Montano X. Analysis of intron 4 of the p53 gene in human cutaneous melanoma.
Gene (Amst.)
,
176
:
259
-262,  
1996
.
169
Sjalander A., Birgander R., Athlin L., Stenling R., Rutegard J., Beckman L., Beckman G. P53 germ line haplotypes associated with increased risk for colorectal cancer.
Carcinogenesis (Lond.)
,
16
:
1461
-1464,  
1995
.
170
Kawajiri K., Nakachi K., Imai K., Watanabe J., Hayashi S. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer.
Carcinogenesis (Lond.)
,
14
:
1085
-1089,  
1993
.
171
Beutler B., Cerami A. The biology of cachectin/TNF-a primary mediator of the host response.
Annu. Rev. Immunol.
,
7
:
625
-655,  
1989
.
172
Wilson A. G., de Vries N., Pociot F., di Giovine F. S., van der Putte L. B., Duff G. W. An allelic polymorphism within the human tumor necrosis factor α promoter region is strongly associated with HLA A1, B8, and DR3 alleles.
J. Exp. Med.
,
177
:
557
-560,  
1993
.
173
Ardizzoia A., Lissoni P., Brivio F., Tisi E., Perego M. S., Grassi M. G., Pittalis S., Crispino S., Barni S., Tancini G. Tumor necrosis factor in solid tumors: increased blood levels in the metastatic disease.
J. Biol. Regul. Homeost. Agents
,
6
:
103
-107,  
1992
.
174
Abrahamsson J., Carlsson B., Mellander L. Tumor necrosis factor α in malignant disease.
Am. J. Pediatr. Hematol. Oncol.
,
15
:
364
-369,  
1993
.
175
Pociot F., Briant L., Jongeneel C. V., Molvig J., Worsaae H., Abbal M., Thomsen M., Nerup J., Cambon-Thomsen A. Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-α and TNF-β by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus.
Eur. J. Immunol.
,
23
:
224
-231,  
1993
.
176
Kroeger K. M., Carville K. S., Abraham L. J. The -308 tumor necrosis factor α promoter polymorphism effects transcription.
Mol. Immunol.
,
34
:
391
-399,  
1997
.
177
Honchel R., McDonnell S., Schaid D. J., Thibodeau S. N. Tumor necrosis factor α allelic frequency and chromosome 6 allelic imbalance in patients with colorectal cancer.
Cancer Res.
,
56
:
145
-149,  
1996
.
178
Gallagher G., Lindemann M., Oh H. H., Ferencik S., Walz M. K., Schmitz A., Richards S., Eskdale J., Field M., Grosse-Wilde H. Association of the TNFa2 microsatellite allele with the presence of colorectal cancer.
Tissue Antigens
,
50
:
47
-51,  
1997
.
179
Park K. S., Mok J. W., Rho S. A., Kim J. C. Analysis of TNFB and TNFA NcoI RFLP in colorectal cancer.
Mol. Cell
,
8
:
246
-249,  
1998
.
180
Jang W. H., Yang Y. I., Yea S. S., Lee Y. J., Chun J. H., Kim H. I., Kim M. S., Paik K. H. The -238 tumor necrosis factor α promoter polymorphism is associated with decreased susceptibility to cancers.
Cancer Lett.
,
166
:
41
-46,  
2001
.
181
Weinberg E. D. The role of iron in cancer.
Eur. J. Cancer Prev.
,
5
:
19
-36,  
1996
.
182
Stevens R. G., Graubard B. I., Micozzi M. S., Neriishi K., Blumberg B. S. Moderate elevation of body iron level and increased risk of cancer occurrence and death.
Int. J. Cancer
,
56
:
364
-369,  
1994
.
183
Knekt P., Reunanen A., Takkunen H., Aromaa A., Heliovaara M., Hakulinen T. Body iron stores and risk of cancer.
Int. J. Cancer
,
56
:
379
-382,  
1994
.
184
Bird C. L., Witte J. S., Swendseid M. E., Shikany J. M., Hunt I. F., Frankl H. D., Lee E. R., Longnecker M. P., Haile R. W. Plasma ferritin, iron intake, and the risk of colorectal polyps.
Am. J. Epidemiol.
,
144
:
34
-41,  
1996
.
185
Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr., Ellis M. C., Fullan A., Hinton L. M., Jones N. L., Kimmel B. E., Kronmal G. S., Lauer P., Lee V. K., Loeb D. B., Mapa F. A., McClelland E., Meyer N. C., Mintier G. A., Moeller N., Moore T., Morikang E., Wolff R. K. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis.
Nat. Genet.
,
13
:
399
-408,  
1996
.
186
Adams P. C. Prevalence of abnormal iron studies in heterozygotes for hereditary hemochromatosis: an analysis of 255 heterozygotes.
Am. J. Hematol.
,
45
:
146
-149,  
1994
.
187
Nelson R. L., Davis F. G., Persky V., Becker E. Risk of neoplastic and other diseases among people with heterozygosity for hereditary hemochromatosis.
Cancer (Phila.)
,
76
:
875
-879,  
1995
.
