Microsatellite instability (MSI) and tumor mutational burden (TMB) are predictive biomarkers for pan-cancer immunotherapy. The interrelationship between MSI-high (MSI-H) and TMB-high (TMB-H) in human cancers and their predictive value for immunotherapy in lung cancer remain unclear.


We analyzed somatic mutation data from the Genomics Evidence Neoplasia Information Exchange (n = 46,320) to determine the relationship between MSI-H and TMB-H in human cancers using adjusted multivariate regression models. Patient survival was examined using the Cox proportional hazards model. The association between MSI and genetic mutations was assessed.


Patients (31–89%) with MSI-H had TMB-low phenotypes across 22 cancer types. Colorectal and stomach cancers showed the strongest association between TMB and MSI. TMB-H patients with lung cancer who received immunotherapy exhibited significantly higher overall survival [HR, 0.61; 95% confidence interval (CI), 0.44–0.86] and progression-free survival (HR, 0.65; 95% CI, 0.47–0.91) compared to the TMB-low group; no significant benefit was observed in the MSI-H group. Patients with TMB and MSI phenotypes showed further improvement in overall survival and PFS. We identified several mutated genes associated with MSI-H phenotypes, including known mismatch repair genes and novel mutated genes, such as ARID1A and ARID1B.


Our results demonstrate that TMB-H and/or a combination of MSI-H can serve as biomarkers for immunotherapies in lung cancer.


These findings suggest that distinct or combined biomarkers should be considered for immunotherapy in human cancers because notable discrepancies exist between MSI-H and TMB-H across different cancer types.

You do not currently have access to this content.