188
Altes A., Gimferrer E., Capella G., Barcelo M. J., Baiget M. Colorectal cancer and HFE gene mutations.
Haematologica
,
84
:
479
-480,  
1999
.
189
Beckman L. E., Van Landeghem G. F., Sikstrom C., Wahlin A., Markevarn B., Hallmans G., Lenner P., Athlin L., Stenling R., Beckman L. Interaction between haemochromatosis and transferrin receptor genes in different neoplastic disorders.
Carcinogenesis (Lond.)
,
20
:
1231
-1233,  
1999
.
190
Macdonald G. A., Tarish J., Whitehall V. J., McCann S. J., Mellick G. D., Buttenshaw R. L., Johnson A. G., Young J., Leggett B. A. No evidence of increased risk of colorectal cancer in individuals heterozygous for the Cys282Tyr haemochromatosis mutation.
J. Gastroenterol. Hepatol.
,
14
:
1188
-1191,  
1999
.
191
Wickramasinghe S. N., Gardner B., Barden G. Cytotoxic protein molecules generated as a consequence of ethanol metabolism in vitro and in vivo.
Lancet
,
2
:
823
-826,  
1986
.
192
Fang J. L., Vaca C. E. Development of a 32P-postlabelling method for the analysis of adducts arising through the reaction of acetaldehyde with 2′-deoxyguanosine-3′-monophosphate and DNA.
Carcinogenesis (Lond.)
,
16
:
2177
-2185,  
1995
.
193
Bosron W. F., Li T. K. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism.
Hepatology
,
6
:
502
-510,  
1986
.
194
Yamamoto K., Ueno Y., Mizoi Y., Tatsuno Y. Genetic polymorphism of alcohol and aldehyde dehydrogenase and the effects on alcohol metabolism.
Arukoru Kenkyuto Yakubutsu Ison
,
28
:
13
-25,  
1993
.
195
Yokoyama A., Muramatsu T., Ohmori T., Yokoyama T., Okuyama K., Takahashi H., Hasegawa Y., Higuchi S., Maruyama K., Shirakura K., Ishii H. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics.
Carcinogenesis (Lond.)
,
19
:
1383
-1387,  
1998
.
196
Murata M., Tagawa M., Watanabe S., Kimura H., Takeshita T., Morimoto K. Genotype difference of aldehyde dehydrogenase 2 gene in alcohol drinkers influences the incidence of Japanese colorectal cancer patients.
Jpn. J. Cancer Res.
,
90
:
711
-719,  
1999
.
197
Reichel H., Koeffler H. P., Norman A. W. The role of the vitamin D endocrine system in health and disease.
N. Engl. J. Med.
,
320
:
980
-991,  
1989
.
198
Ingles S. A., Garcia D. G., Wang W., Nieters A., Henderson B. E., Kolonel L. N., Haile R. W., Coetzee G. A. Vitamin D receptor genotype and breast cancer in Latinas (United States).
Cancer Causes Control
,
11
:
25
-30,  
2000
.
199
Morrison N. A., Qi J. C., Tokita A., Kelly P. J., Crofts L., Nguyen T. V., Sambrook P. N., Eisman J. A. Prediction of bone density from vitamin D receptor alleles.
Nature (Lond.)
,
367
:
284
-287,  
1994
.
200
Dawson-Hughes B., Harris S. S., Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype.
J. Clin. Endocrinol. Metab.
,
80
:
3657
-3661,  
1995
.
201
Ma J., Stampfer M. J., Gann P. H., Hough H. L., Giovannucci E., Kelsey K. T., Hennekens C. H., Hunter D. J. Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians.
Cancer Epidemiol. Biomark. Prev.
,
7
:
385
-390,  
1998
.
202
Miyamoto K., Kesterson R. A., Yamamoto H., Taketani Y., Nishiwaki E., Tatsumi S., Inoue Y., Morita K., Takeda E., Pike J. W. Structural organization of the human vitamin D receptor chromosomal gene and its promoter.
Mol. Endocrinol.
,
11
:
1165
-1179,  
1997
.
203
Ingles S. A., Wang J., Coetzee G. A., Lee E. R., Frankl H. D., Haile R. W. Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States).
Cancer Causes Control
,
12
:
607
-614,  
2001
.
204
Kim H. S., Newcomb P. A., Ulrich C. M., Keener C. L., Bigler J., Farin F. M., Bostick R. M., Potter J. D. Vitamin D receptor polymorphism and the risk of colorectal adenomas: evidence of interaction with dietary vitamin D and calcium.
Cancer Epidemiol. Biomark. Prev.
,
10
:
869
-874,  
2001
.
205
Speer G., Cseh K., Winkler G., Takacs I., Nagy Z., Lakatos P. Oestrogen and vitamin D receptor (VDR) genotypes and the expression of ErbB-2 and EGF receptor in human rectal cancers.
Eur. J. Cancer
,
37
:
1463
-1468,  
2001
.
206
Marchand L. L. Combined influence of genetic and dietary factors on colorectal cancer incidence in Japanese Americans.
J. Natl. Cancer Inst. Monogr.
,
26
:
101
-105,  
1999
.
207
Heinimann K., Scott R. J., Chappuis P., Weber W., Muller H., Dobbie Z., Hutter P. N-acetyltransferase 2 influences cancer prevalence in hMLH1/hMSH2 mutation carriers.
Cancer Res.
,
59
:
3038
-3040,  
1999
.
208
Kong S., Amos C. I., Luthra R., Lynch P. M., Levin B., Frazier M. L. Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer.
Cancer Res.
,
60
:
249
-252,  
2000
.
209
Bala S., Peltomaki P. CYCLIN D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer.
Cancer Res.
,
61
:
6042
-6045,  
2001
.
210
Maillet P., Chappuis P. O., Vaudan G., Dobbie Z., Muller H., Hutter P., Sappino A. P. A polymorphism in the ATM gene modulates the penetrance of hereditary non-polyposis colorectal cancer.
Int. J. Cancer
,
88
:
928
-931,  
2000
.
211
Dobbie Z., Heinimann K., Bishop D. T., Muller H., Scott R. J. Identification of a modifier gene locus on chromosome 1p35–36 in familial adenomatous polyposis.
Hum. Genet.
,
99
:
653
-657,  
1997
.
212
Spirio L. N., Kutchera W., Winstead M. V., Pearson B., Kaplan C., Robertson M., Lawrence E., Burt R. W., Tischfield J. A., Leppert M. F., Prescott S. M., White R. Three secretory phospholipase A(2) genes that map to human chromosome 1P35–36 are not mutated in individuals with attenuated adenomatous polyposis coli.
Cancer Res.
,
56
:
955
-958,  
1996
.
213
Dobbie Z., Muller H., Scott R. J. Secretory phospholipase A2 does not appear to be associated with phenotypic variation in familial adenomatous polyposis.
Hum. Genet.
,
98
:
386
-390,  
1996
.
214
Houlston R. S., Tomlinson I. P. Polymorphisms and colorectal tumor risk.
Gastroenterology
,
121
:
282
-301,  
2001
.
215
McKay J. A., Douglas J. J., Ross V. G., Curran S., Murray G. I., Cassidy J., McLeod H. L. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative.
Int. J. Cancer
,
88
:
77
-81,  
2000
.
216
Martinez C., Garcia-Martin E., Ladero J. M., Sastre J., Garcia-Gamito F., Diaz-Rubio M., Agundez J. A. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk.
Carcinogenesis (Lond.)
,
22
:
1323
-1326,  
2001
.
217
Minami R., Aoyama N., Honsako Y., Kasuga M., Fujimori T., Maeda S. Codon 201Arg/Gly polymorphism of DCC (deleted in colorectal carcinoma) gene in flat- and polypoid-type colorectal tumors.
Dig. Dis. Sci.
,
42
:
2446
-2452,  
1997
.
218
Oba S. M., Wang Y. J., Song J. P., Li Z. Y., Kobayashi K., Tsugane S., Hamada G. S., Tanaka M., Sugimura H. Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer.
Cancer Lett.
,
164
:
97
-104,  
2001
.
219
Harrison D. J., Hubbard A. L., MacMillan J., Wyllie A. H., Smith C. A. Microsomal epoxide hydrolase gene polymorphism and susceptibility to colon cancer.
Br. J. Cancer
,
79
:
168
-171,  
1999
.
220
Pasche B., Kolachana P., Nafa K., Satagopan J., Chen Y. G., Lo R. S., Brener D., Yang D., Kirstein L., Oddoux C., Ostrer H., Vineis P., Varesco L., Jhanwar S., Luzzatto L., Massague J., Offit K. TβR-I(6A) is a candidate tumor susceptibility allele.
Cancer Res.
,
59
:
5678
-5682,  
1999
.
221
Marsh S., McKay J. A., Cassidy J., McLeod H. L. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer.
Int. J. Oncol.
,
19
:
383
-386,  
2001
.
222
Kohonen-Corish M., Young J., Chenevix-Trench G., Doe W. F. Urokinase receptor genotypes in colorectal cancer.
Carcinogenesis (Lond.)
,
19
:
1149
-1151,  
1998
.
223
Abdel-Rahman S. Z., Soliman A. S., Bondy M. L., Omar S., El Badawy S. A., Khaled H. M., Seifeldin I. A., Levin B. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt.
Cancer Lett.
,
159
:
79
-86,  
2000
.
224
Dunning A. M., Healey C. S., Pharoah P. D., Teare M. D., Ponder B. A., Easton D. F. A systematic review of genetic polymorphisms and breast cancer risk.
Cancer Epidemiol. Biomark. Prev.
,
8
:
843
-854,  
1999
.
225
Delattre O., Olschwang S., Law D. J., Melot T., Remvikos Y., Salmon R. J., Sastre X., Validire P., Feinberg A. P., Thomas G. Multiple genetic alterations in distal and proximal colorectal cancer.
Lancet
,
2
:
353
-356,  
1989
.
226
Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon.
Science (Wash. DC)
,
260
:
816
-819,  
1993
.
227
Lynch H. T., de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer.
J. Med. Genet.
,
36
:
801
-818,  
1999
.